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Abstract

The population genetic study of divergence is often done using a Bayesian genealogy sampler, like 

those implemented in IMa2 and related programs, and these analyses frequently include a 

likelihood-ratio test of the null hypothesis of no migration between populations. Cruickshank and 

Hahn (2014, Molecular Ecology, 23, 3133–3157) recently reported a high rate of false positive test 

results with IMa2 for data simulated with small numbers of loci under models with no migration 

and recent splitting times. We confirm these findings and discover that they are caused by a failure 

of the assumptions underlying likelihood ratio tests that arises when using marginal likelihoods for 

a subset of model parameters. We also show that for small data sets, with little divergence 

between samples from two populations, an excellent fit can often be found by a model with a low 

migration rate and recent splitting time and a model with a high migration rate and a deep splitting 

time.
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Introduction

Isolation with Migration (IM) models are widely used in the genetic study of divergence 

precisely because they incorporate the two main demographic factors thought to contribute 

to divergence. These are the separation of populations at some time (larger times are 

associated with more divergence) and gene migration (higher rates are associated with less 

divergence). Investigators are also often interested in testing the null hypothesis that the 

migration rate between diverged populations is zero. A statistical conclusion of a non-zero 

migration rate can be of considerable interest as it may be taken as indirect evidence that 

natural selection is contributing to the divergence process (Pinho & Hey 2010).

Recently Cruikshank and Hahn (2014), hereafter C&H, in a paper on the pitfalls of 

interpreting the causes of variation in a genome scan, reported that the widely used IMa2 
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program (Hey 2010) returned high false positive rates for tests of gene flow under some 

circumstances.

IMa2 is descended from a method developed by Nielsen and Wakeley (2001) for estimating 

the parameters of an IM model using the Markov chain Monte Carlo (MCMC) approach of 

Wilson and Balding (1998) in which both genealogies and demographic model parameters 

are included in the state space of the simulation. Although the method is Bayesian, in the 

special case of a uniform prior distribution the posterior probabilities of model parameters 

are proportional to the likelihood, and the original method and subsequent related methods 

have made use of this for the purpose of likelihood ratio tests. Specifically Nielsen and 

Wakeley (2001) proposed a log likelihood ratio (LLR) test of the null hypothesis that the 

migration rate is equal to zero, and this test is included in IMa2 and was used by C&H. The 

performance of the IMa2 program (and its predecessors) has been examined and been found 

to provide generally accurate estimates, particularly when the underlying assumptions of the 

method apply (Becquet & Przeworski 2009; Hey 2010; Hey & Nielsen 2004; Hey & Nielsen 

2007; Naduvilezhath et al. 2011; Strasburg & Rieseberg 2010), however performance had 

not been well examined for models that lead to low divergence.

C&H simulated data sets with no migration and with varying numbers of loci and varying 

times of population isolation, and found that the rate of rejection of a zero migration rate 

was substantially higher than the expected frequency of false positives (i.e. 0.05) for data 

sets with small numbers of loci (<=10) and recent divergence times (< Ne generations, where 

Ne is the effective population size of each of the populations). Using the protocol described 

by C&H for simulating data sets, as well as details on the prior distributions which were 

provided upon request, we observed the same high false positive rates. Importantly, under 

the parameters ranges studied by C&H, we observed high false positive rates using both the 

original test of Nielsen and Wakeley (2001), and the tests proposed by Hey and Nielsen 

(2007) that are based on the join distribution of population size and migration rate 

parameters.

In this paper we reproduce by simulation the false positive results reported by C&H, and we 

take a detailed look to uncover some of the likely causes. We also explore more generally 

the difficulty of working with small data sets that show low divergence.

Methods

Working with a simplified model

Typically an IM model has six parameters, including population mutation rates for two 

sampled populations and their ancestor (θ1, θ2 and θA), migration rates in each direction 

(m1→2 and m2→1), and a splitting time t. To simplify the analysis and presentation we focus 

here on a reduced IM model in which all three populations (both descendant populations and 

the ancestral population) have the same population size, and in which the migration rates in 

both directions are equal. This model has just three parameters: a population size, θ, a 

migration rate, m, and a splitting time, t.
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Under the method of Nielsen and Wakeley (2001), it is possible to approximate a 

distribution that is proportional to the likelihood for a data set X for any particular model 

parameter by constructing a histogram of values of that parameter that are sampled from an 

MCMC simulation. In the case of, m, Nielsen and Wakeley proposed that the estimate of the 

likelihood, p(X|m), be used to conduct a likelihood ratio test of the null hypothesis that the 

migration rate is zero. For this type of test, with a parameter fixed at a boundary value, the 

test statistic, Λ = −2 log(Lmax(X|m = 0)/Lmax(X|m)), has an asymptotic distribution that takes 

a value of 0 with probability 0.5 and a value from the  distribution with probability 0.5 

(Chernoff 1954).

With the development of IMa and IMa2 it became possible to conduct likelihood ratio tests 

on joint distributions for population size and migration parameters (θ and m), with a 

likelihood ratio test value of Λ = −2 log(Lmax(X|θ, m = 0)/Lmax(X|θ, m)). However these 

tests, like those under the original method of Nielsen and Wakeley, use densities that are not 

full joint distributions, but rather use marginal densities found by integrating out t. All of 

these tests, including those using IMa and IMa2 and the original tests of Nielsen and 

Wakeley (2001) as implemented in the IM program (Hey & Nielsen 2004), exhibit high false 

positive rates for migration with small data sets when the true model has a small value for t.

To see how the use of marginal densities may contribute to the high false positive rates, we 

used the original IM program to generate full joint density estimates (i.e. three dimensional 

histograms) in order to approximate a test value that does not require integration over any 

model parameters, i.e. Λ = −2log(Lmax(X|t, θ, m = 0)/Lmax(X|t, θ, m)).

Simulations

One hundred data sets were simulated using the ms program (Hudson 2002), each with two 

loci, and with parameter values: θ = 4Nu = 5, m = 0, t = 0.5 (following the parameterization 

as outlined in Hey & Nielsen (2004)). These values were suggested by T. Cruickshank (pers. 

comm.) and are representative of the circumstances that cause a high false positive rate. 

Each data set was analyzed using the IM program under a three parameter model. A large 

sample of parameter values were collected so as to well populate a histogram in 3 

dimensions with 200 bins on each axis. These runs were done with an upper bound of 10 for 

each of the three parameters, and fifty Metropolis-Coupled chains were used to help ensure 

good mixing of the Markov chain simulation. Additional simulations were done using ms for 

estimating the allele frequency spectrum (AFS) and for estimating the distribution of Φst, an 

Fst analog for DNA sequence data (Excoffier et al. 1992). For Φst calculations the 

sequences for each individual gene copy were concatenated across loci to form a single 

sequence for each.

Results and Discussion

The circumstances under which high false positive rates for tests of migration occur are 

those in which: (1) the data set, in terms of numbers of loci and numbers of gene copies per 

locus, is small; and (2) the true demographic model is one that generates very little signal of 

divergence in the data (Cruickshank & Hahn 2014). These circumstances, denoted here as 
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Small Data, Low Divergence (SDLD), present several challenges for Isolation with 

migration analyses.

Estimator Bias

The means of the parameter estimates from 100 simulated data sets were θ̄ = 4.19, m̄ = 6.3 

and t̄ = 1.1, which can be compared to the true values: θ = 5, m = 0 and t = 0.5. The ranges 

of values for the MLEs for each of the parameters are shown in Figure 1. The distributions 

of estimates for each parameter showed a wide variance, however in the case of m, the 

estimator appears to be strongly biased. Only 14 of the 100 data sets returned an estimated 

value in the lowest bin of the histogram (corresponding to m̄ = 0.025), and the large majority 

of the estimates where far from the true value.

False Positive Tests Resulting from Marginal Densities

Figure 2 shows the cumulative distribution of likelihood ratio statistic Λ for 100 data sets for 

the full joint density, as well as for the marginal densities when t and θ, or both, are 

integrated out. Also shown is the expected asymptotic distribution for the test statistic. 

Under this distribution the 95% cutoff value (i.e. the value above which the cumulative 

probability is 0.05) is 2.71.

For both the 1- and 2- dimensional marginal densities, the distribution for Λ shows much 

less skew, and is shifted far to the right, relative to the expected distribution. Particularly 

when t is integrated out, the large majority of simulations result in a test value that would 

reject the null model of no migration. However for the full joint distribution, the distribution 

is much closer to the expected distribution, particularly in the upper tail, and the overall rate 

of rejection of the null model was 4 out of 100, i.e. quite close the expected number of 5 for 

the target false positive rate of 0.05.

To help envision the actual shape of these joint densities, contour plots for three 

representative data sets are shown in Figure 3. Panel A shows a case when the test using the 

full model {θ, m, t} rejected the null hypothesis m = 0, and the MLEs under the two models 

differed considerably. Panels B and C show cases when the null model was not rejected. For 

tests based on marginal distributions {θ, m}, {m, t} and {m}, all three data sets shown in 

Figure 3 rejected the null hypothesis of no migration.

In theory the density of the likelihood ratio statistic will approach the asymptotic distribution 

when the null model is true and the data set consists of many independent and identically 

distributed (IID) values (Wilks 1938). In the case of a data set of multiple DNA sequences 

from a single locus, the IID assumption is not met because the sequences share an 

underlying genealogical history. However data sets from multiple unlinked loci are IID, and 

it has been shown for some models with six loci that the distribution of the likelihood ratio 

statistic does converge to the expected chi-square distribution when using a marginal density 

(Hey & Nielsen 2007). The fact that marginal likelihood surfaces present distributions that 

are far from the asymptotic distribution (Figure 2) suggests that there are strong nonlinear 

correlations in the joint surface (Figure 3). In addition the act of integrating over one or 

more parameters, to generate a marginal likelihood surface, will cause the data from 
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different unlinked loci to not make independent contributions to the likelihood surface, in 

violation of the IID assumption of likelihood ratio tests.

Very different models can give rise to data showing low divergence

When the true migration rates are at or near zero and the splitting time is recent, the actual 

divergence between the samples from two populations is expected to be slight. To visualize 

the patterns of divergence that arise under the different kinds of models estimated in the 

SDLD context, we calculated widely used summaries of variation and divergence for a 

representative data set from among those used to generated Figures 1–3, for which the true 

values were: θ = 5, m = 0, t = 0.5. The selected data set exhibited a false positive likelihood 

ratio test for migration in marginal models and had an estimated model far from the true 

value: θ̂ = 2.1, m̂ = 6.5, t̂ = 9.8. Figure 4A shows the expected 2-dimensional AFS simulated 

under the true parameter values and Figure 4B shows the expected AFS for the estimated 

parameters. Figure 4C shows the difference between the two AFSs, which are very slight 

except for the frequency classes for a single sampled derived allele in one of the 

populations.

We also estimated divergence using Φst (Excoffier et al. 1992) for data sets simulated under 

these two parameters sets. Figure 4D shows the histograms for 10,000 simulated data sets of 

two loci and of 20 loci, each for 15 gene copies (n=15) per population, and for two loci with 

n=50 per population. In the case of two loci and n=15, the most common Φst value is zero 

for both parameter sets (low migration and small divergence time, and high migration and 

large divergence time) indicating that by chance data sets of this size under these models 

often show no sign of divergence by this measure. In fact for the particular data set used to 

generate the estimated parameter values for this figure, Φst=0. For data sets of 20 loci, or for 

data sets of 2 loci but with 50 gene copies per population, the distributions were very 

similar, with positive modal values for Φst.

Challenges of model estimation with SDLD data

SDLD data present a number of challenges when trying to estimate parameters and conduct 

likelihood ratio tests. The primary difficulty is that because both migration and splitting time 

are low, the actual signal in the data used to discern m and t is expected to be small. 

Furthermore because the data set is small, the data can easily, by chance, show little or no 

sign of divergence. A second set of challenges arise because of the failures of the 

assumptions of likelihood ratio tests, as shown in Figures 2 and 3. An additional difficulty, 

not explored here but that deserves mention, is that the likelihood surfaces that arise with 

these data can present challenges in finding the highest point in the surface. When a data set 

is quite small, and the prior distribution is broad and flat, the data does not dominate the 

prior and the state space of the MCMC simulation is explored relatively uniformly. The 

effect of this under MCMC is that the simulation must explore the entire state space 

relatively evenly, and because the genealogies in the MCMC simulation change slowly, the 

time needed to obtain a large sample of nearly independent samples from the state space can 

be very great. Thus even though the data set is small, the combination of low divergence and 

very wide priors creates a challenging mixing problem for an MCMC-based genealogy 

sampler. Investigators who do not realize this may inadvertently use too short a burning-in 
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period, or an insufficiently short sampling run, and take a poor sample. And that sample may 

in turn not be sufficient to approximate the true posterior density, leading to false 

conclusions.

Recommendations

Investigators working with a small number of loci and data that shows little divergence (e.g. 

estimates of Fst at or near zero) can expect a high rate of false positives when conducting 

likelihood ratio tests using marginal distributions. Importantly the SDLD context is also one 

in which even accurate tests of migration are expected to have little statistical power.

The ideal solution to the problem that arises with marginal distributions is to use the joint 

distribution for all model parameters, including population sizes, migration rates and 

splitting time. For this study this was feasible because we used a reduced three parameter 

model, however a full IM model with six parameters, is much harder to put to the test 

because of the need for much larger samples (i.e. as needed to fill a histogram in six 

dimensions).
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Figure 1. 
Box plots of estimates of θ, m and t for 100 simulated data sets. In each panel the boxed area 

includes the interquartile range (IQR) from the first to the third quartiles, with the black 

thick line showing the median value. Whiskers indicate 1.5 IQR away from either the lower 

and upper quantiles, with outliers shown using circles. Dotted colored lines show the true 

values used for the simulations.
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Figure 2. 
The cumulative distribution of the likelihood ratio statistic. Shown are the theoretical 

expectation for the case with one model parameter fixed at a specific value (i.e. m = 0), and 

values estimated from histograms for 100 data sets under a three parameter model, as 

described in the text. Values of the cumulative distribution of Λ are shown for the full joint 

likelihood surface, and for marginal distributions where one or two model parameters are 

integrated out. The critical value for p = 0.05 is 2.71, and is shown as a vertical dotted line.
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Figure 3. 
Contour plots of p(θ, m, t|X) (proportional to the likelihood) for three representative data 

sets, with variation along the axis for θ shown as a series of four panels, each of which 

shows densities over m and t for a given value of θ. The Maximum likelihood estimate 

(MLE) under the null hypothesis (m = 0) is marked as × and the MLE under the alternative 

hypothesis is marked as ●. (A) A case where the null hypothesis was rejected (Λ = 5.27) and 

the MLEs under the two models differ considerably for all three parameters. (B) The MLE 

under the alternative model has a high estimate of the migration rate (m̄ = 5.75), however the 

null model is not rejected (Λ = 0.25). (C) The MLEs are the same for the two models (Λ = 0) 

and the null model is not rejected.
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Figure 4. 
Summary statistics for a data set that generates false positive results for tests of zero 

migration. A. The two population AFS based on 10,000 independent data sets, simulated for 

the true values: = 5, m = 0, t = 0.1. B. Simulated AFS under the estimated values: θ̂ = 2.1, m̂ 

= 6.5, t̂ = 9.8. C. The difference between the two AFSs. D. Histograms of Φst values for 

1000 data sets simulated under true and estimated parameter sets for 2 or 20 loci, and for 15 

or 50 gene copies sampled per population.
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