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tRNA molecules undergo extensive post-transcriptional
processing to generate the mature functional tRNA species that
are essential for translation in all organisms. These processing
steps include the introduction of numerous specific chemical
modifications to nucleotide bases and sugars; among these
modifications, methylation reactions are by far the most
abundant. The tRNA methyltransferases comprise a diverse
enzyme superfamily, including members of multiple structural
classes that appear to have arisen independently during
evolution. Even among closely related family members,
examples of unusual substrate specificity and chemistry have
been observed. Here we review recent advances in tRNA
methyltransferase mechanism and function with a particular
emphasis on discoveries of alternative substrate specificities and
chemistry associated with some methyltransferases. Although
the molecular function for a specific tRNA methylation may not
always be clear, mutations in tRNA methyltransferases have
been increasingly associated with human disease. The impact of
tRNA methylation on human biology is also discussed.

Introduction

RNA methyltransferases are a diverse group of post-transcrip-
tional RNA modification enzymes responsible for the transfer of
a methyl group from a methyl donor, most commonly S-adeno-
sylmethionine (SAM or AdoMet), to any of several different loca-
tions on a target RNA nucleotide. Although all known major
classes of cellular RNAs are subject to methylation, tRNA mole-
cules remain the most heavily methylated molecules characterized
to date and contain the most diversity in terms of types of meth-
ylation events that are observed.1,2 While the 4 canonical RNA
bases, adenosine (A), guanosine (G), cytosine (C) and uridine
(U), are the most common substrates for tRNA methyltransfer-
ases, methyl groups are also added to modified nucleotides, such
as pseudouridine (c), inosine (I) and many more complex spe-
cies, as well as to the ribose 20-hydroxyl.

tRNA methylation is an apparently ancient process; out of 18
individual modified nucleotides that occur in tRNA from all 3
domains of life, 13 are methylated nucleotides (Cm, Gm, Um,
m5C, m5U, m3U, m1G, m7G, m2G, m2,2G, m1A, m6A and

m6,6A) (Fig. 1).3,4 Consequently, characterization of the enzymes
that carry out tRNA methylation can provide insight into the
evolution and function of these essential macromolecules. The
advent of genome sequencing and sophisticated biochemical
methods facilitated an explosion in the identification of tRNA
methyltransferase enzymes over the past few decades, such that
the corresponding enzymes are now known for the majority of
the most common tRNA methylations.5,6 Yet, recent investiga-
tions into the molecular mechanisms and functions of these
tRNA methyltransferases and their orthologs have revealed some
new surprises, including unexpected diversity in chemistry and
substrate specificity that suggests complex functions for these
abundant tRNA modification enzymes.

The importance of tRNA methylation has often been clouded
by the observation that loss of most individual modifications has
little or no observable effect on cell growth. For example, only 3
tRNA modification enzymes in S. cerevisiae are strictly essential for
cell viability (the A37 deaminase TAD2/TAD3, m1A58 methyl-
transferase TRM6/TRM61 and the tRNAHis guanylyltransferase
THG1), although S. cerevisiae strains with single deletions in
many of the non-essential tRNA modification enzymes exhibit
slow growth or other phenotypes, such as hypersensitivity to the
presence of 5-fluorouracil.7,8 However, the importance of some
tRNA methylations (and by extension, the enzymes that catalyze
them) is highlighted by several examples of convergent evolution
among methyltransferase families. For example, Trm5, an archaeal
and eukaryal tRNA methyltransferase, catalyzes N1 methylation at
the G37 position of tRNA.9 Likewise, TrmD catalyzes this same
methyl group addition to G37-containing tRNAs in Bacteria.10

While both enzymes are responsible for catalyzing essentially the
same methylation reaction, the 2 are structurally unrelated and
possess different recognition mechanisms, which are reminiscent
of differences between the 2 classes of convergently-evolved amino-
acyl tRNA synthetases.11-16 Moreover, loss of tRNA methylation
can lead to biologically significant effects on tRNA stability and
function.17-23 This review provides a current survey of the diverse
landscape of known tRNA methyltransferases, with a particular
emphasis on recent developments in terms of alternative functions
and substrate specificities for these enzymes, and newly-revealed
associations of these enzymes with human disease.

Functional classes and conserved mechanistic features
of tRNA methyltransferases

Enzymes that catalyze SAM-dependent methylation comprise
at least 5 independent structural classes, with tRNA
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methyltransferases found overwhelmingly in 2 of these: Class I and
IV.24 Class I, which also contains most DNA methyltransferases,
is the largest class identified to date and is characterized by the
presence of a Rossmann-fold domain that accommodates the
SAM cofactor. Class IV methyltransferases, or so-called SPOUT
(named for its members SpoU and TrmD) methytransferases, are
characterized by 3 b strands folded into a deep trefoil knot.25,26

Interestingly, the recent discovery of the m6A methyltransferase
that catalyzes formation of m6t6A37 in E. coli (TrmO) reveals that
enzymes belonging to additional structural classes are possible,
since this "Class VIII" enzyme comprises a novel protein fold.27

Indeed, even among the relatively well-studied Class I and Class
IV enzymes, some aspects of the overall structure and mechanism
of distantly related family members is not necessarily obvious
from sequence comparison alone.26 For example, SPOUT meth-
yltransferases generally assemble as homodimers in which each
monomer contributes to the binding of SAM, but the recent iden-
tification of a monomeric SPOUT family enzyme (Trm10) sug-
gests that alternative types of interactions with the methyl donor
are possible.28,29 A comprehensive survey of currently available

tRNA methyltransferase structures and
their corresponding properties has been
reviewed in detail.6

In terms of overall catalytic features
associated with SAM-dependent methyl-
transferases, some common themes have
emerged. The chemistry of nearly all
tRNA methylation reactions formally
requires removal of at least one proton
from the substrate nucleotide, which sug-
gests that acid-base catalysis likely plays a
role. The only exception to this theme is
for methylation at any of several endocy-
clic nitrogen positions (including gua-
nine N7, adenine N1 and cytosine N3),
in which a nucleotide with an overall C1
charge results from addition of the
methyl group (see Fig. 1). Indeed, for
the relatively few tRNA methyltransfer-
ases for which detailed mechanistic infor-
mation is known, protein residues that
participate as acid-base catalysts have
been identified, although the relative
impact of these residues on the overall
rates of reaction varies considerably.
Detailed information about specific ste-
reochemical mechanisms employed by
diverse methyltransferases has been thor-
oughly reviewed elsewhere,30 and here
we focus on some general catalytic
themes that have emerged.

Kinetic and mutational analyses iden-
tified important protein residues for sev-
eral of the major classes of SAM-
dependent tRNA methyltransferases,
including amino acids that act as general

base residues to facilitate proton removal. Not coincidentally,
some of the best-characterized systems in terms of molecular
mechanism are the 2 systems (bacterial TrmA and archaeal
Trm5) for which co-crystal structures of the methyltransferase
with tRNA or tRNA fragments have been obtained.31,32 None-
theless, proposed mechanisms have been indicated for many
more enzymes by the numerous methyltransferase structures that
are now available in complex with the critical cofactor SAM or
SAH and by comparison to related enzymes.6

Methylation at carbon (m5C and m5U)
Methylation at C5 of pyrimidines is a common modification

found throughout life (Fig. 1A). m5U has been identified in
tRNA and rRNA in all 3 domains, while m5C has been identified
in mRNA, tRNA and rRNA in Archaea and Eukarya2. tRNA
methyltransferases responsible for m5U or m5C formation are
predominantly Class I methyltransferases utilizing SAM as the
methyl donor, although an alternative methyltransferase
(TrmFO) that utilizes methylene-tetrahydrofolate as the carbon
donor has been observed in some bacteria. In this case, the

Figure 1. Common methylated nucleotides in tRNA. Sites of methylation are indicated by the red
methyl group; abbreviations for the resulting methylated species are shown in brackets in blue. (A)
Methylation at C5 of pyrimidines. The bond shaded in red represents a single or double bond in U or
C, respectively, and the resulting presence or absence of a proton at N3 is indicated by parentheses.
The group at the 4 position (carbonyl in U and amino in C) is indicated by R. (B) Methylation at endo-
cyclic nitrogens of purines and pyrimidines. The red colored bond on the nucleotide base represents
a single or double bond, in G/U or A/C, respectively, and the resulting presence or absence of a pro-
ton at N3 or N1 is indicated by parentheses. The methylated nucleotides m7G, m1A and m3C are likely
to exist as the positively charged species at physiological pH, which has also been experimentally
verified for m7G and m1A in the context of an intact tRNA.135 The group at the 6 position of purines
(carbonyl in G and amino in A) or the 4 position of pyrimidines (as above) is indicated by R. (C) Meth-
ylation at exocyclic nitrogens of purines. Either mono- or di-methylation is observed for both purine
nucleotides, as indicated, and the subsequent replacement of one or more protons on the exocyclic
amino groups caused by addition of the methyl groups is indicated by parentheses. (D) Methylation
at the 20-oxygen of ribose. A 20-O-methylated adenosine is shown (Am); each of the other 4 bases, as
well as other modified nucleotides can also carry the 20-O methylation.
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change in oxidation state required for the methylene group also
necessitates participation of a flavin cofactor.33-35 The crystal
structure of E. coli TrmA, which catalyzes m5U54 formation,
bound to a T-stem tRNA analog has been solved and this enzyme
has been extensively studied, revealing the participation of 2 key
residues in the methylation reaction (Fig. 2).31 One of these, a
conserved cysteine, acts as a nucleophile to covalently bind C6
via Michael addition, which promotes the attack of C5 on the
SAM methyl group, and in turn allows for abstraction of the C5
proton by a glutamate general base.31,36-38 Interestingly, 2 other
m5U/m5C tRNA methyltransferases, TrmFO (catalyzing
m5U54) and Trm4 (catalyzing m5C at multiple positions), also
utilize a conserved cysteine nucleophile, although other aspects of
their mechanisms differ, as described above for TrmFO and in
terms of the identity of the putative general base for Trm4, which
is likely an aspartate (Fig. 2).33,39,40

Methylation at endocyclic nitrogen (m1A, m1G, m3U, m3C,
m1C and m7G)

As with m5C/m5U, methylation occurring on endocyclic
nitrogen atoms is abundant in all domains of life, with m3C
and m1C absent so far only from Archaea and Bacteria,
respectively (Fig. 1B)2. General features of mechanisms
employed by these enzymes have been revealed from compre-
hensive biochemical and structural studies carried out with 2
representative enzymes that catalyze the universal N1

methylation of G37, which are a Class I methyltransferase
(Trm5) in Eukarya and Archaea and a SPOUT methyltrans-
ferase (TrmD) in Bacteria. Archaeal Trm5 is the only exam-
ple of a tRNA methyltransferase that has been co-crystallized
in the presence of a complete tRNA and this, combined with
extensive kinetic characterization and mutagenesis has resulted
in a relatively good understanding of the overall catalytic
mechanism.32,41,42 As expected, a glutamate general base
(proposed to remove the N1 proton prior to attack of N1 on
the SAM methyl group) was recently identified that appears
to function in both archaeal and human Trm5 (Fig. 3A).41

However, acid-base catalysis in the Trm5 reaction is not rate-
limiting for the overall reaction, and instead, the removal of
the N1 proton appears to occur during a rate-limiting
induced fit step, which is consistent with isotope effect
experiments.41 Class I methyltransferases also catalyze the
ubiquitous N1 methylation of A58, including the enzymes
Trm6/Trm61 in Eukarya (Trm61 is the catalytic subunit),
which is known as TrmI in Bacteria.6 Structures are available
for representatives of both families, albeit in the absence of
tRNA but with a bound SAM or SAH cofactor, and models
suggest that an aspartate residue is positioned to function as
a general base (Fig. 3B).43-46 For m1A formation, however,
the proton appears to be removed from N6, thus promoting
attack of the adjacent N1 on the SAM methyl group.

The precise nature of the enzymatic mechanism employed
for other endocyclic nitrogen methyltransferases is less clear.
Although there are crystal structures reported for the SPOUT
methyltransferases TrmD (m1G37), Trm10 (m1G9) and
TrmY (m1C54), only some details of catalysis have been iden-
tified.14-16,28,47,48 Crystal structures of Trm10 (m1G9) and
TrmD (m1G37) suggest that for each enzyme, a conserved
aspartate residue may act as the general base to abstract a
proton from N1 and promote methylation,14,28 but general
base residue(s) that function in TrmY have not been identi-
fied. Likewise, for m7G formation, crystal structures of
eukaryal Trm8/Trm82 (Trm8 is catalytic) and bacterial
TrmB (both Class I enzymes) in complex with SAM have
been determined.49,50 From these structures, highly conserved
glutamate and aspartate residues are suggested to participate
in neutralizing the positive charge of the solfonium ion and
other important residues involved in catalysis by TrmB have
been described.51 Nonetheless, the catalytic mechanism for
these representative m7G methyltransferases has not been
conclusively shown. A recent addition to the endocyclic nitro-
gen methyltransferase family was the identification of the first
family members that catalyze methylation of pyrimidines to
form m3C and m3U. The m3C methyltransferase Trm140 is
a distantly-related member of the SPOUT enzyme family,
but the basis for catalysis awaits further structural and mecha-
nistic characterization.52,53 Interestingly, an orthologous
enzyme from T. brucei has also been characterized and may
exhibit both m3C and m3U methylation activities, raising the
possibility of further complexity in the reactions characterized
by this branch of the methyltransferase family (I. Fleming
and J. Alfonzo, personal communication).

Figure 2. Proposed mechanism for m5U methylation catalyzed by
TrmA. Two active site residues (shown in blue) are proposed to act as a
nucleophile to attack C5 and create a covalent enzyme-nucleotide inter-
mediate and a general base to remove the proton from C6 following
methylation. The methyl donor (SAM) and resulting SAH are shown in
red. Although other C5 methyltransferases maintain the cysteine nucleo-
phile, the identity of the general base is not the same for other enzymes;
i.e. for Trm4, an Asp is proposed to catalyze this function.
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Methylation at exocyclic nitrogen (m6A, m6,6A, m2G and m2,2G)
The enzymes that methylate the exocyclic amines found at

N6 of adenosine and N2 of guanosine have so far all been
classified as members of the Class I family, and between these
2 types of modification, N2 methylation is by far more com-
mon in tRNA (Fig. 1C).1,2 Although other sites of modifica-
tion are known, N2 methylation of guanosines is typically
found at position 10 (catalyzed by Trm11/Trm112 in eukar-
yotes where Trm11 is catalytic, and by TrmG10 in Archaea)
and/or positions 26 and 27 (catalyzed by Trm1) and can con-
sist of either monomethylation (m2G) or dimethylation
(m2,2G), depending on the tRNA and organism that is modi-
fied.54-59 Archaeal Trm1 from P. horikoshii and bacterial
Trm1 from A. aeolicus have been characterized structurally and
share similar N-terminal domains that contain the methyl-
transferase active site, including a characteristic DPFG/DPPY
sequence motif that contains the aspartate that is proposed to
act as a general base to remove a proton from the target N2
amino group, according to structural and mutational studies
(Fig. 4).60,61 Recently, the first tRNA methyltransferase that
catalyzes exocyclic N6 methylation of adenosine was identified
and, as predicted bioinformatically, was shown to correspond
to E.coli YfiC, which catalyzes m6A37 modification of
tRNAVal.62,63 This modification is more commonly found in
mRNA, rRNA and DNA, and the details of the catalytic
mechanism await further characterization.

Methylation at ribose oxygen (Gm, Am,
Um, Cm)

One of the founding members of the
SPOUT methyltransferase family is the
highly conserved TrmH (originally
SpoU) enzyme that catalyzes 20-O meth-
ylation of G18 (Fig. 1D).25 This enzyme
(known as Trm3 in eukaryotes) has been
extensively characterized structurally and
biochemically, and these data were the
basis for the proposed mechanism in
which a conserved arginine residue
(attracted by the phosphate group of the
tRNA substrate) acts as a general base to
abstract the proton from the 20-hydroxyl,
thus activating the oxygen for attack on
the SAM methyl group (Fig. 5).64,65

There is strong mutational evidence in
support of this proposed mechanism,
although again, additional structures
obtained in the presence of bound tRNA
will be important for complete evalua-
tion of the reaction mechanism.

Lessons from tRNA
methyltransferase homologs: alternative
substrate recognition and catalytic
features

Enzymes that catalyze known tRNA methylations have nearly
all been identified, and sequence and structural similarity
between family members have been extensively relied upon to
suggest common mechanistic features and functions for related
enzymes. In general, tRNA modification is thought to be a pre-
cise process, with a specific type of modification occurring pre-
dictably at certain sites on a given set of tRNAs. However, as
diverse members of some tRNA methyltransferase enzyme fami-
lies have been identified and characterized, several instances of
unexpected catalytic properties have been described, yielding dif-
ferences in either RNA substrate recognition and/or the chemis-
try of the methylation reaction itself. Several recent examples of
alternative recognition and chemistry are highlighted below.

Organism-specific features of RNA recognition
Each tRNA species carries its own unique complement of

tRNA modifications, including methylation, and therefore tRNA
methyltransferases exhibit distinct tRNA substrate specific-
ities.1,2,66 Thus, the molecular basis by which individual tRNA
methyltransferases recognize and act on specific tRNA species
from among the total tRNA pool has long been an area of inter-
est.67 In many cases, the determinants that allow recognition of
certain tRNAs are relatively straightforward to deduce, since the
corresponding enzyme will modify essentially any species that
encodes the correct target nucleotide at the position to be modi-
fied.68,69 For example, m1G37 methylation occurs on all of the
tRNA species that encode a G at position 37. Although the 2

Figure 3. Proposed mechanisms for m1G and m1A formation. (A) Mechanism of m1G37 formation
catalyzed by Trm5, with the active site glutamate that serves as the general base indicated in blue.
For other m1G methyltransferases, the general base is proposed to be an aspartate, as indicated. (B)
Mechanism of m1A58 formation catalyzed by TrmI. The suggested mechanism (based on modeled
structures with the target adenosine) involves the action of the aspartate general base (blue) as
shown, which may occur during the same elemental step as the attack of N1 on the SAM methyl
donor (proposed based on the lower pKa for deprotonation of m1A than for deprotonation of
adenosine).
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unrelated m1G37 methyltransferases (Trm5 and TrmD) each
interact with tRNA substrates and recognize G37 in slightly dif-
ferent ways, in both cases the enzymes appear to directly recog-
nize the G37 nucleotide in a specific sequence context for efficient
catalysis.11,12,70

In contrast, there are cases of methylations that are highly
tRNA species-specific, such as the m3C32 methylation that is a
characteristic feature of tRNAThr, or m5C38 that was first associ-
ated with tRNAAsp in eukaryotes.52,53,71,72 However, as addi-
tional homologs of the enzyme that catalyzes m5C38

modification (Dnmt2) have been characterized, considerable
expansion or alteration of tRNA substrate specificity for some
members of this enzyme family has been suggested. Initial reports
centered on the identification of additional weakly recognized
tRNA substrates for Dnmt2 and its (mainly eukaryotic) homo-
logs, including tRNAGlu, tRNAVal and tRNAGly, and suggested
that the additional modification of minor tRNA substrates might
be protective against various types of stress.73-75 However, a
more complex picture has emerged from the recent investigation
of a bacterial homolog of Dnmt2 (Geobacter sulfurreducens
Dnmt2) in which the inherent preference for Geobacter tRNAAsp

has been usurped by a preference for methylation of tRNAGlu,
and indeed tRNAGlu appears to be the predominant m5C38-con-
taining tRNA in Geobacter (Fig. 6A).76 Precise elements that are

responsible for this completely swapped tRNA substrate specific-
ity are not known, but the nucleotides and size of the variable

loop appear to play some role.76 More-
over, even in eukaryotes where the pref-
erence for tRNAAsp has not yet been
observed to be altered, the identification
of non-substrate tRNAs bound to Dic-
tyostelium discoideum Dnmt2 in vivo
suggested that there may be additional
roles for these enzymes that do not
depend on methylation activity.75

Therefore, even in the case of a well-
characterized tRNA methyltransferase
with demonstrated tRNA substrate spec-
ificity, diverse homologs can stray from
these well-defined roles.

A third class of tRNA substrate speci-
ficity exists that falls somewhere in
between the previous 2 classes of

Figure 4. Proposed mechanism for m2G formation by Trm1. The
active site aspartate (part of the DPFG motif), which is proposed to serve
as a general base to abstract the proton from N2 is shown in blue. An
active site tyrosine (not shown) is also proposed to stabilize the activated
N2.

Figure 5. Proposed mechanism for 20-O methylation of G18 by TrmH. The active site arginine
(shown in blue) is proposed both to stabilize the 50-phosphodiester bond of the target nucleotide, as
well as to deprotonate the 20-OH to promote nucleophilic attack of the 20-oxygen on the SAM methyl
donor.

Figure 6. Alternative substrate specificities exhibited by homolo-
gous methyltransferases. (A) Dnmt2 catalyzes m5C38 methylation (the
C38 target nucleotide is indicated in red), with tRNAAsp thought to be the
major substrate for eukaryotic Dnmt2, while tRNAGlu appears to be the
predominant substrate for the G. sulfurreducens enzyme. Differences in
the size and identity of nucleotides in the variable loop (highlighted in
yellow) are thought to play a role in dictating alternative substrate speci-
ficity. (B) 20-O methylation at position 32 is catalyzed by TrmJ. In Bacteria,
TrmJ is capable of methylating any nucleotide at position 32 (indicated
in red on each tRNA), whereas the archaeal enzyme is restricted to 20-O
methylation of cytosine. Moreover, the different structures required for
tRNA recognition by the 2 enzymes (archaeal TrmJ requires only the anti-
codon stem-loop structure, while bacterial TrmJ requires a full-length
tRNA) are indicated by yellow highlighting.
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enzymes that are relatively non-tRNA specific (modifying any
tRNA that contains a target nucleotide) or highly tRNA specific
(modifying only one or 2 target tRNAs). These enzymes recog-
nize only a subset of the possible tRNA targets that are expressed
in a cell, and therefore must utilize other criteria for selection of
substrates. Several examples of tRNA methyltransferases of this
type have been described, including some of the enzymes that
catalyze Gm18 (Trm3 in S. cerevisiae and TrmH in E. coli and
Aquifex aeolicus) and the enzyme that catalyzes m1G9 in S. cerevi-
siae (Trm10). The tRNA recognition problem faced by these
enzymes is somewhat more complex, since it is often difficult to
find specific sequence elements that are universally shared by all
substrate or non-substrate tRNAs that might explain the observed
patterns of substrate specificity.

For Trm3/TrmH, the sequence context of the G18 target
nucleotide, as well as the length and composition of the D-stem
and loop were all found to play a role in tRNA recognition and
the contributions of various important base pairs in specific con-
text could be used to explain most of the observed specificity of
A. aeolicus TrmH.69,77,78 However, analysis of the pattern of
tRNA substrates that contain Gm18 in E. coli indicated that these
rules are not necessarily universal, underscoring the need to inves-
tigate the properties of distinct family members to understand
their substrate specificities. Kinetic and structural characterization
of TrmH suggested that tRNA recognition occurs through an
induced fit process that allows an initial non-specific interaction
with tRNA followed by conformational changes that are only
allowed with substrate tRNAs.77,79 The same type of alternative

substrate recognition among related SPOUT methyltransferases
was also recently noted for bacterial and archaeal members of the
TrmJ family (which each catalyze 20-O methylation at position
32 of tRNA). In this case, each enzyme utilizes different elements
of the tRNA for proper recognition, and even different specific-
ities for the nucleotide target of modification, with archaeal
TrmJ only catalyzing efficient Cm formation, while E. coli TrmJ
methylates all 4 possible nucleosides (Fig. 6B).80 Interestingly,
structural comparison of archaeal vs. bacterial TrmJ revealed that
the difference in nucleotide specificity may be related to different
conformations of the methyl-cofactor in the active sites. How-
ever, many questions remain regarding the precise mechanisms
by which substrate recognition occurs for either of these examples
and further structural characterization of homologs with different
substrate specificities will be required to completely address this
question.

The tRNA m1G9 methyltransferase Trm10 also modifies only
a subset of its potential substrates, since only 13 out of the
24 G9-containing tRNAs in S. cerevisiae whose sequences have
been determined are modified by Trm10 under normal growth
conditions (Fig. 7).81,82 The substrate specificity of Trm10 has
been investigated in vitro and shown to depend somewhat on the
presence of other modifications on the tRNA in order to enhance
methylation of target substrates, but the proficient in vitro meth-
ylation activity of S. cerevisiae Trm10 with tRNAs that are not
detectably modified to any level in vivo, combined with the abil-
ity of some non-substrate tRNAs to acquire methylation upon
overexpression of Trm10, suggests that the recognition of Trm10

can also be more flexible than would be
expected from the restricted subset of
tRNAs that carry the m1G9 modifica-
tion.81 As with TrmH, the properties
that determine substrate recognition in
one organism may not necessarily be the
same as those that dictate specificity in
another; for example, tRNAGly

GCC is a
robust substrate for methylation by S.
cerevisiae Trm10, both in vitro and in
vivo, but in humans, tRNAGly

GCC con-
tains an unmethylated G9.

1,2 Although
distinct sequence determinants between
the yeast and human tRNA that explain
this difference in substrate specificity
may yet be identified, the sequence con-
servation between eukaryotic tRNAs
and the need for each enzyme to act on
multiple substrates diminishes the possi-
bilities for recognition based entirely
upon sequence. Interestingly, also like
the TrmH/Trm3 family where the T.
thermophilus enzyme is non-tRNA spe-
cific,69 some members of the Trm10
family appear to exhibit completely pro-
miscuous tRNA methylation activity.
Most well-studied is the tRNA methyla-
tion activity of one of the 3 human

Figure 7. The Trm10 family of methyltransferases exhibit differences in chemistry and substrate
recognition. Trm10 enzymes were originally identified based on their ability to catalyze m1G9 methyl-
ation (the G9 target nucleotide is shown in red), which only occurs on a subset of tRNAs in S. cerevisiae
(left panel). Subsequent investigation revealed that higher eukaryotes encode up to 3 Trm10 paralogs
(TRMT10A, B and C, as indicated) and that the methylation activity and substrate specificities of these
enzymes are distinct. TRMT10A (left panel) is most similar to S. cerevisiae Trm10 and exhibits similar
biochemical properties. TRMT10B (middle panel), like TRMT10A, is a G9 methyltransferase but sub-
strate specificity has not been well characterized, while TRMT10C (right panel) is a strictly mitochon-
drial methyltransferase with much broader tRNA substrate specificity and the unusual ability to
catalyze both G9 and A9 methylation.
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paralogs of Trm10 (TRMT10C). This enzyme, which is part of
the unique entirely proteinaceous ribonuclease P complex in
mammalian mitochondria, exhibits a broad tRNA specificity that
is much less restrictive than its cytosolic counterparts.83,84 The
recent crystal structure of fungal Trm10 suggests that the tRNA
is recognized by a positively charged surface on the monomeric
enzyme, but no co-crystal structure with tRNA is available.28

The question of RNA substrate specificity has recently been
extended beyond tRNA itself by the discovery of methyltransfer-
ases with activities on other substrates apart from those originally
associated with the enzyme family. For example, one of the earli-
est identified tRNA methyltransferases, TrmA, is a well-studied
enzyme that catalyzes the highly conserved m5U54 modification
in the T-loop; however, the E. coli enzyme was also recently
implicated in an m5U modification that occurs in the tRNA-like
domain of tmRNA.85 Indeed, a large family of m5U methyltrans-
ferases has been identified in which an ancestral bacterial enzyme
is thought to have duplicated into multiple groups of related
enzymes with distinct substrate specificities, with the TrmA
enzymes acting on tRNA (and tRNA-like molecules) and other
homologs (RlmC and RlmD family members) acting on rRNA
substrates.86,87 But, even among these classes the lines can
become blurred, since a recently described homolog of RlmD
from Pyrococcus abyssi catalyzes a TrmA-like tRNA methylation,
instead of acting on rRNA.88,89 Structural characterization of sev-
eral m5U54 enzymes from all 3 families suggests that there may be
conserved conformational changes that cause refolding of the
tRNA target, thus explaining the tRNA specificity of some of
these enzymes.31,88,90 Another case of a dual-specificity methyl-
transferase was recently reported with the identification of the
m2A37 methyltransferase from E. coli. In this case, the RlmN
enzyme previously associated with catalyzing the m2A modifica-
tion in rRNA similarly catalyzes the same modification in tRNA,
both in vitro and in vivo.91 Finally, there are cases in which the
practical substrate pool for a given methyltransferase is defined
by its localization or expression patterns in the cell. For example,
in Trypanosoma brucei, a paralog of the well-characterized Trm5
enzyme that catalyzes m1G37 formation localizes to the mito-
chondrion, which was surprising since T. brucei does not encode
any tRNAs in its mitochondrial genome and would be presumed
to import m1G37-containing tRNA generated by nuclear Trm5-
catalyzed modification.92 In this case, the mitochondrial Trm5
appears to function to protect translational fidelity in the mito-
chondria by methylating any unmethylated tRNA that is
imported into the organelle by the apparently non-discriminating
import machinery. In sum, the inherent RNA substrate flexibility
associated with many tRNA methyltransferases suggests that
additional substrates remain to be identified for these enzymes,
and elucidation of these will be important for a complete under-
standing of the biological functions of these enzymes.

Alternative chemistry associated with tRNA methyltransferases
In the examples described above, although the tRNA target

for a given methylation might differ, the chemical nature of the
methylation reaction is not changed between closely related fam-
ily members. However, again recent observations have challenged

the universality of even this feature of tRNA methyltransferase
activity. The Trm10 family is widely distributed among Eukarya
and Archaea, reflecting the highly conserved nature of the m1G9

modification in tRNA.82 However, in addition to the questions
about RNA substrate specificity described above, recent charac-
terization of several Trm10 homologs demonstrated that some
family members are capable of catalyzing m1A9 formation, either
in addition to or instead of the m1G9 modification activity.84,93

Although the methylation in this case occurs on the same posi-
tion (N1) of the purine ring, the difference in the expected pro-
tonation state of the target nitrogen for these 2 bases (protonated
G9 and deprotonated A9) raises questions about the mechanism,
and specifically about the role of acid-base catalysis, in an enzyme
that is capable of catalyzing both of these reactions presumably
using the same active site (Fig. 3). It is worth noting that residues
characterized so far to act as a general base for other m1G vs.
m1A methyltransferases (Fig. 3) are proposed to remove the pro-
ton from different atoms (N1 in the case of guanosine and N6 in
the case of adenosine), and the possibility of alternative targets
for the putative general base in Trm10 has not been evaluated.
Alternatively, a mechanism involving the pre-dissociation of the
N1 proton prior to the rate-determining step for chemistry, as
has been observed with Trm5 could also explain this dual
specificity.

In another example of unusual chemistry, also involving an
m1G methyltransferase, an ortholog of the m1G37 enzyme Trm5
from P. abyssi is suggested to catalyze 2 distinct methylation reac-
tions during the production of the hypermodified wyosine deriv-
ative mimG.94,95 One of these is the familiar methylation at N1
to produce m1G37, but the second reaction involves a subsequent
methylation at N7 of the 4-demethylwyosine intermediate (imG-
14) to yield imG2 (Fig. 8A). Although the imG-14 methylation
reaction involves an entirely different target atom (N7) on the
nucleotide base from the well-characterized m1G chemistry,
some similarities in terms of the chemical environment of these 2
nitrogens have been noted and future structural and functional
characterization will be required to determine the precise mecha-
nism of this dual functional enzyme.94 Finally, the lack of evolu-
tionary relatedness between Trm5 and TrmD m1G37

methyltransferases is underscored by the recent observation that
E. coli TrmD, but not Trm5 (or any other known SAM-depen-
dent methyltransferase for that matter) depends on the participa-
tion of a divalent metal ion, presumably Mg2C, for catalytic
activity. The precise role of this Mg2C ion remains to be fully
determined, but appears to both stabilize the developing negative
charge on O6 during methyltransfer and to assist in deprotona-
tion of N1 by the aspartate general base (Fig. 3).96

Differences in the chemical nature of the reaction catalyzed by
tRNA methyltransferases have been extended to the cofactor
molecule itself. The SAM cofactor has seemingly been selected as
the preferred methyl donor for most tRNA methyltransferases,
likely due to the high reactivity of the methyl group bound to the
positively-charged destabilized sulfonium ion, and only a small
number of enzymes (bacterial members of the TrmFO family)
utilize the alternative methylene-tetrahydrofolate (THF) cofactor
for as a methyl donor.33,35,97 However, the recent discovery of a
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new metabolite, carboxy-S-adenosyl methionine (Cx-SAM) has
increased the diversity of cofactors that are associated with even
SAM-dependent methyltransferases (Fig. 8B).98 In E. coli, 2
members of the SAM methyltransferase superfamily, CmoA and
CmoB, act together to synthesize the cmo5U34 modification,
with CmoA catalyzing the biosynthesis of Cx-SAM and CmoB
acting as the carboxymethyl transferase to generate the modified
nucleotide (Fig. 8B). This expansion of chemistry raises the pos-
sibility of additional versatility associated with the SAM cofactor
that remains to be explored.

Methylation reactions influenced by partner proteins
An interesting feature of some tRNA methyltransferases is

their requirement for a partner protein for efficient catalysis. To
date, partner proteins have been shown to interact with a cata-
lytic subunit of several (so far, strictly eukaryotic) tRNA methyl-
transferases to organize the methyltransferase active site and/or
participate in substrate recognition (Table 1). The S. cerevisiae
m7G46 methyltransferase complex Trm8/Trm82 is one such
example in which the catalytic subunit (Trm8) requires Trm82
for function.50,99 Structural characterization, mutational analy-
ses and domain deletions demonstrated that recognition of the
substrate tRNA by Trm8/82 and its bacterial homolog, TrmB
are similar in that both enzymes recognize their substrate base
from the T-stem side.49-51,100 Yet, while the bacterial and
eukaryotic enzymes are similar in terms of tRNA recognition,
they differ in that the eukaryotic enzyme requires Trm82 for
catalysis, both in vitro and in vivo.101 Trm82 binds to Trm8

and induces a conformational change
resulting in formation of the optimal
active site.50

The Trm6/Trm61 complex responsi-
ble for m1A58 formation in S. cerevisiae
(also known as Gcd10/Gcd14) is similar
to Trm8/Trm82 in that only one of the
subunits (Trm61) contains a functional
methyltransferase active site.102,103 How-
ever, the role of the partner subunit in
this complex is slightly different. Initial
characterization revealed that Trm6 is
primarily responsible for the functional
interaction with tRNA, although more
recent work demonstrated that residues
from both subunits participate in tRNA
binding.103,104 This contrasts with
Trm82, which does not have inherent
tRNA affinity on its own. Interestingly,
the participation of a separate partner
protein is not necessarily conserved
throughout evolution, since the TrmI
enzyme (a homolog of Trm6/Trm61 that
catalyzes m1A58 modification in Archaea
and Bacteria) exists as a homotetramer,
although TrmI similarly utilizes 2 subu-
nits to interact with tRNA.43-45 Further-
more, using the TrmI structure, attempts

to abolish Trm6/Trm61 formation and enzyme activity through
mutational analysis were unsuccessful, further underscoring dif-
ferences between the Trm6/Trm61 and its bacterial/archaeal
counterparts.104

Another protein partnership discovered to be involved in
tRNA methylation was Trm11/Trm112, which catalyzes m2G10

formation in eukaryotes.54 It was determined, as with Trm8
and Trm61, that Trm11 is the catalytic subunit and requires
the Trm112 protein subunit to efficiently catalyze m2G10 for-
mation in vivo, although for this enzyme, additional partner
proteins may participate in the reaction, since efficient in vitro
activity of the Trm11/Trm112 complex has not yet been
detected.54 Moreover, Trm112 is a promiscuous methyltransfer-
ase partner that is also required for the activities of Trm9 and
Mtq2p, which catalyze the last step of mcm5U34 and methyla-
tion of eRF1, respectively.54,105-107 The discovery of the non-
tRNA related Mtq2p/Trm112 partnership is particularly strik-
ing and underscores the involvement of Trm112 in other bio-
logical activities such as cell division in Arabidopsis, methylation
of 18S rRNA, ribosome biogenesis and translation.108-110

In contrast to Trm11/Trm112 where the partner protein
interacts with multiple different methyltransferases, the Trm7
methyltransferase represents an alternative example where the
catalytic subunit interacts with multiple different partner pro-
teins. Trm7, a homolog of human FtsJ, is responsible for
20O methylation of C32 and C34 in the anticodon loop of
tRNAPhe.111,112 Loss of Trm7 results in a slow growth phe-
notype due to a nonfunctional tRNAPhe.111,113 What is

Figure 8. Unusual chemistry associated with tRNA methyltransferase homologs. (A) An
archaeal homolog of Trm5 (aTrm5a, also known as Taw22) catalyzes 2 distinct methylation reactions
during the formation of the wyosine derivative, mimG. The first reaction, formation of m1G (added
methyl group is highlighted in red) is the same reaction catalyzed by other studied Trm5 enzymes,
but m1G is subsequently converted to imG-14 (by the action of Taw1) and this modified nucleotide
(not shown) is the substrate for the second methylation reaction catalyzed by aTrm5 to form imG2
(the second methyl group added by aTrm5a is shown in red). (B) An unusual SAM-derivative. The
metabolite Cx-SAM, with the carboxymethyl group highlighted in red, is attacked by the hydroxyl
oxygen at the 5 position of ho5U to generate cmo5U.

www.tandfonline.com 405RNA Biology



striking is that this methyltransferase is directed to each of
these positions by either of 2 protein partners, Trm732 or
Trm734, which are each responsible for interacting with
Trm7 to target the indicated modification.113

The discovery of these diverse protein partnerships gives
rise to the possibility that other unknown protein partners
for tRNA methyltransferases may remain to be identified. For
example, in the case of Trm10, organism-specific patterns of
tRNA substrate specificity, as described above, have not been
satisfactorily explained by the tRNA recognition properties of
the purified enzyme in vitro or in vivo, and it remains possi-
ble that additional subunits are involved.81 In the future it
will be interesting to understand eukaryotic tRNA methyl-
tranferase partners and how they differ from their homooligo-
meric bacterial counterparts, possibly leading to a new group
of drug targets.

tRNA methylation reactions in human health and disease
The function of a single methyl group added to RNA has in

many cases been difficult to discern. This is largely due to the fre-
quent lack of obvious consequences for the cell upon loss of the
modification. However, at least 4 possible molecular functions
have been associated with tRNA methylation to date. First,
methyl groups can play a structural role that prevents formation
of alternative secondary or tertiary structures (usually by interfer-
ing with Watson-Crick base pairing). For example, the presence
of m1A9 methylation in human mitochondrial tRNALys, blocks
base pairing between A9 and U64, and in turn destabilizes a non-
functional base pairing between residues 8:65 and 10:63, thus
promoting the canonical secondary structure of the tRNA.23,114

Second, the presence of methyl groups (particularly 20-O methyl-
ation) can affect the thermodynamic stability of tRNA. This is
most well-substantiated by the case of tRNA species from ther-
mophiles, which contain significantly more 20-O methylation
than their mesophilic or psychrophilic counterparts.115 Third,
methylation of tRNA (among other modifications) contributes
to the overall stability of tRNA in vivo by protecting it from deg-
radation by various pathways, including the nuclear TRAMP
complex and/or rapid tRNA decay (RTD).20,116 RTD was ini-
tially associated with the simultaneous loss of methylation at
multiple sites on the tRNA, such as at positions 46 and 49 in
trm8D/trm4D strains that leads to degradation of tRNAVal

AAC,
but loss of even a single methylation can cause susceptibility of
the tRNA to RTD.17-19 Moreover, the new discovery that RTD

is a widespread tRNA surveillance mechanism that acts on a large
number of tRNA species in S. cerevisiae opens the door to many
other connections between RTD and tRNA methylation.117

Finally, methylation (among other modifications) in the antico-
don loop is shown to exert important effects on translation. An
example of this is the previously described m1G37 modification,
which prevents frameshifting, particularly at codons that start
with a C, and the slow growth phenotype associated with dele-
tion of TRM5 in S. cerevisiae is likely due to decreased transla-
tional fidelity.9,118 Despite remaining unanswered questions
regarding the molecular function(s) of tRNA methylation,
defects in tRNA methyltransferases have been increasingly associ-
ated with significant biological consequences, including a num-
ber of human diseases.

Dynamics of methylation in stress and disease
The modification status of tRNA is often considered to be a

static feature of tRNA biology, with each tRNA species in the
cell carrying a uniform complement of modified nucleotides.
However, the modification state of tRNA can change in response
to cell growth conditions and the mol/mol quantity of a particu-
lar methylation on a single tRNA isotype can vary. Interestingly,
some methyltransferases may function in a network where
changes in one enzyme allow for altered activity of another. For
example, deletion of TRM82 (Table 1) in S. cerevisiae results in a
detectable increase in other tRNA methylations, suggesting that
Trm82 could negatively affect other methyltransferases or modi-
fication enzymes.119

Rearrangements of tRNA methylation in response to stress
have been associated with translational control. In S. cerevisiae,
tRNALeu

CAA contains m5C at positions 34 and 48, which are
both introduced by the methyltransferase Trm4, and the trm4D
strain is hypersensitive to growth in the presence of H2O2.

119

Analysis of the methylation status of tRNALeu
CAA derived from

wild-type cells grown in the presence of H2O2 revealed a substan-
tial increase in levels of m5C34 (by 70%) and a smaller (20%)
decrease in the amount of m5C48.

120 Since tRNALeu
CAA is the

only tRNA in S. cerevisiae that contains the m5C34 modification,
it was proposed that this anticodon methylation could stimulate
translation of UUG-enriched mRNA. Interestingly, a protein of
the 60S ribosome, Rpl22A, contains an overrepresentation of
UUG codons in its mRNA transcript and growth of an rpl22aD
strain is also hypersensitive to growth in the presence of
H2O2.

120 Together, these results suggest that Rpl22A expression

Table 1. Eukaryotic tRNA methyltransferases requiring a partner for efficient catalysis

Methylation Catalytic Component Partner Function of Partner

m7G46 Trm8 Trm82 Trm82 required for m7G46 catalysis by Trm8 by inducing a conformational change in the
catalytic component to an active conformation

m1A58 Trm61 Trm6 Trm6 essential for functional interaction with the substrate tRNA although residues from
Trm61 also contribute to tRNA binding

m2G10 Trm11 Trm112 Trm112 required for m2G10 formation by Trm11. Trm112 also participates in methylation
during mcm5U34 modification by Trm9, methylation of eRF1, methylation of 18S rRNA,
ribosome biogenesis

Cm32 Trm7 Trm732 Trm732 directs Trm7 to the C32 position of tRNAPhe

Cm34 Trm7 Trm734 Trm734 directs Trm7 to the C34 position of tRNAPhe
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is advantageous for survival under oxidative stress conditions, and
that Trm4 plays a regulatory role in the expression of this protein
under these stress conditions, due to the increase in its produc-
tion of m5C34 in tRNALeu

CAA.
Trm4 and its corresponding m5C methylation are also

involved in another example of altered levels of tRNA modifica-
tion in response to stress. In a separate investigation of the G-1

nucleotidyl transferase Thg1, it was observed that tRNAHis, the
substrate of Thg1 in S. cerevisiae, accumulates additional m5C
methylations at positions 48 and 50 when Thg1 function (and
hence the G-1 residue that is required for efficient aminoacyla-
tion) is lost due to repressed expression of the gene.121 However,
other challenging growth conditions that are not directly related
to histidine or tRNAHis, such as starvation for other amino acids
or glucose, also lead to accumulation of additional m5C on the
same tRNA.122 The fact that the additional m5C modification
only occurs on tRNAHis and not on other tRNAs that also con-
tain unmodified C nucleotides at the same positions is not under-
stood and may have to do with localization or other particular
chemical features of this tRNA. Although the biological function
of m5C accumulation in response to stress in S. cerevisiae has not
been deduced, it is posited that the additional m5C could confer
a protective element to the tRNA, perhaps by decreasing its sus-
ceptibility to degradation or by preventing stress-associated cleav-
age events.122 More work is required to fully understand the
function of altered methylation levels in biological systems, but
these data suggest that tRNA methylation is much more complex
and dynamic than previously understood.

The previous examples all demonstrate phenotypic responses
related to loss of tRNA methylations in unicellular eukaryotes,
but tRNA modification also has important effects on human
biology. A growing number of human disease syndromes are
associated with genetic defects in tRNA methylation enzymes,
and although the specific mechanism(s) by which mutations in
human tRNA methyltransferases can cause these effects are not
well-understood, it appears that loss of tRNA methylation can
have devastating consequences for higher eukaryotes. Multiple
associations between tRNA defects (including modifications) and
human mitochondrial disease are well-established (see123), and
here we focus instead on recent developments specifically associ-
ated with mutations in individual tRNA methyltransferases.

Two independent reports recently identified human familial
syndromes involving microcephaly, intellectual disability and
defects in glucose metabolism with mutations in TRMT10A,
which is one of the 3 paralogs of S. cerevisiae Trm10 that are
encoded by mammals, including humans.82 Two separate

mutations (either nonsense or missense) in TRMT10A were identi-
fied in multiple members of different large families and shown to
correlate with the observed patient abnormalities.124,125 Biochemi-
cal studies of the missense mutant of TRMT10A (with an G208R
substitution in the putative SAM binding site) demonstrated a
complete loss of function associated with the mutation, which sug-
gests that loss of tRNA methylation could be the direct cause of the
disease symptoms.124 Notably, TRMT10A is ubiquitously
expressed, but particularly high concentrations are observed in
embryonic and adult brains as well as the pancreas.125 However,
knockdown of TRMT10A in b-cells did not impair insulin secre-
tion or levels, but instead induced apoptosis, which is perhaps con-
nected to the observation that tRNAs prevent formation of the
apoptosome by inhibiting binding of cytochrome c to Apaf-
1.126,127

In the same vein, multiple mutations in NSun2, a human
homolog of the m5C tRNA methyltransferase Trm4, are corre-
lated with intellectual disability and a Dubowitz-like syndrome
characterized by distinct facial features and other physical abnor-
malities.128-130 In the case of NSun2, tRNAs lacking m5C are
cleaved endonucleolytically by angiogenin causing the resulting
50 tRNA fragments to accumulate.131 It is noteworthy that angio-
genin cleaves tRNA at the variable loop, while NSun2 also meth-
ylates at multiple positions in the variable loop.132,133 An
exciting hypothesis that connects the loss of tRNA methylation
to disease postulates that, when under stress, such as the oxidative
stress that has been linked to neurodevelopmental disorders,
accumulation of 50 tRNA fragments would repress translation,
and the concomitant lower protein levels could then explain
decreased neuronal size.131 In support of this, the inhibition of
angiogenin via RNAi inhibits cleavage of non-methylated tRNAs
and rescues brain size of NSun2-/- mice.131

Other genetic mutations in tRNA methyltransferases that
cause human disease phenotypes may yet be described, since
tRNA and various associated modification enzymes have been
implicated in a number of other diseases, such as cancer and met-
abolic syndromes.6,134 Further characterization of the molecular
basis for the specific effects of loss of methylation on human biol-
ogy will be important for a complete understanding of these dis-
eases, and therefore for developing potential therapies. The
recent resurgence in interest in tRNA biology and processing
events and in the enzymes that catalyze these reactions will likely
yield new discoveries that could improve human health.
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