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The gut microbiota is well known to affect host metabolic phenotypes. The systemic effects of the gut microbiota on
host metabolism are generally evaluated via the comparison of germfree and conventional mice, which is impossible to
perform for humans. Hence, it remains difficult to determine the impact of the gut microbiota on human metabolic
phenotypes. We demonstrate that a constraint-based modeling framework that simulates “germfree” and “ex-
germfree” human individuals can partially fill this gap and allow for in silico predictions of systemic human-microbial co-
metabolism. To this end, we constructed the first constraint-based host-microbial community model, comprising the
most comprehensive model of human metabolism and 11 manually curated, validated metabolic models of
commensals, probiotics, pathogens, and opportunistic pathogens. We used this host-microbiota model to predict
potential metabolic host-microbe interactions under 4 in silico dietary regimes. Our model predicts that gut microbes
secrete numerous health-relevant metabolites into the lumen, thereby modulating the molecular composition of the
body fluid metabolome. Our key results include the following: 1. Replacing a commensal community with pathogens
caused a loss of important host metabolic functions. 2. The gut microbiota can produce important precursors of host
hormone synthesis and thus serves as an endocrine organ. 3. The synthesis of important neurotransmitters is elevated
in the presence of the gut microbiota. 4. Gut microbes contribute essential precursors for glutathione, taurine, and
leukotrienes. This computational modeling framework provides novel insight into complex metabolic host-microbiota
interactions and can serve as a powerful tool with which to generate novel, non-obvious hypotheses regarding
host-microbe co-metabolism.

Introduction

There is increasing evidence that the human gut microbiota
plays a central role in human health and well-being. The gut
microbiota performs essential metabolic functions for host
health, such as the maturation of the host immune system 1 and
protection against pathogens.2 Gut microbes produce the short-
chain fatty acids acetate, propionate, and butyrate, which are uti-
lized as carbon sources by the host.1 Furthermore, the gut micro-
biota synthesizes essential amino acids and vitamins,3 transforms
bile acids,4 and modifies xenobiotics.5

The application of metagenomic techniques by international
consortia, such as MetaHIT 6 and the Human Microbiome Proj-
ect,7 has dramatically increased our understanding of the human
gut microbiota and its relation to host health and disease. Species
and genera over- and under-represented in disease incidence have
been identified, contributing to our understanding of “who is

there” in the healthy gut microbiome.7 The collective metabolic
potential, rather than species composition, of the gut microbiota
has been suggested to define a healthy microbiota. Losses of
essential functions are associated with diseases.3 However, our
understanding of the metabolic potential of the human gut
microbiota and its relation with human physiology and health is
limited. It remains to be discovered whether particular metabolic
activities can be linked to certain key species or if multiple mem-
bers are required to perform these important functions for the
host.5 There is a need to systematically analyze the functions
encoded in the human gut microbiome and its potential to affect
host biochemistry and to identify beneficial and detrimental spe-
cies and genera. Furthermore, the effects of the gut microbiota
on host metabolism in body sites other than the intestine have
rarely been systematically studied, and it is unclear how the gut
microbiota affects the whole-body metabolism and immune
homeostasis of human hosts.5
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Several studies have established computational approaches
with which to systematically explore the microbiota but not on
an organism-resolved level.8,9 For instance, Sridharan et al. pre-
dicted and quantified products of amino acid metabolism in the
mouse intestine using a supra-organism microbiota model dem-
onstrating that computational modeling can also predict the
host-microbiota co-metabolome.10 However, the supra-organism
approach does not account for species boundaries and thus can-
not predict host-microbe interactions on an organism-resolved
level. In contrast, the constraint-based reconstruction and analy-
sis (COBRA) approach allows for the modeling of interspecies
interactions by utilizing well-curated, organism-resolved meta-
bolic networks constructed in a bottom-up manner.11 Such met-
abolic reconstructions can be converted into mathematical
models, which can be constrained according to environmental
conditions, e.g., the availability of dietary nutrients. Subse-
quently, functional states can be predicted under various nutrient
conditions or enzyme defects.12 Over 25 metabolic reconstruc-
tions for microbes inhabiting the human body are available.11

Using the COBRA approach, we previously demonstrated, for
the first time, that the metabolite exchange between a mouse and
its gut symbiont Bacteroides thetaiotaomicron could be predicted
in silico.13 However, no studies have modeled the interaction
between a host and more than one microbe hitherto. Here, we
present a computational framework that fills this gap. The
human reconstruction Recon2, accounting for most human bio-
chemical reactions occurring in at least one human cell,14 was
joined with a model community of 11 microbes, and over 2000
exchanges representing metabolic functions in humans were sys-
tematically predicted. To our knowledge, this analysis represents
the first effort to predict the co-metabolism of a host and a gut
microbial community using a bottom-up, organism-resolved
metabolic model.

Results

We aimed to investigate the metabolic potential of a represen-
tative collection of gut microbes to affect host metabolism.
Therefore, we designed a computational framework that permits
us to systematically explore the effects of representative gut
microbes on host metabolic functions. Using this host-micro-
biota model, we systematically predicted the effect of each
microbe on metabolite exchanges representing host whole-body
metabolic functions under 4 in silico dietary regimes. To our
knowledge, this is the first constraint-based effort that integrates
more than 3 metabolic models simultaneously to provide insight
into the complex metabolic interactions between a host organism
and its microflora.

Microbial pathway content and metabolic diversity
The human gut harbors an estimated 1000 species.6 Eleven

published high-quality, manually curated gut microbe recon-
structions were incorporated into our modeling framework (SI
text). We evaluated the representativeness of the 11 microbe
reconstructions in terms of the total metabolic capabilities of the

human gut microbiota (Fig. 1). Phylum-wise, our reconstruction
collection captured 3 main phyla (Bacteroidetes, Firmicutes, Pro-
teobacteria) but lacked representatives of one major phylum
(Actinobacteria) as well as minor phyla (e.g., Verrucomicrobia,
Fusobacteria).15 The reconstructed organisms Bacteroides thetaio-
taomicron, Faecalibacterium prausnitzii, Streptococcus thermophi-
lus, and Escherichia coli O157:H7 were included among the 75
common species detected in the 124 human volunteers.6 The 11
microbial reconstructions included 429 of the 450 metabolic
clusters of orthologous genes (COGs 16) reported to be present
in the microbiome of the 124 human volunteers6 (supplemental
text, Fig. S1). The remaining 662 unmapped COGs detected in
the human volunteers were primarily non-metabolic and thus
outside the scope of metabolic reconstructions.

To estimate the metabolic closeness among the 11 microbes,
the Jaccard distance between the reaction and the metabolite con-
tent as well as the subsystem coverage for each microbe recon-
struction were calculated (Figs. S1 and S2). As expected,
representatives of the same phyla were closest metabolically, but
our in silico microbiota also exhibited considerable metabolic
diversity (SI text), which has been suggested to be important for
collaboration within communities.17 Large reconstructions (e.g.,
Escherichia coli MG1655) displayed higher subsystem coverage
than smaller reconstructions (e.g., Helicobacter pylori and the pro-
biotics) (Fig. S2, supplemental text). To further characterize the
metabolic differences among the reconstructed strains, we com-
puted the tradeoff between simultaneous host and microbe bio-
mass production using Pareto optimality analysis.13 The
majority of the microbes were capable of benefiting the host and
vice versa (Fig. S3). Despite their metabolic similarity, commen-
sal and pathogenic E. coli displayed differences in their metabo-
lite exchange with the host (supplemental text).

Properties of the modeling framework
We developed an in silico approach to systematically study the

effects of gut microbes on the human host by incorporating 11
manually curated gut microbe reconstructions and a global
reconstruction of human metabolism into a constraint-based
host-microbe modeling framework (Fig. 1). To elucidate the
impact of various microbial groups, the host was joined with a
community of either 5 commensal or 5 pathogenic species
(deemed HS/5CM for human/5 commensal microbes and HS/
5PM for human/5 pathogenic microbes, Fig. 1). Subsequently,
the host was joined with all 11 microbes (deemed HS/All)
(Fig. 1). Finally, Recon2 was joined with all 11 microbes individ-
ually as well as with pairs of 2 microbes (SI text, Table S1). The
“germfree” condition (GF) included only Recon2. The required
time for one FBA by the model HS/All, consisting of 20,951
reactions, was less than 2 seconds (Dell, Intel Core i5, 16GB
RAM, 64 bit). Four diets, varying in carbohydrate, fat, and pro-
tein intake (Fig. 1), were simulated because dietary composition
is well known to affect the gut microbiota.18

Production of mammalian-microbe co-metabolites
The gut microbiota is well known to influence the mamma-

lian host’s body fluid and tissue metabolome.19 By optimizing
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the fluxes through all body fluid secretion reactions individually,
we systematically predicted the effects of varying the presence
and the absence of the 11 microbes on the host body fluid metab-
olome in silico (condition GF vs. condition HS/All, Fig. 1). Of
the 658 potential body fluid secretion metabolites (Fig. 1,
Table S6), 342 were indeed secreted by the host under the given
simulation conditions. Of these 342 non-zero metabolites, only
11 cases (butyrate, ethanol, D-ribose, D-ribitol, L-arabinose, L-
homoserine, benzoic acid, and menaquinone 7, 9, 10, 11) were
not secreted in the condition GF under the given dietary con-
straints. However, the quantitatively predicted body fluid metab-
olome was greatly affected by the presence of the microbes.
When comparing the HS/All with the GF simulation, the secre-
tion fluxes increased by greater than five-fold for 29 body fluid
metabolites and by greater than 50-fold for an additional 23
metabolites under at least one dietary regime. Of these metabo-
lites, 28 were derived from amino acids (Fig. 2, Table S2) and
many have been detected in mammalian blood, plasma, or urine
(Table S2). For instance, the fluxes of the known mammalian-
microbial co-metabolites phenylacetylglutamine and 4-hydroxy-
phenylacetate 20 were increased by 41-fold and 90-fold, respec-
tively, in HS/All.

Commensal versus pathogenic community
Dysbiosis in the gut microbiome is thought to have negative

effects on host health.21 Generally, an increase in Proteobacteria
associated with a loss in commensal Firmicutes is considered to
be detrimental for the host. Based on this rationale, we elucidated
the consequences of replacing the commensal community,

including probiotic and commensal Firmicutes, with a group of
pathogenic Proteobacteria by comparing the predicted body fluid
metabolomes of HS/5CM and HS/5PM. Although pathogenicity
cannot be directly modeled with constraint-based methods, the
differences in the potentials of 2 groups to synthesize health-rele-
vant metabolites can be readily predicted.

We quantified the global effect of the microbiota as follows:
We calculated the maximum possible secretions for all 342 non-
zero metabolites by optimizing the fluxes through the respective
exchanges for all of the modeling conditions. The achieved per-
centages of the maximal flux values were compared for the condi-
tion GF and the microbe-associated conditions. The presence of
the 5 commensals increased the secretions of 173 body fluid
metabolites from less than 90% of the maximum possible abso-
lute value to >99% for the simulated Western diet (saturation).
In the presence of all microbes (HS/All), this number of saturated
metabolites was relatively decreased to 109 (Fig. 3). This decrease
was attributed to enforcing a low level of microbial growth
(Methods section), which consumed resources that were conse-
quently no longer available to maximize the metabolic objectives
(Fig. 3). For 76 metabolites, the flux was constant in every
model, resulting in 100% saturation under every condition
(Fig. 3). The HS/5PM modeling condition, containing H. pylori
and 4 Gammaproteobacteria, was unable to saturate any non-
constant metabolite secretion fluxes and there were particularly
low secretions of vitamins and cofactor-related metabolites into
body fluids compared with HS/5CM (Fig. S5). The number of
microbial reconstructions was the same under both scenarios,
and the reconstructions included in HS/5CM were, on average,

Figure 1. Overview of the study design, including the modeling framework, description of included organisms, main constructed host-microbe models
and implemented dietary regimes. Examples of the types of exchange reactions that were optimized individually (4679 in total) are also presented.
CHO D carbohydrate; Mets D metabolites; [c] D cytoplasm; [e] D extracellular space; [u] D lumen; [x] D peroxisome; [n] D nucleus; [l] D lysosome; [g] D
Golgi apparatus; [m]Dmitochondrion; [r] D endoplasmic reticulum.
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smaller in size and scope than for HS/5PM (Table S3). The pre-
dicted effects on host metabolism were thus a result of the meta-
bolic capabilities represented in the reconstructions rather than
the number or size of reconstructions.

The metabolic distance scores for the 4 Gammaproteobacteria
reconstructions included in HS/5PM were low (Fig. S1), and
their subsystem coverages were similar (Fig. S2), resulting in a
low combined metabolic potential. The metabolic potential of
H. pylori was low because of its small genome and thus small
reconstruction size (Table S3), further explaining the limited

metabolic capabilities of the pathogenic community. By calculat-
ing the metabolite secretion saturation for the host linked to all
11 microbes individually or to 2 out of the 5 commensals (SI
text), we determined that B. thetaiotaomicron and E. coli
MG1655 affected host metabolism most strongly (Fig. 3,
Fig. S5).

In total, the pathogenic community, because of its lower
diversity and collective metabolic capabilities, exhibited a weaker
capability to influence the predicted host body fluid metabolome
than the relatively more diverse commensal community. For the
high-carbohydrate, high-fat, and high-protein diets, the numbers
of body fluid metabolites that increased from under 90% of the
maximum possible absolute values to >99 % of the respective
values were 225, 172, and 196, respectively, for the HS/5CM
condition (Fig. S4), indicating that the predicted impact of the
microbiota was correlated with the carbohydrate content of the
simulated diet, in line with the known influence of diet on
human gut microbiota.18 All of the calculated body fluid secre-
tion flux values are presented in Table S6.

Luminal secretion
The microbiota significantly affects mammalian luminal

metabolites.19 Maximizing the 1035 metabolic exchanges
(Fig. 1) between the lumen compartment and “fecal” secretion
individually enabled the luminal metabolome, which consisted
of 266 metabolites, to be predicted. We then compared the dif-
ferences in luminal secretion among the GF, HS/5CM, HS/
5PM, and HS/All modeling conditions. Only 48 metabolites
were secreted in the GF simulation, in line with reports that

Figure 2. Host body-fluid secretions of amino acid-derived metabolites increased by greater than five-fold in HS/All (vs. GF) under a simulated Western
diet. The diamonds represent metabolites, with subsystems indicated by color. The fold changes in secretion between the HS/All and the GF conditions
are indicated by the size of a diamond. Individual microbes that contributed significantly to biosynthesis are listed for each metabolite group, with colors
indicating the type of microbe. For abbreviations, refer to Figure 1.

Figure 3. Comparison of relative amounts of host body-fluid metabolite
secretion achieved by the GF condition and the host-microbe models
under a Western diet (see also Fig. S4). For abbreviations, refer to
Figure 1.
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numerous metabolites detected in conventional mice are not
present in germfree animals.22 The range of predicted metabo-
lites of microbial origin was significantly higher for HS/5CM
than for HS/5PM (200 compared to 99 metabolites), and
numerous subsystems were saturated under the HS/5CM condi-
tion but not under HS/5PM (Fig. S6). These results demonstrate
again the relatively poor metabolic potential of the pathogenic
community because of its relatively lower diversity. A number of
subsystems were most affected by particular species. The Gam-
maproteobacteria contributed the majority of inorganic iron
metabolism, lipopolysaccharide biosynthesis, polyamine metabo-
lism, and urea cycle metabolites, whereas host and plant polysac-
charide degradation, the pentose phosphate pathway, cholesterol
and bile acid metabolism, and vitamin and cofactor metabolism
were all linked to B. thetaiotaomicron (Fig. S6). H. pylori contrib-
uted most to nitrogen metabolism but provided little other meta-
bolic potential (Fig. S6). All of the calculated luminal secretion
flux values are listed in Table S6.

The majority of the luminal metabolites were solely of micro-
bial origin (218 of 266, 82%) (Table S4), many of which are
health-relevant. For instance, the well-described microbial pro-
duction of a variety of phenolic compounds from aromatic
amino acids 23 was predicted (Table S4). Other modeled prod-
ucts derived from amino acids included sulfide and ammonia,
which are toxic and disturb colonocyte energy metabolism.24

With the exception of Lactococcus lactis, the Firmicutes did not
produce sulfide (Table S4). Other potentially health-relevant
predicted metabolites of microbial origin included D-lactate, for-
mate, ethanol, succinate, short-chain fatty acids, and vitamins
(Table S4). As expected, only the gram-negative bacteria pro-
duced pro-inflammatory lipopolysaccharides,1 with the patho-
genic Salmonella typhimurium contributing most to this
subsystem (Fig. S6).

In summary, B. thetaiotaomicron, as well as the commensal
and probiotic Firmicutes (F. prausnitzii and the lactic acid bacte-
ria), produced a greater number of beneficial metabolites than
the Proteobacteria. Moreover, although we could not directly
model pathogenicity, we demonstrated that the community of
pathogenic Proteobacteria, in particular S. typhimurium, was
characterized by a greater potential to produce potentially harm-
ful compounds (e.g., sulfide, ammonia, and lipopolysaccharides).
This greater potential could not be explained entirely by their
low diversity and was also attributed to their metabolic differen-
ces from the commensal Firmicutes.

It has been proposed that the gut microbiota can be consid-
ered as an endocrine organ because it produces numerous com-
pounds that influence distal organs via the bloodstream, such as
short-chain fatty acids, and regulates hormone metabolism.25

All of the reconstructed bacteria produced acetate, but propio-
nate and butyrate production was only predicted for B. thetaio-
taomicron and F. prausnitzii, respectively, (Table S4).
Furthermore, we predicted a 34- to 90-fold increase in the host
body fluid secretions of hormone metabolites, including epi-
nephrine, norepinephrine, dopamine, histamine, and serotonin,
on the Western diet in the presence of the 11 microbes (Fig. 2,
Table S2). According to our predictions, B. thetaiotaomicron,

Lactobacillus plantarum, L. lactis, and the 3 E. coli strains pro-
duced GABA and L. plantarum secreted histamine (Table S4).
Both of these neurotransmitters are known to be produced by
the gut microbiota.25

Host absorption
It is well known that the host absorbs and utilizes microbe-

derived metabolites, such as amino acids, vitamins,3 and short-
chain fatty acids.1 We examined microbe-derived metabolites
that could be absorbed by the host by optimizing the fluxes
through all of the 661 host absorption exchange reactions
(Fig. 1, Table S6). A total of 38 dietary compounds usable by
the host (e.g., simple sugars, vitamins, and amino acids) were
additionally produced by the microbes (Table S4), thus increas-
ing their respective availabilities compared with the GF condi-
tion. For instance, the microbiota produced additional
aspartate, glutamate, and glutamine, which serve as energy sour-
ces to enterocytes.24 Furthermore, 60 metabolites of microbial
origin that were not included in the simulated diet could be
absorbed by the host, including acetate, propionate, and
butyrate.

These results explain the pronounced predicted effects of the
presence of gut microbes on the host body fluid metabolome
described above and shown in Figure S5. We further performed
a global single-gene deletion study of the human genes for all of
the host-microbe pairs. Five gene deletions that were predicted to
be lethal to the “germfree” host could be rescued by the presence
of at least one microbe (SI text), further supporting the hypothe-
sis that gut microbes can provide essential biomass precursors to
the host. All of the calculated host absorption flux values are pre-
sented in Table S6.

Glutathione, taurine, and leukotriene metabolism
We aimed to identify mechanisms by which the recon-

structed gut microbes, in combination with the simulated die-
tary inputs, caused the predicted increases in body fluid
secretions. One example of essential biomass precursors pre-
dicted to be provided by the microbiota is sulfur amino acids.
Methionine is essential, and cysteine is a semi-essential amino
acid for humans. Moreover, cysteine serves as a precursor for
glutathione and taurine.26 To test the hypothesis that the gut
microbes could provide cysteine and/or methionine, we ana-
lyzed the pathway utilization when secretions of (i) glutathione
and (ii) taurine into body fluids, and the biosynthesis products
requiring these compounds as precursors, were optimized for all
host-microbe pairs.

The model predicted that 7 bacteria could increase glutathi-
one biosynthesis by supplying L-cysteine, L-methionine, or L-
cystine to the host (Fig. 4). Alternatively, the diet serves as sour-
ces of cysteine and methionine (Fig. 4), with the high-protein
diet providing the highest inputs (Table S5). We expected a
similar microbe-derived effect on the biosynthesis of leuko-
trienes C4, D4, E4, and F4, which are dependent on glutathi-
one.27 In fact, their secretion was increased in the presence of
all of the microbes, except the 3 probiotics and H. pylori. This
effect only occurred with the high-fat diet (Table S6),
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indicating that a precursor other than glutathione was limiting
for cysteinyl leukotriene biosynthesis. Leukotriene biosynthesis
starts from arachidonic acid, which is not predicted to be syn-
thesized by any of the microbes included in this study
(Table S6). Consequently, the supply of arachidonic acid was
dependent entirely on the dietary inputs under the given simu-
lation conditions. Hence, the secretion of leukotriene into body
fluids could only be increased by the presence of the microbes
in combination with the high-fat diet (Fig. 4). Thus, the effects
of the microbe- and the diet-supplied inputs of biosynthesis pre-
cursor were complementary.

Similarly, B. thetaiotaomicron and F. prausnitzii increased the
secretion flux of taurine by supplying L-cysteine, L-methionine
(B. thetaiotaomicron), or L-cystine (F. prausnitzii) (Fig. 5). The
main taurine biosynthesis pathway starts from L-cysteine, with L-
cysteinesulfinic acid and hypotaurine as intermediates (Fig. 5). In
the case of F. prausnitzii, this effect was limited by the supply of
L-serine in the diet, which this microbe requires for L-cysteine/L-
cystine biosynthesis. Furthermore, the model predicted an alter-
nate pathway for taurine biosynthesis that starts from L-serine and
sulfate via L-cysteic acid (Fig. 5), which is a minor pathway for
taurine biosynthesis.28 B. thetaiotaomicron was able to increase the
flux of taurine synthesized via this pathway by providing sulfate.
As a result, the secretions of taurocholic and taurodeoxycholic
acid into body fluids were also increased by the high-protein diet

and/or in the presence of B. thetaiotaomicron or F. prausnitzii
(Fig. 5). In summary, similar to glutathione biosynthesis, the pres-
ence of gut microbes, in addition to the supply of diet-derived
biosynthesis precursors, increased taurine biosynthesis.

Discussion

In this study, we present a framework designed to model the
metabolic interactions between the human host and its micro-
biota. For the first time, a constraint-based model of a host and
as many as 11 microbes was constructed. We systematically
explored the effects of metabolites produced by commensal pro-
biotics, opportunistic pathogens, and pathogens on human meta-
bolic functions. A community of 5 commensals consistently
provided a higher metabolic potential than a community of 5
pathogens. The gut has the metabolic potential to serve as an
endocrine organ for the host. The synthesis of important neuro-
transmitters is elevated in the presence of the gut microbiota.
Gut microbes contribute essential precursors for glutathione, tau-
rine, and leukotrienes. This computational modeling framework
provides novel insight into the complex metabolic interactions
between a host and its microflora, and it can serve as a powerful
tool with which to generate novel, non-obvious hypotheses
regarding host-microbe co-metabolism.

Figure 4. Schematic depiction of glutathione and leukotriene biosynthesis in Recon2 and the entry points of microbe- and diet-derived metabolites with
increased fluxes through the pathway and increased secretion into body fluids. For abbreviations, refer to Figure 1.
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Bottom-up systems biology permits us to evaluate, at the spe-
cies level, the individual and combined metabolic potentials of
microorganisms. We demonstrated that our constraint-based
modeling framework (Fig. 1) was able to accurately predict the
metabolic potential of the included 11 microbes as well as their
global effects on host metabolism. As a result of the increased
availability of automated reconstruction tools, such as Model
SEED,29 and the catalog of reference genomes established by
MetaHIT 6 and the Human Microbiome Project,7 a greater
number of metabolic reconstructions for important species
inhabiting the gut, including low-abundance and/or under-
studied species, should become available in the near future.
Important metabolic functions may be performed by low-abun-
dance microbes (the “rare biosphere”).3 Using our framework,
the metabolic potential of such “keystone” species could be eluci-
dated and placed in context with host metabolism without a
need to cultivate the microbe.

Such host-microbiota modeling may reveal the mechanisms
underlying correlations among various taxa and particular mam-
malian-microbial co-metabolites. For example, phenylacetylglut-
amine and 4-hydroxyphenylacetate, which were predicted to be
produced by the host and to be affected by the presence of the
microbes, have been positively correlated with Subdoligranulum
variable, and additionally, phenylacetylglutamine has been posi-
tively correlated with Bifidobacterium pseudocatenulatum.20 Our
modeling framework can be expanded by the inclusion of any
number of representative, well-curated gut microbe reconstruc-
tions, which will further elucidate the impacts and the impor-
tance of the gut ecosystem on human health. Notably, the
human reconstruction currently lacks biosynthesis pathways for
certain important mammalian-microbial co-metabolites (e.g.,
hippurate and 4-cresyl sulfate 1), which will be included in future
revisions of Recon2.

We have provided a comprehensive chart that details the
metabolic potential of each gut microbial species (Table S4).
Overall, we predict that a diverse commensal community span-
ning 3 phyla will have a higher global metabolic potential than
a less diverse community of 5 pathogenic Proteobacteria
(Fig. 3), leading to the production of a wider range of microbe-
derived compounds to be absorbed by the host. Species consid-
ered to be beneficial, e.g., F. prausnitzii, produce more benefi-
cial metabolites (e.g., butyrate 30), whereas harmful or pro-
inflammatory compounds, such as sulfide, ammonia 24 and lip-
opolysaccharides,1 are more highly associated with bacteria con-
sidered to be detrimental (e.g., Proteobacteria) (Table S4,
Fig. S6). Based on these results, a loss of beneficial Firmicutes
and gain in Proteobacteria would result in a depletion of benefi-
cial metabolites (e.g., butyrate) but not harmful or pro-
inflammatory microbial products (e.g., lipopolysaccharides,
ammonium ions). Indeed, changes in the gut microbiome, such
as an increase in Proteobacteria, have been associated with detri-
mental effects on host health.21 It has to be noted that we pre-
dict the theoretical maximal metabolite secretion potential of
each species. In a natural community, each species would most
likely optimize their own biomass production resulting in lower
secretion fluxes than predicted as well as the secretion of waste
products rather than valuable compounds. Moreover, certain
metabolites would only be synthesized and secreted in certain
environmental conditions. Simulating a more realistic commu-
nity behavior in silico would require a well-defined objective
function enabling each species to strive for optimal biomass pro-
duction. Such modeling approaches will be addressed in future
efforts.

Low bacterial gene richness has been associated with adi-
posity and a higher inflammatory status,31 which may suggest
that an increase in gram-negative bacteria, such as Proteobac-
teria, and corresponding loss in gram-positive Firmicutes are
correlated with a loss of richness in encoded functions. Simi-
larly, a variety of metabolic subsystems have been shown to be
affected by antibiotic perturbations of the gut microbiota.32

We predicted the production of aromatic amino acid-derived
phenolic metabolites by gut microbes (Table S4), which is
supported by experimental data and may have implications for

Figure 5. Schematic depiction of taurine and bile acid biosynthesis in
Recon2 and the entry points of microbe- and diet-derived metabolites
with increased fluxes through the pathway and increased secretion into
body fluids. The transformation of bile acid by B. thetaiotaomicron is also
shown. For abbreviations, refer to Figure 1.
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vascular health.23 In our model, cadaverine was only produced
by the 5 Gammaproteobacteria (Table S4). This compound is
elevated in the fecal extracts of ulcerative colitis (UC)
patients.33 Such findings can link microbial groups that are
over- or under-represented in certain disease conditions with
alterations in metabolomes. Indeed, numerous studies have
reported increases in Enterobacteria, such as E. coli, in inflam-
matory bowel disease patients,34 whereas butyrate-producing
Firmicutes, which have a protective role in the intestine, were
decreased.35

It has been proposed that the gut microbiota serves as an
additional endocrine organ.25 Accordingly, we predicted that
the secretions of hormones and hormone precursors, including
serotonin and its precursors tryptophan and 5-hydroxytrypto-
phan, would increase by over 34-fold in the presence of the 11
microbes (Fig. 2, Table S2). Supporting this hypothesis, con-
sistently higher tryptophan levels in urine were reported dur-
ing the establishment of a gut microbiota compared with
germfree animals 36 though another study reported lower
serum tryptophan levels in conventional mice compared to
germfree mice.37 Interestingly, ex-germfree mice also displayed
higher levels of phenylalanine, tyrosine, and tryptophan in the
cerebral metabolome compared with germfree mice.38 There is
evidence that the gut microbiota influences the brain and
behavior by regulating tryptophan availability as well as by
synthesising and degrading tryptophan.25 All of the microbes,
except F. prausnitzii, were predicted to synthesize tryptophan.
B. thetaiotaomicron and the Gammaproteobacteria degraded
tryptophan to skatole and indole, respectively (Table S4).
Host enzymes convert indole to indoxyl sulfate, which is a ure-
mic toxin and has been directly linked to vascular disease and
mortality in chronic kidney disease patients.39 Indole is thus
another example of a detrimental metabolic product specifi-
cally predicted for the mostly pathogenic Proteobacteria. This
finding again highlights that metabolic modeling is a useful
tool for the prediction of detrimental metabolic profiles associ-
ated with a dysbiotic microbiota.

We propose that serotonin levels may be affected by the gut
microbial potential to produce and degrade its precursor trypto-
phan. Based on our predictions, the dopamine secretion into
body fluids is increased for individuals on a Western diet in the
presence of the 11 microbes (Fig. 4, Table S2). Consistently,
conventional mice were reported to exhibit a greater than
1.5-fold increase in dopamine levels in serum compared to germ-
free mice.37 Importantly, we predicted that all of the hormones
and hormone precursors could be produced by the “germfree”
host, but their secretion levels were drastically increased in the
presence of the 11 microbes. These predictions are supported by
experimental observations that germfree animals have a func-
tional hormonal repertoire but exhibit an altered behavior, likely
because of the lack of microbial influence on their hormone
metabolism.25

Over 10% of detected blood metabolites differ by at least 50%
between germfree and conventional mice.22 Accordingly, we pre-
dicted a global effect of microbial presence on human body-fluid
metabolites (Fig. 2, Table S2). For instance, the microbes were

predicted to provide essential sulfur amino acids, thereby increas-
ing the host’s potential to synthesize glutathione, leukotrienes,
and taurine-conjugated bile acids (Figs. 4 and 5). Consistently,
up to 20% of the amounts of circulating lysine, threonine, and
leucine have been synthesized by microbes,40 supporting our
hypothesis that microbes also provide essential methionine and
cysteine. Luminal glutathione performs important functions,
including detoxification and the maintenance of mucosal integ-
rity.41 The availability of cysteine is limiting for glutathione bio-
synthesis,26 and germfree mice colonized with human baby flora
display impaired metabolism, including glutathione depletion,42

supporting a link between the gut microbiota and glutathione
levels. Based on our predictions, we propose a relationship
between the gut microbiota and the redox state in the intestine.
In support, B. thetaiotaomicron has been suggested to generate
energy via bile acid dehydrogenation,4 forming a feedback loop
of increased taurocholic acid secretion by B. thetaiotaomicron,
which would benefit itself.

In summary, we developed a computational framework that
allows for the generation of novel testable hypotheses regarding
the identity and impacts of influential gut microbiota within the
gut microbial community and the mechanisms by which gut
microbiota influence host metabolism. Although it is imperative
that these hypotheses be subjected to experimental validation, we
highlight that computational approaches, such as the one pre-
sented here, are required to assess the complexity of the interac-
tion network between the host and its associated microbiota. The
presented computational modeling framework has the potential
to serve as an additional, complementary tool to existing cellular
and animal models for the study of human-microbe co-
metabolism.

Materials and Methods

Construction of host-microbe models
We retrieved 11 manually constructed and validated recon-

structions of human gut microbes 13,43-50 and an extensive, high-
quality reconstruction of human metabolism.14 The 11 microbes
included commensal, probiotic and pathogenic species (Fig. 1).
Quality assurance and, if possible, expansion of each reconstruc-
tion content was performed. If necessary, additional reactions/
genes were included and/or the reconstruction structure was
revised (details in SI text). An in silico framework combining host
and microbes that enables host-microbe interactions through an
in silico compartment representing the intestinal lumen, deemed
[u], was constructed. The host and the microbes each had their
own extracellular spaces [e] through which they could exchange
metabolites with the lumen compartment and, via the lumen,
with each other (Fig. 1). The lumen compartment provided an
outlet for simulated luminal secretion into feces. The host could
secrete metabolites into a separate outlet representing host secre-
tion into body fluids (i.e., blood and urine) (Fig. 1). To model
the effects of the presence and absence of certain microbes, a total
of 25 models containing the host and zero to 11 microbes were
constructed. Briefly, the host was combined with each microbe

www.tandfonline.com 127Gut Microbes



separately, with 2 commensal microbes, with communities of 5
microbes and with all 11 microbes. The unassociated host repre-
sented a “germfree” human (SI text, Table S1). The 25 models
are described in spreadsheet format in Table S7 and are available
in COBRA format at http://thielelab.eu.

Comparison of microbial reconstruction content
with a human microbiome gene catalog

A human gene catalog constructed from the fecal samples of
124 human subjects, assembled by Qin et al.,6 consisting of
1112 clusters of orthologous genes (COGs 16) was downloaded.
The metabolic functions represented in the COGs were manually
mapped to the metabolic reactions contained in the 11 microbe
reconstructions. Non-metabolic COGs were not translated, as
they are outside the scope of metabolic reconstructions. More-
over, where possible, the unmapped reactions contained in the
11 reconstructions were translated into additional COGs not
reported in the Qin et al. dataset. The translations were per-
formed using Enzyme Commission (EC) numbers and KEGG
Orthologies (KOs).51

Definition of diets
We defined the following diets: Western diet, which approxi-

mates the amounts of protein, carbohydrate, and fat consumed
by a typical Western citizen (http://www.ars.usda.gov/); high-car-
bohydrate diet; high-fat diet; and high-protein diet (Fig. 1). All
diets contained the same simulated nutrients but with varying
uptake rates (Table S5).

Quantification of fluxes
The fluxes through biomass objective functions and the

exchange reactions of the 25 models were predicted using flux
balance analysis (FBA). Briefly, FBA calculates the flow of metab-
olites through a metabolic network that results in an optimal
solution for a given objective function while assuming steady
state.12 By definition, the uptake flux of a metabolite through an
exchange reaction is negative, whereas the secretion flux is posi-
tive. Alternate solutions for optimizing for biomass production
were predicted using flux variability analysis (FVA). This analysis
identifies the allowed minimal and maximal flux spans for each
reaction that occur when a certain percentage of the maximal flux
through the objective function is enforced.52 All of the simula-
tions were performed using the COBRA Toolbox 53 in the
MATLAB (Mathworks, Inc., Natick, MA, USA) programming
environment. We used Tomopt (Tomlab, Inc., Seattle, WA,
USA) and ILOG CPLEX (IBM, Armonk, NY, USA) as the linear
programming solvers for the flux balance analysis 12 and for the
flux variability analysis,52 respectively.

Pareto optimality analysis
Pareto optimality analysis was performed for all host-microbe

pairs as previously described.13 Briefly, the fluxes through the
host and microbe biomass objective functions were fixed at mul-
tiple intervals while optimizing the flux through the other respec-
tive biomass objective function, resulting in the prediction of the
tradeoff between host and microbe biomass production. This
analysis was conducted for the 4 diets defined above.

Systematic analysis of host metabolic functions
The effect of microbial presence on host metabolism was

examined systematically as follows: using FBA, the fluxes
through all of the exchange reactions in the joint models were
optimized individually. These exchange reactions included (i)
the absorption/secretion between the host and the lumen as
well as between the microbes and the lumen, (ii) luminal secre-
tion into feces, and (iii) host secretion into body fluids (Fig. 1).
Minimal biomass growth was enforced for the host and the
included microbes by setting the lower bounds on the respective
biomass objective functions to 0.01 hr¡1, representing the low
growth rates (ca. 0.02–0.2 hr¡1) measured for the intestinal
microflora of mammals.54 In total, 4679 exchanges representing
metabolite secretion/absorption were set as the objective func-
tion, resulting in 4679 simulations (Fig. 1, Table S6). The
analysis was performed for all 25 models (Table S1) for each of
the 4 defined diets by optimizing the flux through all 4679
exchanges individually. In total, the approach resulted in the
systematic quantification of (i) the potential of Recon2 to
secrete body fluid metabolites, (ii) the potential of Recon2 to
absorb metabolites of dietary and microbial origin, (iii) the fecal
secretion of metabolites of human and microbial origin and (iv)
the absorption and secretion of metabolites of dietary, human
and microbial origin by each microbe (Fig. 1). See Table S6
for all of the optimized metabolic functions and computed
fluxes.
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