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Long noncoding RNAs (lncRNAs) are
dysregulated in many cancer types

and are believed to play crucial roles in
regulating several hallmarks of cancer
biology. Currently, most studies support
the concept that lncRNAs are involved in
either transcriptional or post-transcrip-
tional processes via binding/targeting
epigenetic modifiers or hRNP complexes.
The discovery of new biological functions
of lncRNA and novel RNA binding pro-
teins suggests that lncRNAs may be
implicated in a broad spectrum of biolog-
ical processes such as signal transduction,
allosteric regulation of cytoplasmic enzy-
matic activities, among other potential
processes. In a recent report that we have
made, based on open-ended lncRNA
pulldown technology and a series of
systematic analyses, we suggest that
lncRNAs also play critical roles in the
regulation of noncanonical Hedgehog/
GLI 2 signal transduction pathways in
cancer cells, which further broadens the
scope of known lncRNA functions and
aids in the discovery and design of more
effective and evidence-based therapeutic
targets for the treatment of human can-
cers and other diseases.

Classification of Distinct LncRNAs
Based on Their Genomic Context

It is quite surprising that the human
genome produces such a vast number of
long non coding RNAs (lncRNAs), the
study of which has benefitted greatly from
many powerful technologies and
approaches to characterize the essence of
these non-protein coding transcripts,
which include the following: high-
throughput RNA-sequencing (RNA-seq)
technologies, large-scale whole genome

sequencing, tiling arrays (ChIP-chip, tran-
scriptome mapping), serial analysis of
gene expression (SAGE), as well as profil-
ing of specific histone marks (such as
H3K4-H3K36 domains) in human
cells.1,2 In addition, considerable efforts
have been made to combine the analysis
of large-scale sequencing data and experi-
mental validation approaches in order to
annotate new RNA species. Benefiting
from the progress made by the RefSeq,
Ensembl, and GENCODE Consortium
within the framework of the ENCODE
Project, many lncRNAs have been com-
prehensively standardized and annotated,
resulting in an integrated and curated
lncRNA database that represents an
invaluable resource for future studies of
lncRNAs.3,4

LncRNAs can be classified into distinct
groups based on their different features
such as genomic location, molecular func-
tion/effects, mechanisms/modes of action.5

Currently, one of the most broadly used
and relatively convenient ways of classifica-
tion relies on the corresponding genomic
context, i.e., the position in the chromo-
some where the lncRNA is transcribed.
Additionally, it is becoming clear that the
residing genomic localization also helps
predict the functional roles of a category
of lncRNAs. With this perspective,
lncRNAs can be characterized as: 1) lincR-
NAs (large intergenic noncoding RNAs),
including well studied and cancer associ-
ated Xist,6,7 H19,8 HOTAIR,9,10

NEAT2/MALAT1,11-13 lincRNA-RoR,14

lincRNA-P21.15 Many lincRNAs are ini-
tially discovered by analyzing intergenic
(non-protein-coding) chromatin-state
maps that mark actively transcribed
regions that are initiated by RNA Pol II
(K4-K36 domain: H3K4me3 at the
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promoter and H3K36me3 along the
whole transcripts), which is also the typical
histone modification pattern for actively
transcribed protein-coding genes. LincR-
NAs can be transcribed from thousands of
genomic loci and it is estimated that the
total number of human lincRNAs is
around 3,300 with high evolutionary con-
servation.16,17 Furthermore, it was
revealed that nearly 20% of lincRNAs
associate with the chromatin-modifying
complex PRC2 and affect gene expression
programs.18 Another study found that
nearly 30% of lincRNAs expressed in
mice embryonic stem cells are associated
with at least one of 11 chromatin modify-
ing factors,19 suggesting potentially similar
functional mechanisms for many lincR-
NAs.16,18 Two) Natural antisense tran-
scripts. They are transcribed with the
opposite orientation to the sense DNA
strand of their mRNA/lncRNA counter-
parts at the same or separate genomic loci
and form perfect/imperfect pairs.20,21

They are prevalent in eukaryotes, includ-
ing humans, mice, yeast, Drosophila, and
Aragidopsis.22 Functionally, they have been
proposed to control multiple layers of
gene regulation including transcription,
mRNA splicing, and translation,22 partic-
ularly regulating neighboring conjugated
sense gene expression.21,22 For example,
Kcnq1ot1 antisense silences its flanking
genes via deposition of inactive chroma-
tin-specific histone modifications.23 Cur-
rently, the highest estimated number of
human NATs is around 6,000.24 Three)
Pseudogenes. By definition, pseudogenes
are dysfunctional counterparts of genes
that have lost protein-coding potential due
to accumulation of mutations during
genome evolution.25 They are generally
identified by computational analysis of
genomic sequences using complex algo-
rithms and are characterized by homology
to a known gene and nonfunctionality.26

It is estimated that the human genome
contains more than 18,000 pseudogenes.27

More and more evidence suggests that
pseudogenes may have physiological sig-
nificance by their direct interactions with
DNA or transcripts of the parental pro-
tein-coding genes.25 Recently, it was
revealed that the mRNA levels of the
tumor suppressor PTEN and oncogenic
KRAS are regulated by their pseudogenes

PTENP1 and KRASP1, attributing a novel
biological role to expressed pseudogenes in
cancer progression.28 Four) Long intronic
ncRNAs. They are transcribed from
intronic regions of protein-coding genes
and it has been revealed that about 81%
and 70% of all spliced human and mouse
protein-coding genes, respectively, have
transcriptionally active introns.29

LncRNAs transcribed from introns are
generally produced through the post-splic-
ing process and are indicative of gene tran-
scription events, which affects many other
genes and regulates their expression.30 For
example, it was reported that a number of
intronic RNA sequences are capable of
binding to the core component EZH2,
and in another case, overexpression of the
intronic RNA for the gene SMYD3 was
sufficient to reduce endogenous SMYD3
mRNA and protein levels in human can-
cer cells.31 Five) Other uncharacterized
and divergent transcripts. It was reported
that the human genome also produces
many diverse and heterogeneous RNA
species from transcription start sites and
even the regulatory enhancer regions. Usu-
ally, these classes of lncRNAs have
extremely low abundance in cells and their
biological function remain largely elusive.
Although lncRNAs can be classified into
different groups based on the above crite-
ria, it is still difficult to know the exact
total number of distinct human lncRNAs.
The combination of several well-estab-
lished high-confidence lncRNA databases
estimated that the total number of
lncRNAs (lincRNAsCNATsCintronic
lncRNAsC pseudogenesCothers) is at
around 111,000 transcripts (integrated sta-
tistics from LNCipedia, Feb. 2015).

Functional Significance of
LncRNAs and Their Underlying

Molecular Mechanisms

It is now clear that the human genome
encodes numerous lncRNAs and are now
recognized as another crucial layer of the
functional outputs of the mammalian
genome with bona fide, widespread bio-
logical functions across diverse biological
processes;32,33 however, compared to pro-
tein-coding genes, there is still little
knowledge regarding the biological roles

of lncRNAs due to technical limitations
and the intrinsic properties of lncRNAs,
such as short half-life and extremely low
levels. Several well-investigated cases have
reported on the implicated roles of
lncRNAs in X-chromosome inactiva-
tion,6,7 imprinting,34,35 control of pluri-
potency in lineage differentiation,14,19 as
well as some diseases such as cancer.32,36,37

1). X-chromosome inactivation (XCI) is
an early developmental process by which
one X chromosome is transcriptionally
silenced in female mammals. It is now
well known that the lncRNA Xist acts as a
major effector during the XCI process.
The inactive X chromosome is coated
with Xist, which is essential for the initia-
tion and maintenance of XCI.6 Another
lncRNA Tsix is a gene antisense to Xist
located at the X-inactivation center and
has a role in regulating the early steps of
X-inactivation but not the silencing
step.38,39 Recently, one study has sug-
gested that the RNA Xist silences X-chro-
mosome transcription by directly
interacting with SHARP, recruiting
SMRT, activating HDAC3, and deacety-
lating histones to exclude Pol II across the
X chromosome.7 2) Genomic imprinting
affects 1% of genes in mammals and
results in a monoallelic, parental-specific
expression pattern, which is achieved by
putting epigenetic marks, such as DNA
methylation, at specific gene loci in game-
tes.40 The majority of imprinted clusters
contain a lncRNA, which is crucial for
maintaining imprinted gene signatures.
For example, the lncRNAs Kcnq1/
Kcnq1ot1 and Airn are involved in the
imprinting of related genomic loci by
occupying the chromatin and recruiting
the chromatin remodeling complex to
achieve the imprinting effects.41-43 3)
Previous studies have identified the gov-
erning transcription factors required for
maintaining pluripotency, namely,
Oct4, Nanog, Sox2, Klf4, and c-Myc.44

By performing a shRNA-mediated loss-
of-function screening, one recent study
showed that 26 lincRNAs are required
for the maintenance of pluripotency of
mES cells. The authors found that
knockdown of dozens of lincRNAs
resulted in a departure from the plurip-
otent state and upregulation of differen-
tiation programs.19
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Mechanistically, a handful of studies
have implicated lncRNAs in recruiting/
directing the chromatin modifying com-
plexes at specific genomic loci to modify
chromatin structures and further regulate
the gene expression program. Indeed,
RNA has been speculated to be an integral
component of chromatin in addition to
proteins and DNA since long ago. The
discovery of lncRNAs and further under-
standing of their biology greatly helps us
to appreciate how RNA species are
involved in pathways of chromatin modi-
fication. Benefitting from the develop-
ment and standardization of new
techniques such as lncRNA-pulldown,
RNA immunoprecipitation (RIP), Cross-
linking and RNA Immunoprecipitation
(CLIP), and Chromatin Isolation by RNA
Purification (ChIRP),36,45,46 the list of
chromatin modification complexes associ-
ated with lncRNAs is growing steadily.47

For example, HOTAIR associates with 2
different chromatin modification com-
plexes PRC2 and LSD1/CoREST/REST
and functions as a scaffold/guider to
assemble these factors to genomic DNA to
repress gene expression in the HOXD
locus.9 HOTTIP binds the adaptor pro-
tein WDR5 directly and targets WDR5/
MLL complexes across HOXA to main-
tain active chromatin.48 The lateral meso-
derm-specific lncRNA Fendrr is essential
for proper heart and body wall develop-
ment in the mouse. Fendrr associates with
the PRC2 and TrxG/MLL complexes to
regulate H3K27 trimethylation and
H3K4 trimethylation at the promoter
regions of several transcription factors.49

Beyond the aforementioned major theme
regarding lncRNAs in chromatin states
regulation, which has been extensively
studied, lncRNAs can also directly regu-
late transcription by interference with
RNA Pol II50,51 by acting as decoys for
transcription factors52 or by affecting the
localization of transcription factors to
achieve fine-tuned gene expression pro-
grams.53 Intriguingly, at the transcrip-
tional level, a set of lncRNAs can function
same with defined chromatin enhancers to
promote the expression of neighboring
protein-coding genes.54 In addition, it has
been reported that the lncRNAs TUG1
and NEAT2 are involved in gene activa-
tion or repression through organization of

distinct nuclear substructures, such as Pol-
ycomb bodies and interchromatin gran-
ules in response to growth signals, with
lncRNAs as the key functional players that
bind either methylated or unmethylated
Pc2.13 LncRNAs also regulate mRNA
processing including splicing55 and edit-
ing,56 as well as post-transcriptional events
such as controlling the initiation of trans-
lation and mRNA stability via direct base
pairing.57 Recently, there is evidence sup-
porting mutual regulation between
lncRNAs and miRNAs. For example, the
lncRNAs PTENP1 and KRASP1 have
been found to serve as “sponges” to bind
miRNA, thereby sequestering miRNAs
away from their mRNA targets.28 The
lncRNA H19 has been found to be a
developmental reservoir of miR-675 that
suppresses growth and Igf1r.58,59

Although lncRNAs function through a
variety of interesting mechanisms, it is
obvious that the current emphasis is still
on how lncRNAs regulate transcription or
post-transcriptional processes.32 Most
assuredly, lncRNAs should be involved in
a wide array of tasks in cells given their
biochemical versatility, various cellular
localizations, as well as large amounts of
uncharacterized candidates. For example,
a substantial proportion of lncRNAs
resides within, or is dynamically shuttled,
to the cytoplasm where they may regulate
protein localization, modification, and
even intrinsic enzymatic activity. A recent
study found that lnc-DC bound directly
to STAT3 in the cytoplasm, which pro-
moted STAT3 phosphorylation by pre-
venting STAT3 binding with SHP1 as
well as subsequent dephosphorylation by
SHP1 in the regulation of dendritic cell
differentiation.60

The Implication of LncRNAs
in Cancer

Compared to mRNA levels in cells,
most types of lncRNA are present at rela-
tively low levels. However, many of the
lncRNAs show tissue specific expression
patterns. Further lncRNA profiling in
multiple cancer cell lines and clinical tis-
sues has made it increasingly clear that
many lncRNAs are expressed in a disease-
, or developmental stage-specific manner,

suggesting that they have specific biologi-
cal significance, human disease relevance,
and diagnostic applicability.32,61. Specifi-
cally, it has been reported that the expres-
sion levels of dozens of lncRNAs are
correlated with cancer development and
progression (Table 1); furthermore,
gain-/loss-of-function analyses in various
models indicate the importance of these
lncRNAs in many cancer types.32,62 For
example, the lncRNAs PCGEM1 and
PRNCR1 are highly expressed in prostate
cancers and regulate androgen dependent
or independent cancer cell growth, reveal-
ing their potential as therapeutic targets
by targeting lncRNA-dependent regula-
tory networks in human prostate can-
cers.36 HOTAIR is a highly expressed
lncRNA in metastatic breast, liver, colo-
rectal, gastrointestinal, and pancreatic
cancer cells/tissues and its expression level
in primary tumors is a powerful predictor
of eventual metastasis and death.10,63

Other lncRNAs have been found to be
tumor suppressors by operating as a tran-
scriptional repressor. For example, Linc-
p21 is induced by p53 and mediates
p53-dependent gene repression in mice
cells15 and acts in a reciprocal way with
HIF-1a to modulate the Warburg effects
in human cells.64 In addition, lncRNAs
have been shown to have prognostic and
diagnostic value in a number of can-
cers.65 In spite of these advances, the con-
tributions of most lncRNAs to the
hallmarks of cancer biology continues to
be poorly characterized.66 In addition,
mechanism studies of lncRNAs are still
heavily focused on the interaction
between lncRNAs and epigenetic modi-
fiers or other chromatin associated fac-
tors. However, more exciting and even
surprising findings should be anticipated
after the development and utilization of
new open-ended techniques and system-
atic assays in the fields of lncRNA and
cancer research. This will also help us
understand the molecular details about
the interaction between lncRNAs and
their protein partners, which are required
for the design of effective therapeutic tar-
gets for the treatment of human cancers.
In the next section, we will introduce
how we have combined many open-
ended and systematic methods to investi-
gate the in vitro and in vivo functions of
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the lncRNA BCAR4 in regulating a non-
canonical Hedgehog pathway. We will
further discuss the potential of targeting
the lncRNA BCAR4 for the treatment of
human cancers.

Potential Involvement of
LncRNAs in Hedgehog Pathways

in Cancer

The evolutionarily conserved canonical
Hedgehog (Hh) system plays an impor-
tant role in organogenesis and the patter-
ing phase of normal early development
from Drosophila to humans but has also
been linked to tumorigenesis.67 In the
canonical Hh pathway, 3 secreted ligands
have been identified, namely Sonic
Hedgehog (SHH), Indian Hedgehog
(IHH), and Desert Hedgehog (DHH).
These ligands bind to the negative regula-
tory receptor Patched (PTCH), a 12-
transmembrane protein receptor, which
inhibits the activation of Smoothened
(SMO), a 7-transmembrane effector, by
preventing its surface translocation into
the cilium in the absence of Hh ligands.
The binding between the ligands and
PTCH receptors results in abolishment of
the repression effect of PTCH on SMO
and the activation of SMO orchestrates a
signaling cascade, eventually leading to
the final activation of GLI zinc finger tran-
scriptional factors containing GLI1/2/368.

In addition, protein kinase A, glycogen
synthase kinase 3b, and casein kinase 1a
also form a complex with other signaling
components to regulate the activation of
GLI transcription factors.69

In adults, the canonical Hh pathway is
either largely inactive or essentially unde-
tectable in most cells but is implicated and
reactivated in the development of cancers
including brain, lung, breast, prostate,
and skin cancers.70 This reactivation is
due either to ligand-dependent (autocrine
or paracrine mechanisms to Hh ligands
from tumor cells or stromal cells) or
ligand-independent (a variety of muta-
tions in the downstream components)
mechanisms.67 GLI gene amplification
was first reported in malignant glioma.71

Subsequently, inactivating mutations in
PTCH or activating mutations in SMO
were identified in nearly 90% of sporadic
basal cell carcinoma.72,73 In addition,
genetic mice models further shed light on
the functional importance of the Hh path-
way in tumorigenesis; for example, hetero-
zygous loss of Ptch1 results in an increased
tendency to develop basaloid tumors while
transgenic expression of GLI1 in the epi-
dermis results in skin tumors in mice.74,75

Aside from the aberrant reactivation of the
canonical Hh pathway in cancers, the
effector of GLI also directly interacts with
other distinct cancer-associated signaling
pathways, acting independently of the
HH-PTCH1-SMO-GLI paradigm. For

example, in esophageal adenocarcinomas,
tumor necrosis factor-a (TNF-a) induced
activation of the mammalian target of
rapamycin (mTOR)-S6 kinase (S6K) via
direct phosphorylation, results in GLI1
activation in a Hh ligand independent
manner.76 Several studies have also dem-
onstrated that TGF-b-SMAD3, RAF-
MEK-MAPK, and PI3K-AKT cascades
also lead to stabilization or increased
expression of GLI in distinct cancer types,
inducing the expression of Hh ligand-
independent and GLI-dependent
genes.77-79 This kind of crosstalk consti-
tutes noncanonical Hh/GLI pathway acti-
vation.67 Genomic analysis has identified
hundreds GLI target genes, many of
which show tissue-/cell-specific patterns.
However, a portion of them are common
targets in distinct cell lines. These include
genes involved in cell proliferation and
survival (CCND1/2, MYCN, IGFBP6,
BCL2) and genes involved in angiogenesis
and metastasis (VEGF, TGF-b, SNAIL,
MUC5AC).68,70 In breast cancer, the
potential roles of Hh signaling have not
been well defined. It has been reported
that the PTCH2 mutation exists in both
the primary tumor and brain metastasis of
a patient with aggressive basal-like breast
cancer (BLBC).80 There is also evidence
that SMO and Hh are ectopically
expressed in BLCB or invasive ductal car-
cinoma (IDC).81,82 Also, there have been
reports of increased GLI activity in breast

Table 1. The involvement of lncRNAs in various cancers

lncRNA Function/mechanisms Cancer type Refs

7SK Targeting/associated with HEXIM Gastric 91

ANRIL Epigenetic regulation of CDKN2A/B Prostate 92

BANCR N/A Non-small lung cancer 93

BCAR4 Required for GLI2-dependent transcription Breast/Prostate 83

BCYRN1 N/A Breast/Esophagus/Ovarian 94

CCAT1 N/A Gastric/colorectal 95,96

H19 Gene regulation/miRNA sponges Breast/liver/prostate 8,97–99

HOTAIR Epigenetic regulation/chromatin targeting Breast/colorectal 10,100

LncRNA-LALR1 Activating Wnt/b-catenin Liver cancer 101

MALAT1 Sequester/gene expression Lung/colorectal 102,103

MEG3 N/A Cervical 104

MIR31HC Regulation of HSP90 Hepatocellular/colorectal 105

PCAT1 Regulating BRCA2 and homologous recombination Prostate 106

PVT1 N/A Breast/ovarian 107

PCGEM1 Regulating AR receptor Prostate 36,108

PRNCR1 Regulating AR receptor Prostate 36

TUG1 Epigenetic regulation Non-small lung cancer 109

UCA1 Gene regulation Breast 110

XIST Imprinting Hematologic cancer 111
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cancers; however, this activity occurs in
the absence of Hh ligands, which raises
the possibility that there might be other
regulators, such as lncRNAs, that might
contribute to GLI activation, especially
since lncRNAs are known to directly bind
transcription factors.

The LncRNA BCAR4 Regulates
Non-canonical Hh/GLI2 Pathway

in Breast Cancer Cells

Recent work from our lab demon-
strated how a lncRNA, BCAR4, functions
to orchestrate a noncanonical Hh cascade
to activate GLI2-dependent gene tran-
scription and to promote cancer cell
metastasis83 (Fig. 1). Initially, we sought
to identify human breast cancer relevant
lncRNAs by analyzing clinical breast can-
cer tissue samples with a lncRNA array.
BCAR4 ranked first in the candidate list
and showed the most dramatic upregula-
tion in breast cancer tissues. RNAScope
analysis further supported the conclusion
that higher BCAR4 expression is corre-
lated with advanced lymph node metasta-
sis stage and shorter survival time for
breast cancer patients. Additionally,
Oncomine data-mining showed that ele-
vated BCAR4 expression is not only corre-
lated to invasive breast cancer but also to
ERBB2/ER/PR negative breast cancer
status. The assortment of unbiased and
compelling evidence strongly supports

BCAR4 as a driving force in the process of
breast cancer progression and metastasis.

Since most lncRNAs act in-trans to
functional in cells, understanding the
interacting protein partners of a lncRNA
will by necessity reveal pertinent informa-
tion to help determine the roles of a spe-
cific lncRNA. Interestingly, the putative
protein complex, which associates with
BCAR4, contains 2 RNA-binding pro-
teins (SNIP1 and PNUTS), one kinase
(CIT), and one transcription factor
(GLI2). Furthermore, we performed a
series of robust and thorough tests includ-
ing EMSA, to study in vitro RNA-protein
binding, as well as an RNA pull-down-
Dot Blot assay to characterize the protein
binding domains of the lncRNA. Our
data support the notion that the primary
RNA sequence (50–100 nt) may play a
critical role in determining the specific
RNA-protein interaction. This also sug-
gests the potential explanation for the low
sequence conservation of the lncRNA
across different species as only a 50–
100 nt fragment in the whole lncRNA
gene appears to be essential for its interac-
tion with proteins. Indeed, as it has been
suggested that the secondary structure of
lncRNAs mediates their functional inter-
actions with protein factors,84 we specu-
lated that this short fragment might
possess highly structured regions critical
for its function.

GLI2 is one of the 3 effectors (GLI1/
2/3) that are downstream of the Hh
pathway and its post-translational

modifications, such as phosphorylation,
have been reported to be critical for its
activity. Our data show that CIT kinase
can directly phosphorylate GLI2 at S149,
which induces its nuclear translocation,
binding to promoters of downstream
genes, and activating transcription. The
importance of GLI2 (S149) phosphoryla-
tion is supported by its correlation with
invasive breast cancer status and its wide-
spread existence in other tested cancer
types (including lung, liver, colorectal,
and ovarian cancers) as revealed by
immunohistochemistry in a large number
of clinical tissue samples. In addition,
treatment cells with several cancer metas-
tasis-related chemokines or growth factors
including CCL21, CXCL21, IGF-1, or
TGF-b induced GLI2 phosphorylation at
S149 to differing degrees. To examine
the genomic occupancy of BCAR4, we
performed a Chromatin Isolation by
RNA Purification (ChIRP) assay and
found that after nuclear translocation and
activation of phosphor-GLI2 (S149),
BCAR4 is recruited to the promoters of
GLI2-dependent downstream genes.
Consistently, knockdown of BCAR4 dra-
matically suppresses CCL21-induced
expression of GLI downstream target
genes. Recent findings suggest that the
Hh/GLI pathway is critical for cancer
metastasis.68,70 Our loss-of-function stud-
ies in cells showed that knockdown of
BCAR4 significantly inhibits the meta-
static ability of multiple breast cancer cell
lines; consistently, overexpression of full-
length BCAR4, but not the deletion
mutants which abolished SNIP1 and
PNUTS binding, respectively, dramati-
cally increased cell invasion and GLI2
target gene expression in a non-metastatic
breast cancer cell line. These data strongly
suggest the importance of BCAR4 in the
phospho-GLI2-mediated transcriptional
activation of a subset of genes, which
contribute to breast cancer cell migration
and invasion.

Mechanistically, we found that BCAR4
acts as a “double-unlock-switch” which is
required for GLI2-dependent gene activa-
tion. Our research, and that of others, has
found that the DUF domain of SNIP1
binds to the catalytic domains of p300 to
inhibit its HAT activity;83,85 however,
CCL21-induced binding of BCAR4 to

Figure 1. LncRNA mediated non-canonical Hh pathway.
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the DUF domain of SNIP1 releases its
interaction with the catalytic domain of
p300, leading to the activation of p300.
Subsequently, the activated p300 enhan-
ces the acetylation of H3K18 on the pro-
moters of GLI2 target transcription units,
which further releases the inhibitory roles
of PNUTS on PP1 phosphatase enzymatic
activity; this consequently modulates the
phosphorylation of Pol II Ser5 at GLI2
target gene promoter regions and activates
transcription. Therefore, on a molecular
level, these findings demonstrate how a
lncRNA, BCAR4, through its direct inter-
actions with RNA binding proteins
SNIP1 and PNUTS, acts as a key to
bridge signal-induced epigenetic regula-
tion of general transcription machinery
during the activation of GLI2 target genes
in breast cancer cells.

While targeted therapies against
selected proteins in breast cancer are
promising, they are limited due to the
development of resistance. Our goal was
to uncover clues for a more efficacious
breast cancer treatment from a lncRNA
point-of-view. There has been a long-
standing interest in targeting noncoding
RNAs by using a Locked Nucleic Acids
(LNA)-based antisense oligonucleotides
strategy, as there have been several success-
ful applications that have targeted miR-
NAs in cancer.86 To evaluate the
therapeutic potential of BCAR4, we used
in vitro synthesized LNAs to knockdown
endogenous BCAR4 expression. Signifi-
cantly, 2 individual LNA treatments sub-
stantially reduced lung metastases,
providing the first demonstration of the
pharmacologic value of lncRNAs in
human cancers.

Concluding Remarks and Future
Perspectives

In summary, our findings are the first
to show how a lncRNA directs cooperative
epigenetic regulation downstream of spe-
cific chemokine signals, thereby contribut-
ing to breast cancer metastasis.83 Cell
signaling, mediated mostly by membrane
receptors, intracellular kinases, and
nuclear transcriptional factors, is part of a
complex system of communication that
governs and coordinates basic cellular

activities. The active involvement of
lncRNA in this process makes it more
likely that lncRNAs are innate compo-
nents of the classical protein-mediated sig-
nal transduction pathways in cells.
Intriguingly, we observed that BCAR4 is
also highly expressed in other organ malig-
nancies including lung squamous cell car-
cinoma, skin malignant melanoma,
kidney clear cell carcinoma, colon adeno-
carcinoma, and rectum adenocarcinoma.
In addition, knockdown of BCAR4 in
HCT116, H1299, HepG2, and Hey8
cells significantly impaired the migration
and invasion of these cells;83 this suggests
that the lncRNA BCAR4 may also con-
tribute to the metastatic potential of these
cancers by regulating GLI2-dependent
gene activation. Indeed, the TCGA data-
base showed that elevated levels of the
BCAR4 transcript are correlated with
prostate cancer metastasis. It is necessary
to investigate, in cancer cell lines from
other cancer types, whether or not
BCAR4 directly binds SNIP1 and
PNUTS. In addition, it is important to
examine the potential extracellular signals
which induce GLI2 (S149) phosphoryla-
tion to comprehend the general human
cancer relevance of this BCAR4-depen-
dent GLI2 transcriptional program. Here
we posit that a large proportion of cancer
susceptibility may be the result of dysregu-
lated lncRNAs. Examination of these
lncRNA genes and their functional mech-
anisms will broaden our understanding of
their biology, human cancer relevance, as
well as their contributions to the hall-
marks of cancers.66 Most importantly,
these studies will accelerate their integra-
tion into clinical applications for diagno-
sis, prevention, and therapeutic treatment
of human cancers. We are still in the early
stages of the expanding field of lncRNA
research and there is no doubt that devel-
opment of new technologies and methods
for characterizing the functions of
lncRNAs will continue to accelerate the
pace of exciting discoveries. For example,
a new approach has been developed that
allows for the direct evaluation of RNA
structure in living cells and the assessment
of dynamic changes in RNA structure in
different cell states.87 In addition, RNA
aptamers have been developed that bind
fluorophores resembling the fluorophore

in GFP, named Spinach, and is markedly
resistant to photobleaching, which can be
used to examine the localization of
lncRNAs in cells.88

The development of acquired resis-
tance to the targeting of specific cancer
signals is clearly a complex phenomenon
involving multiple pathways and has fre-
quently been a challenge in cancer thera-
peutics; the Hh pathway is no exception
to this phenomenon. Currently, the major
antagonists against the Hh pathway target
SMO, such as vismodegib, sonidegib,
BMS-833923, PF04449913, and
LY2940680, which have been studied in
clinical trials for many cancers types.67

For example, the strategy of blocking
SMO with vismodegib alone has been
approved clinically for the treatment of
advanced BCC,89 and responses have
been observed for BCC treatment with
either sonidegib or BMS-833923 alone.90

However, acquired resistance has been
observed in both the preclinical and clini-
cal settings due to the activation of nonca-
nonical Hh pathway, amplification of
downstream Hh target genes, or resistance
mutations of SMO.67 One of the biggest
challenges in treating drug-resistant
tumors is the underlying complexity of
the networking pathways; a detailed
understanding of the mechanisms leading
to GLI activation (canonical, noncanoni-
cal, and crosstalk) would allow for the
development of the appropriate targeted
therapies and improved outcomes. While
consideration of lncRNAs in this pathway
does add additional complexity, it pro-
vides the rational basis for the targeting of
either lncRNA alone or as part of a combi-
nation therapy with established inhibitors
to overcome drug resistance.
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