
Cellular Oncology 27 (2005) 335–345 335
IOS Press

Development of 3D chromatin texture
analysis using confocal laser scanning
microscopy 1

André Huisman a, Lennert S. Ploeger a, Hub F.J. Dullens a, Neal Poulin a, William E. Grizzle b and
Paul J. van Diest a,∗
a Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
b Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA

Abstract. Introduction: Analysis of nuclear texture features as a measure of nuclear chromatin changes has been proven to be
useful when measured on thin (5–6 µm) tissue sections using conventional 2D bright field microscopy. The drawback of this
approach is that most nuclei are not intact because of those thin sections. Confocal laser scanning microscopy (CLSM) allows
measurements of texture in 3D reconstructed nuclei. The aim of this study was to develop 3D texture features that quantita-
tively describe changes in chromatin architecture associated with malignancy using CLSM images. Methods: Thirty-five fea-
tures thoughtfully chosen from 4 categories of 3D texture features (discrete texture features, Markovian features, fractal features,
grey value distribution features) were selected and tested for invariance properties (rotation and scaling) using artificial images
with a known grey value distribution. The discriminative power of the 3D texture features was tested on artificially constructed
benign and malignant 3D nuclei with increasing nucleolar size and advancing chromatin margination towards the periphery of
the nucleus. As a clinical proof of principle, the discriminative power of the texture features was assessed on 10 benign and 10
malignant human prostate nuclei, evaluating also whether there was more texture information in 3D whole nuclei compared to a
single 2D plane from the middle of the nucleus. Results: All texture features showed the expected invariance properties. Almost
all features were sensitive to variations in the nucleolar size and to the degree of margination of chromatin. Fourteen texture fea-
tures from different categories had high discriminative power for separating the benign and malignant nuclei. The discrete texture
features performed less than expected. There was more information on nuclear texture in 3D than in 2D. Conclusion: A set of 35
3D nuclear texture features was used successfully to assess nuclear chromatin patterns in 3D images obtained by confocal laser
scanning microscopy, and as a proof of principle we showed that these features may be clinically useful for analysis of prostate
neoplasia.
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1. Introduction

The transformation of a normal cell into a malignant
cell is associated with genetic alterations that result in
morphological changes in the nucleus [24]. Those ge-
netic changes can be assessed by molecular screening
techniques on a global level (DNA Ploidy [3], patterns
of chromosomal gains and losses [17]) or on a high res-
olution level (PCR, sequence analysis). For diagnos-
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tic purposes it is conventional and less cumbersome
to assess the morphological implications of these ge-
netic changes such as nuclear [10] or nucleolar size
[20] or chromatin distribution [8,22]. The nuclear chro-
matin distribution in genetically altered cells is gen-
erally coarsely-clumped with multiple chromocenters
and larger nucleoli in contrast to normal cells which
characteristically have finely granular chromatin with
few chromocenters and no or small nucleoli. These
changes are often rather subtle or even subvisible, and
are sometimes referred to as “malignancy associated
changes” as they may be detected in morphologically
benign cells when malignancy is present [13]. There-
fore, they should better be quantified by “texture fea-
tures” because they are very sensitive, even for small
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Fig. 1. The transformation of a normal prostate cell nucleus (left) into a malignant cell nucleus (right) is associated with nuclear chromatin
changes. For example, the presence of large nucleoli, visible as relatively bright dots in the cell nuclei, are clearly visible in this example. These
images are maximum intensity projections from the same confocal image stack.

textural changes, and are not prone to observer subjec-
tivity. Figure 1 shows representative benign and malig-
nant confocal planes illustrating these changes.

There is a vast amount of literature on the clini-
cal value of the assessment of such texture features by
image analysis in conventional tissue sections or cy-
tospins prepared from cell suspensions, ranging from
diagnostic [13] to prognostic applications [18]. Con-
ventional thin tissue sections have the drawback that
only a slice of the nucleus is present within the sec-
tion, resulting in potential loss of important informa-
tion. This can be avoided by preparing cytospins from
cell suspensions, but this introduces artifacts by the
flattening of nuclei while spinning them down at high
speed, and the morphological context of the analyzed
nuclei is completely lost by the dissociation process
and by drying. These drawbacks can be avoided com-
pletely by using confocal laser scanning microscopy
(CLSM) for imaging of nuclei in thick sections. Thin
optical slices are taken at high resolution by confo-
cal imaging, and these are subsequently reconstructed
in 3D [14,19]. In spite of these major potential ad-
vantages, so far implementation of only a small num-
ber of 3D texture features was described in a single
study [1]. In the present study we addressed this tech-
nical challenge and developed software for calculating
35 3D nuclear texture features. These were thought-

fully chosen from four categories of texture features:
descriptive statistics for the grey-value distribution
[6,15], features discriminating nuclear regions with a
low, a medium and a high amount of DNA, Markovian
features, derived from co-occurrence matrices
[5,9] and fractal features [7]. This selection was based
on their reported clinical usefulness when measured
by conventional 2D image cytometry, their wide pop-
ularity for texture characterization, and their potential
power to detect nucleoli. To be most advantageous in
practice, such texture features need to have invariant
properties with regard to rotation and scaling that make
it possible to image cells under arbitrary orientations
and using different zoom factors, which we thoroughly
tested in artificially created images.

2. Methods

2.1. Implementation of 3D texture features

Measurement of the 35 selected texture features was
done with the open source Image Processing ToolKit
(ITK, Kitware Inc., New York, USA). Using this image
processing library we computed the Markovian texture
features. The other texture features were implemented
in-house. We added a visualization module for 3D vol-
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ume rendering, using the Visualization ToolKit (VTK,
Kitware Inc., New York). In the appendix the formulas
are listed.

2.2. Descriptive statistical features

These features summarize general statistics for the
chromatin distribution [6]:

1. The Integrated Fluorescence Intensity (IFI) is
comparable to the integrated optical density in
conventional bright field microscopy. It is defined
as the sum of grey-values of a nucleus, assuming
no background noise. Due to the stoichiometry of
the applied fluorescent stains this sum is propor-
tional to the amount of DNA. This feature is the-
oretically rotation invariant, but not scale invari-
ant.

2. In a straightforward way the Mean Fluorescence
Intensity (MFI) can be defined, using IFI and
the volume in voxels. This feature is theoretically
scale and rotation invariant.

3. Variance of fluorescence intensity over the nu-
cleus (2nd moment of the intensity distribu-
tion around the mean intensity) abbreviated as
FIVAR. If the chromatin is distributed uniformly
it is equal to 0. This feature is theoretically rota-
tion and scale invariant. The standard deviation,
FISD, is given by

√
FIVAR.

4. The asymmetry of the intensity distribution, the
skewness (FISKEW) [15]. This feature is also
theoretically rotation and scale invariant. For a
normal distribution, the skewness is equal to 0.

5. Kurtosis: a measure for how far the tail-ends of
the IFI distribution extend (this is equal to 0 for
a Gaussian distribution) [15]. This feature is the-
oretically scale and rotation invariant.

2.3. Discrete texture features [6]

It is often possible to visually discern areas in the
nucleus with different chromatin condensation states,
corresponding to different ranges of grey-values. We
define the low density area as the area containing pixels
with a grey-value in the range from [0, MFI − FISD],
the medium density area with grey-values in the range
(MFI − FISD, MFI + FISD] and the high density area
with grey-values in the range (MFI+FISD,∞). For nu-
clei with normally distributed grey values the relative
number of pixels is respectively 16%, 68% and 16%.
Those numbers were used to validate the segmented

sizes of the condensation state areas. We segmented
the nuclei in those regions and computed the following
texture features.

1. The volume of the regions with low (VOLUMEL),
medium (VOLUMEM ) or high (VOLUMEH )
amount of DNA in µm3, estimated by multiply-
ing the voxel dimensions for every dimension
and the number of object pixels. This feature is
theoretically rotation but not scale invariant.

2. The number of different objects per condensation
state A, i.e. the number of separated regions for a
certain state. This feature is theoretically rotation
and scale invariant.

3. The relative amount of DNA in a region A, called
extinction ratio. This feature is theoretically rota-
tion, but not scale, invariant.

4. Comparison of ratios between the mean intensity
of the low condensation state and the respective
other condensation states A, called average ex-
tinction ratio (AVG_EXTINCTION). Higher fea-
ture values for all those average extinction ratios
indicate smoother transitions between chromatin
condensation states. This feature is theoretically
invariant under scaling and rotation.

5. The compactness of the surfaces of the differ-
ent condensation states is used as a measure for
the circularity. The surface of the enclosing sur-
faces is computed for all objects in the conden-
sation state. In our implementation, the surfaces
were computed by triangulation of the conden-
sation states and integrating the area of the tri-
angles. The value of compactness equals 1 for a
sphere. This feature is theoretically rotation, but
not scale invariant.

6. The average distance between the geometrical
centre of the nucleus and all voxels from each
chromatin state. This indicates how close the
chromatin is located to the border. The function
d(C, (i, j, k)) is defined as the Euclidean distance
between the geometrical center of the nucleus, C,
and the coordinate (i, j, k). It is normalized with
the volume of the chromatin state (VOLUMEA)
and the average radius of the nucleus (R). The
average distance is 1 if all voxels from a certain
condensation state are on the nuclear border (i.e.
as far from the center of the nucleus as possible).
This feature is theoretically rotation and scale in-
variant.

7. The distance between the geometrical centre of
the nucleus (C) and the center of mass of each
chromatin condensation state (CMA). It is nor-
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malized with the volume of the chromatin state
(VOLUMEA) and the average radius R of the nu-
cleus. The value of this feature is zero if the chro-
matin states are distributed symmetrically with
respect to the nuclear center. This feature is the-
oretically rotation and scale invariant.

2.4. Markovian texture features

Markovian texture features describe texture patterns
more locally and are typically computed from a co-
occurrence matrix [9]. They characterize the second or-
der gray-level distribution of an image. The elements
of the co-occurrence matrix describe the joint probabil-
ity that a gray-level i co-occurs with a gray-level j on a
distance d under angle θ and inclination φ. Texture fea-
tures are derived from the co-occurrence matrix. The
features we calculated are: Energy, Entropy, Correla-
tion, Difference Moment, Inertia, Cluster Shade and
Cluster Prominence [9]. These features are fundamen-
tally not rotation and scale invariant. However, rotation
invariance is achieved by computing co-occurrence
matrices for different angles and inclinations and com-
bining those matrices by averaging. Scale invariance
could be introduced by using multi-resolution tech-
niques (e.g. image pyramids). However, since our aim
was to compare cell nuclei at the same scale, we did
not correct these features for scale variance.

2.5. Fractal texture features

Fractals are mathematical objects which have simi-
lar details on different scales. The advantage of frac-
tals is that their complexity is invariant under scaling
and have a strong correlation with human judgment of
roughness of texture [4]. In our software implementa-
tion we used the box-counting approach [16].

The fractal dimension is a feature used to character-
ize the geometrical complexity of the chromatin pat-
tern. However, two different objects can have the same
fractal dimension. Therefore another feature is needed
to characterize the fractal more precisely. One such
feature is the lacunarity, which characterizes the size
of gaps or holes of a fractal, in this particular context
chromatin clearings and nucleoli. The calculation of
the lacunarity was implemented using a gliding box
approach [7].

3. Verification of implementation using model
images

We verified our software implementation using im-
ages of artificially generated ovoid 3D objects simulat-
ing nuclei, for which the true values for texture feature
values are mathematically defined. These images were
defined as having an isotropic resolution. For the dis-
crete and general statistical features, these objects were
generated with Gaussian distributed grey-values (mean
and standard deviation of 740.0 and 400.0).

For the discrete texture features, we verified the
intra-nuclear segmentation by assessing the areas of
the low, medium and high condensation states. These
areas were respectively 16%, 68% and 16% as ex-
pected. The ITK software provided the algorithms to
validate the Markovian features. This was done by
manually defining grey values within an artificial im-
age, computing the Markovian texture feature values
with the implemented algorithms, and comparing these
to reference values. The computation of the fractal di-
mension was verified using the above described artifi-
cial nuclei. The fractal dimension is known to be 2 for
normally distributed images [11]. The lacunarity com-
putation was verified using artificial 3D nuclei having
uniformly distributed grey-values, the number of lacu-
nas being known from the distribution parameters.

The procedure was repeated for the same object un-
der an angle of 90◦ and a magnification factor of 8 to
test for rotation and scale invariance, respectively.

Table 2 shows AUC values for features discrimi-
nating benign and malignant artificial nuclei with dif-
ferent degrees of chromatin margination and nucleo-
lar sizes. Most features were both sensitive for nucle-
olar size and chromatin margination. Features that re-
mained discriminative although the effect of the nu-
cleolar size and chromatin margination was very lim-
ited are marked with a plus sign. Features that were
never able to discriminate between the benign and ma-
lignant artificial nuclei were Inertia and Correlation,
both derived from the co-occurrence matrix, the Vol-
ume of the low and high condensation states, the Com-
pactness of the medium and high condensation states,
and the Fractal dimension.

4. Assessment of clinical value by discriminating
benign and malignant model and prostate nuclei

The discriminative power of our features was tested
on the above described artificially generated ovoid
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shaped nuclei with normally distributed grey-values
that were used as a model of benign nuclei. These nu-
clei were compared with artificial malignant nuclei,
which were modeled to have normally distributed grey-
values with the same parameters as the benign nuclei,
but with an added nucleolus and the DNA located more
towards the border. The grey-value of the nucleolus
was set to 3276, 80% of the maximum grey-value for
a 12 bit signal-depth. The ovoid shaped area contain-
ing a low amount of DNA was centered in the nu-
cleus. This region has normally distributed grey val-
ues, with a mean value of 370 and a standard devia-
tion of 200. These nuclei were constructed to fit in a
bounding box with dimensions of 80 × 80 × 12 vox-
els. Figure 2 shows examples of these artificial nuclei.
The size of the ovoid shaped nucleolus was varied, to-
gether with the radius of a central nuclear region with
a relatively low amount of DNA to simulate chromatin
margination. By varying these radii we established the
sensitivity of the 3D texture features.

For further clinical validation, a fourteen micron
thick section from a prostatectomy specimen contain-
ing prostate cancer was stained with TO-PRO-3 (Mole-
cular Probes, Eugene, OR, USA) and subsequently im-
aged in 3D in a semi-automated fashion by confocal
laser scanning microscopy (Leica TCS SP2 AOBS, Le-
ica Microsystems, Heidelberg, Germany). Segmenta-
tion of the cell nuclei was performed by our previously
developed software for 3D segmentation of cell nuclei
images acquired with CLSM [2]. The segmentation re-
sults were exported to our texture feature computation
software for feature calculation of benign and malig-
nant cells as judged by a pathologist (PvD). The para-
meters of the normal distribution of the artificially cre-

ated cell nuclei (mean of 740 and standard deviation of
400) were established from the mean and variance of
these benign nuclei.

In univariate analysis, Receiver Operating Charac-
teristic (ROC) analysis was used to discriminate be-
tween benign and malignant model nuclei [23], vary-
ing the radius of the size of the central area with a low
amount of DNA and the size of the nucleolus. The area
under the ROC curve (AUC) was used as a measure for
the discriminative performance (0.5–1) of an individ-
ual feature [21].

5. Discriminating benign and malignant prostate
nuclei: 2D vs 3D

In order to assess the added value of using the com-
plete 3D image stack in nuclear texture feature cal-
culations compared to bright-field microscopy, we re-
implemented the 3D texture features for 2D applica-
tion. Using the 3D stacks of the 10 benign and 10 ma-
lignant prostate nuclei as described above, we identi-
fied the central plane for each nucleus, calculated the
35 textures features in this single plane, and compared
the AUC values between these 2D features with the 3D
features calculated for the whole nuclei.

6. Results

Table 1 shows the theoretical and experimentally es-
tablished invariance properties of the implemented tex-
ture features. All features showed the theoretically ex-
pected invariant properties. From the descriptive sta-

Fig. 2. Volume rendering of artificial 3D nuclei used to test 3D nuclear texture features. Left: image representing benign nucleus with normally
distributed grey values and no nucleolus. Right: image representing malignant nucleus with the margination of the chromatin and a nucleolus.
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Table 1

Invariance properties of 35 implemented 3D texture features computed on artificial nuclei having a nuclear size of 10 µm and a
nucleolar size of 3 µm and a scaling of the central area with a low amount of DNA of 0.5 with respect to the nuclear size. The
percentages are relative changes with respect to the initial image from which the rotated and scaled images were computed

Texture feature Rotation invariance Scale invariance

Theoretical Practical Theoretical Practical

Descriptive statistical features

Integrated fluorescence intensity Yes 0.00% No 700%

Mean fluorescence intensity Yes 0.00% Yes 0.00%

Fluorescence intensity variance Yes 0.00% Yes 0.00%

Skewness of the fluorescence intensity distribution Yes 0.00% Yes 0.00%

Discrete texture features

Kurtosis of the fluorescence intensity distribution Yes 0.00% Yes –0.01%

Volume Yes 0.00% No 700%

Average extinction ratio Yes 0.00% Yes 0.00%

Relative extinction ratio compared to low condensation state Yes 0.00% Yes 0.00%

Number of not connected objects per condensation state Yes 0.00% Yes 0.00%

Compactness Yes 0.03% Yes 1.22%

Markovian texture features

Average distance between geometrical nuclear center and all Yes 0.00% No 9.99%

pixels in a condensation state

Normalized asymmetry of condensation states

through the nucleus Yes 0.00% No 2.44%

Energy Yes 0.00% No 1.17 · 103%

Entropy Yes 0.00% No 43.1%

Correlation Yes 0.00% No 5.85%

Difference moment Yes 0.00% No 1.15 · 103%

Fractal texture features

Inertia Yes 0.00% No 27.4%

Cluster shade Yes 0.00% No 82.0%

Cluster prominence Yes 0.00% No –77.8%

Lacunarity Yes 0.00% No 85.1%

Fractal dimension Yes 0.00% Yes 1.15%

tistical features, as expected IFI was not scale invari-
ant. Also as expected, from the six discrete texture fea-
tures, Volume, the average distance between the geo-
metrical nuclear center and all pixels of a condensa-
tion state and the Normalized asymmetry of the con-
densation states throughout the nucleus were clearly
not scale invariant as expected. None of the Markov-
ian texture features were scale invariant. From the frac-
tal texture features, the fractal dimension was scale in-
variant as expected. The results on the artificial nuclei
with known grey-value distributions and image prop-
erties were as predicted. Together with the invariant re-
sults, this indicates that a correct software implemen-
tation was achieved. The apparent rotation variance of
the compactness feature is due to several estimation
and rounding errors during the computation of this fea-
ture.

Table 3 shows the computed AUC values for the
different texture features as measures for their dis-
criminative power between the 10 benign and 10 ma-
lignant prostate nuclei. The following features had
AUC values of 0.80 or greater: the Number of uncon-
nected parts of the low condensation state, Low ver-
sus medium-high average extinction ratio, Low versus
high average extinction ratio, Cluster prominence, En-
tropy, Grey variance, Energy, Correlation, Grey mean,
Inertia, Grey kurtosis, Inverse difference moment and
Average extinction ratio of region with low amount of
DNA.

In the 2D/3D comparison, the AUC values of the
20 best discriminating features, computed in 3D, were
significantly higher (p = 0.001, Wilcoxon signed
ranks test) when computed for 3D whole nuclei than
when assessed in the single central 2D plane.
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Table 2

Discriminative power for artificial 3-D nuclei with varying nucleolar size and degree of chromatin margination of 3D nuclear texture features yielding an area under the curve in ROC analysis
of 0.5 and higher. Texture features marked with a plus sign indicate a low sensitivity to the effects of these variations

Nucleolar size 0 0.03 0.06 0.09 0.1 0.2 0.3 0.4 0.4 0.5 0.6 Total

Chromatin margination 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0.5 0.9 0.5 0.5 0.9 0.5 0.7 0.9 0.9 0.5 0.7 0.9 0.5 0.9

Grey sum 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 14

Grey mean 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 14

Grey variance 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 22

Grey skewness + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25

Grey kurtosis + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25

Energy + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25

Entropy + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25

Inverse difference 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25

moment +

Cluster shade 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 19

Cluster prominence 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 14

Volume of medium region 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 21

Average extinction 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 4

ratio of low region

Average extinction 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 20

ration of medium region

Average extinction 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 9

ration of high region

Low vs. medium avg. 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 24

ext. rat. +

Low vs. med-high avg. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25

ext. rat. +

Low vs. high avg. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25

ext. rat. +

Number of unconnected 0 1 0.5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22.5

low areas

Number of unconnected 1 0 0 0.5 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 17.5

high areas

Compactness of 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 11

low region

Compactness of 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 3

high region
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Table 2

(Continued)

Nucleolar size 0 0.03 0.06 0.09 0.1 0.2 0.3 0.4 0.4 0.5 0.6 Total

Chromatin margination 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0 0.1 0.2 0.5 0.9 0.5 0.5 0.9 0.5 0.7 0.9 0.9 0.5 0.7 0.9 0.5 0.9

Average distance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 6

to geo-center

from low region

Average distance 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 12

to geo-center

from medium region

Average distance 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 22

to geo-center

from high region

Asymmetry of 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16

distribution of low

region through nucleus

Asymmetry of 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 17

distribution of medium

region through nucleus

Asymmetry of 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 22

distribution of high

region through nucleus

Lacunarity + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 25

Total number 17 16 16 15 18 20 19 19 18 19 17 18 20 21 24 21 24 23 25 23 23 22 25 23 25

of features
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Table 3

Discriminative power of 3D nuclear texture features for benign and
malignant prostate nuclei imaged from a prostatectomy specimen in
thick tissue sections by CLSM stained with TO-PRO-3. The texture
features having an AUC of 0.80 or greater in ROC analysis are shown

3D Texture feature AUC

Number of unconnected parts of low condensation state 0.80

Low versus medium-high average extinction ratio 0.87

Low versus high average extinction ratio 0.87

Cluster prominence 0.88

Entropy 0.91

Grey variance 0.92

Energy 0.94

Correlation 0.94

Grey mean 0.97

Inertia 0.98

Grey kurtosis 0.99

Inverse difference moment 0.99

Average extinction ratio of region with low amount of
DNA

0.99

Grey skewness 1.00

7. Discussion

The aim of this study was to develop software ap-
proaches to analyze multiple 3D nuclear texture fea-
tures in order to detect subtle changes in nuclear chro-
matin patterns in thick tissue sections imaged by con-
focal laser scanning microscopy. Thirty-five features
were thoughtfully chosen from four categories of tex-
ture features. The software implementation of these
features were tested for invariance with regard to rota-
tion and scaling in model images. When the expected
results were obtained illustrating correct implementa-
tion, the discriminative power of these features was
tested on artificial 3D nuclei to establish whether the
texture features were sensitive for nucleolar size and/or
chromatin margination. It appeared that almost all fea-
tures were sensitive to variations in the nucleolar size
and for the degree of chromatin margination.

Their discriminative power to separate benign and
malignant prostate nuclei was also tested. It appeared
that 14 texture features were able to discriminate
(AUC � 0.80) the benign and malignant nuclei. From
those features, 4 are from the category of discrete tex-
ture features, 4 are general grey-value statistics and 6
are from the category of Markovian texture features.
From those 14 features, according to our model studies
9 were not sensitive to an increase in nucleolar size and
degree of chromatin margination, 2 were not discrimi-
native at all and 3 only for larger nucleoli and advanced
chromatin margination. We expected the discrete fea-

tures to perform well, because they correspond closely
with the visual changes occurring during the develop-
ment of malignancy in prostate cancer, namely the ap-
pearance of a prominent nucleolus and margination of
the chromatin. However, the discriminative power of
these features was less than expected, due to the num-
ber of regions and the thresholds used to define those
regions. Markovian features are known to perform well
in 2D [21] and we showed that they also perform well
in 3D.

In order to assess the added value of the third di-
mension in nuclear texture feature calculations, we re-
implemented the 3D texture features for 2D applica-
tion. Using the 3D stacks of the 10 benign and 10 ma-
lignant prostate nuclei as described above, we identi-
fied the middle plane for each nucleus, calculated the
35 textures features in this single plane, and compared
the AUC values between these 2D features with the
3D features calculated for the whole nuclei. The 20
best performing features had significantly better AUC
values in 3D than in 2D, indicating that there is more
nuclear texture information in 3D than in 2D. When
comparing texture data from 2D images obtained from
wide field microscopy to a 3D confocal image stack
the difference in texture information will be even larger
than in our experiment due to the larger depth of field
of regular wide-field microscopy.

Although successful implementation of 3D texture
features has now been achieved, some further improve-
ments can be expected by implementing corrections for
the scale variance of some of the features. Improve-
ments are likely to be achieved when using new opti-
cal techniques, like 4pi microscopy, resulting in better
images, or, more practically by the use of deconvolu-
tion algorithms [12] that deblur the images, resulting
in more image information in the Z-direction. Such im-
provements in image quality will compensate for the
potential rotational variance in texture feature calcula-
tion due to the relatively low amount of Z-information.
Furthermore, the Markovian texture features will have
more discriminative power, since they are computed by
combining information from the Z-direction as well as
in-plane information. These texture features are thus
biased by the blurring in the Z-direction.

Now that we have implemented a large amount of
3D texture features, which has not been done previ-
ously at this scale, and the proof of principle demon-
strates that these features may be clinically useful, a
more extensive clinical evaluation will be completed.
This will initially concern discriminating benign and
malignant prostatic nuclei in prostatectomy specimens,
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then biopsies, and will also involve detecting malig-
nancy associated changes in morphologically benign
nuclei from cancer cases as predictive markers and as
surrogate endpoints for evaluating therapy, especially
preventive interventions.

In conclusion, successful implementation has been
achieved of 35 3D nuclear texture features. This tech-
nique can be used to detect the presence of nucleoli,
among other textural changes and to assess nuclear
chromatin patterns in 3D images obtained by confocal
laser scanning microscopy. As a proof of principle we
demonstrated that these features may be useful clini-
cally for analysis of neoplastic changes in prostate tis-
sue.

Appendix: Texture feature formulas

In the remainder, the following notation is used:
I(i, j, k) denotes the intensity at voxel (i, j, k), where
i, j and k are discrete indices in the image. The coordi-
nate (x, y, z) denotes a point in world-space. N is the
number of voxels and Volume is nuclear volume.

A. Descriptive statistical features [6]

1. Integrated fluorescence intensity:

IFI =
∑

i,j,k

I(i, j, k).

2. Mean fluorescence intensity:

MFI =
IFI

VOLUME
.

3. Fluorescence intensity variance:

FIVAR =

∑
i,j,k(I(i, j, k) − MFI)2

(N − 1)(MFI)2 .

The standard deviation, FISD, is given by√
FIVAR.

4. Skewness of the fluorescence intensity distri-
bution [15]:

FISKEW =

∑
i,j,k(I(i, j, k) − MFI)3

N · FISD3 .

5. Kurtosis of the fluorescence intensity distrib-
ution [15]:

FIKUR =

∑
i,j,k(I(i, j, k) − MFI)4

N · FISD4 − 3.

B. Discrete texture features [6]. The subscript A is
used to denote a specific chromatin condensation
state. Texture features are computed for several
different condensation states.

3. Extinction ratio:

amount(A) =
IFIA
IFI

.

4. Average extinction ratio:

avg_extinction(A) =
MFIA
MFIlow

.

5. Compactness:

compactness =
p3
A

36πVOLUME2
A

.

6. Average distance to geometrical center.
d(C, (x, y, z)) is defined as the Euclidean dis-
tance between the geometrical center C and
coordinate (x, y, z):

average_distance(A)

=

∑
x,y,z∈A d(C, (x, y, z))

VOLUMEAR
.

7. Asymmetry. CMA denotes the center of mass
of condensation state A:

asymmetry(A) =
d(CMAC)

VOLUMEAR
.
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