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Pseudouridine (C) is the most abundant of >150
nucleoside modifications in RNA. Although C was discovered
as the first modified nucleoside more than half a century ago,
neither the enzymatic mechanism of its formation, nor the
function of this modification are fully elucidated. We present
the consistent picture of C synthases, their substrates and
their substrate positions in model organisms of all domains of
life as it has emerged to date and point out the challenges
that remain concerning higher eukaryotes and the
elucidation of the enzymatic mechanism.

Introduction

More than 150 nucleoside modifications fine-tune conforma-
tion, structure and function of RNA.1,2 In 1951 the first modi-
fied nucleoside was discovered in RNA hydrolysate3, shortly after
termed the fifth nucleoside,4 identified as 5-ribosyl uracil5 and
named pseudouridine (C).6 Eventually the development of a tri-
tium release assay for C formation led to the identification of the
first pseudouridine synthase gene,7 HisT, later renamed to TruA,
which modifies tRNA in S. thyphimurium8 and E. coli.9 Although
C is the most abundant nucleoside modification,1 the actual
advantage of pseudouridylation that warrants this abundance,
remains hard to grasp and is usually described as stabilization by
‘additional hydrogen bonds’ and ‘improved base stacking’.10

The importance ofC is reflected and documented in the variety
of existing reviews, be it general,11 centered on structural biology of
either stand-alone protein C synthases12,13 or H/ACA box ribonu-
cleic particles (RNPs),14 or, even more recently, focused on H/ACA
box RNPs andC formation and function in snRNA and rRNA.15

In the last 2 decades a more consistent picture of C synthesis
and C distribution in model organisms of all domains of life has
emerged, of which the outlines will be presented here. Despite
significant progress however, a clear catalytic role assignment to

amino acids is still lacking, and hence the catalytic mechanism of
C formation remains elusive even now, almost 15 years after
publication of the first cocrystal structure.16 We will outline why
the elucidation of this mechanism remains a challenge, while
research on C is about to move to complex organisms and tran-
scriptome wide analyses.

Physicochemical Properties ofC

Pseudouridine is a C-C glycosidic isomer of uridine (U), and
the isomerization reaction, which incorporates the C5 into the
glycosidic bond, is shown in Figure 1. Both nucleosides share a
similar UV spectrum5 and identical molecular mass5, but differ
in mass spectrometric dissociation.17,18 Early methods for the
detection of C were based on random alkaline hydrolysis fol-
lowed by TLC detection of 32P-labeled nucleotides19, rendered
semi-quantitative by biased, non-quantitative hydrolysis and
incomplete labeling of C:20 In a known sequence context, ran-
dom hydrolysis can be substituted by site-specifically cleaving
DNAzymes20 or RNase H21 or by making use of the decreased
ligation efficiency of a complementary probing strand, thereby
circumventing cleavage.22 The arguable most popular, albeit
technically demanding technique for sequence specific C detec-
tion includes specific derivatization of C with CMCT followed
by primer extension.23 This technique found recent application
in genome-wide pseudouridine profiling by deep sequencing in
yeast and human.24,25 Specific derivatization of C with CMCT,
acetonitrile, or methylvinylsulfone is also applied in sequence
specific detection via LC-MS approaches, (reviewed in ref. 17).
Incomplete reactions, side products, and unstable response fac-
tors prevent quantitative analysis by this approach. In conse-
quence there is an increasing interest in derivatization-free MS/
MS-based approaches that allow quantitative analysis,26,27 and
which have recently included isotope labeling28,29

So called hypermodified C derivatives are formed via further
modification of C. At present, they comprise Cm, m1C, (found
in all domains of life, predominantly in tRNA1), m3C (in rRNA
of Eubacteria1), as well as 3-(3-amino-3-carboxypropyl)-C
.axap3C/

30,31 and m1acap3C1 in rRNA of eukaryotes (Fig. 1).
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General Function/Structural Aspects ofC

Although the identical Watson-Crick faces of C (Fig. 1) and
U enable both to engage in classical Watson-Crick base pairing
with adenosine (A), C base pairs with any of the 4 major
bases32,33 are more stable than their U equivalents. For C-A base
pairs, NMR revealed that NH1, which is situated in the major
groove, was being protected from proton exchange with solvent
water.10,34,35 This protective effect is probably caused by hydro-
gen bonding of CNH1 to the 5’-phosphate oxygen atoms via
water, for which several lines of evidence lend support.11,33,36-40

Thus, conferred increased backbone rigidity may be the cause for
a presumably secondary effect of C formation: improved base
stacking, which was concluded from a preference of the 3’-endo-
conformation.10

The Presence ofC in Various RNAs

C was first identified in rRNA,1 (recently reviewed by Ge and
Yu15) and tRNA.1 Further occurrences of C are known in small
nuclear RNAs of various eukaryotes, as is reviewed in, e.g., refs
15,41. As an example, the C in spliceosomal branch site of U2
snRNA will be discussed below in some detail. Further RNAs
containing C include snoRNAs U3 of rat and U8 of mouse1,
tRNA-like domains of plant viruses,42,43 SRA RNA,44 and
human telomerase RNA,25,45 long non-coding RNAs and
mRNA.24,25 The following section will illustrate the distribution
ofC in tRNA and rRNA, along with their respective enzymes, in
all domains of life based on model organisms. In the subsequent
sections, the functional and structural aspects of C will be dis-
cussed in more detail.

Enzymatic Formation ofC residues

Enzyme families
Six families of pseudouridine synthases (Pus enzymes) have

been identified, each named for a prominent representative:
TruA, TruB, TruD, RsuA, RIuA, (reviewed in ref. 12) and

Pus10p.46 They share the
same overall fold and require
an active site aspartate for
catalysis,12,47 implying a
common mechanism, to
which we will turn our
attention later. Different N-
or C-terminal domains gov-
ern substrate specificity, as
reviewed in ref.12 In con-
trast, few C-hypermodifica-
tion enzymes are known: E.
coli m3C methyltransferase
RImH48,49 and 3 m1C
methyltransferases in
Archaea50,51 and yeast.52

The most versatile enzyme family may be the ribonucleic par-
ticles (RNPs) depicted in Figure 2. These particles contain a sub-
group of small nucleolar RNAs (snoRNAs), called H/ACA
RNAs, and were proven to catalyzeC formation, at first in eukar-
yotes,53,54 later in Archaea.55 The snoRNA (called sRNA in
Archaea) acts as guide for the protein components with Nop10
and the C synthase NAP57 (higher eukaryotes) or Cbf5 (yeast,
Archaea) as minimal requirements.56,57 Non-essential compo-
nents Gar1 and L7Ae (or Nhp2 in Eukarya) are involved in catal-
ysis and product release58 or in substrate binding by interaction
with Nop1059-61, respectively. Cbf5 is also capable of guide
RNA free catalysis, the activity of which is increased by Gar1 and
Nop10.62 Investigation of guide RNA specificity63 enabled artifi-
cial guide RNAs to target specific uridines forC formation.64-66

From biochemical data67 and crystal structures68 a specific
degradation pathway for C in Eubacteria is evident: C is first
phosphorylated by a dedicated kinase and subsequently converted
to uracil and ribose-5’-phosphate. The remarkable cleavage of a
C-C glycosidic bond was reported to be reversible67 and to pro-
ceeds via a ribose ring opening mechanism.68 Mammals do not
degrade C, but urinary excrete the intact nucleoside.69,70

Recently, a pseudouridine-5’-phosphatase that dephosphorylates
C in human was described.71 As assays performed in cell extracts
indicated conversion of pseudouridine-5’-phosphate into triphos-
phate,72 dephosphorylation might prevent accidental incorpo-
ration of pseudouridine into RNA transcripts. 71

Occurrence and formation ofC in model organisms of all
domains of life

As indicated above, pseudouridine formation in cellular RNAs
is ensured either by stand-alone protein enzymes or by H/ACA
sno(s)RNA-dependent RNP particles or by both. In Eubacteria,
E. coli is taken as a model (Fig. 3), C synthases acting on RNA
belong to 5 distinct families, the Pus10-related family was not
detected. Altogether 11 enzymes ensure complete modification
of tRNAs and rRNAs in Eubacteria. Pseudouridine modification
of other eubacterial RNAs have never been reported in the litera-
ture. Although no knockout of a single C synthase has proven to
be lethal in Eubacteria, certain single-knockouts suffer from dis-
advantages compared to their unaffected counterparts.73-75

Figure 1. Isomerization of uridine into pseudouridine (C). Post-isomerization several derivatives discovered to
date1 can be formed by further modification at either position 1 (R1), 3 (R2) or 2’-O (R3), while several modifications
at once are possible.
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In this light it may seem
surprising that the total
number of pseudouridine
modification sites is much
higher, and thus many
enzymes demonstrate so-
called region-specificity (like
TruA or RluD, see Fig. 3)
or even multisite-specificity
(RluA and RluC).73,74 This
balance between substrate
specificity and promiscuity
typical for C synthases is
evident in, e.g., E. coli
TruA, the only dimeric C
synthase, which uses the
intrinsic flexibility of its
substrate tRNA to access
either positions 38, 39 or
40.76 In contrast the speci-
ficity of RIuF and RIuB for
adjacent sites in the ribo-
some, is achieved by sub-
strate binding in different
conformations.77,78 This
specificity is compromised
by a weak activity of RIuF for the substrate position of RIuB.79

TruB recognizes the shape of the T-stem loop and therewith its
substrate position in its single substrate tRNA.80 Strikingly, the
preference for structured 50S subunits over free 23S rRNA of
RIuD81 coincides with few sequence requirements, in contrast to
the associated m3C methyltransferase RImH.82

The modification pattern of archaeal RNAs (including pseu-
douridine residues) was only studied for a limited number of spe-
cies, among which the halophilic Archaea H. volcanii is the best
studied organism (see Fig. 4 for modification positions and
responsible enzymes). Direct RNA sequencing of isolated tRNA
species83,84 pointed out a modification profile similar to the one
observed in bacteria, but C32 was absent and some additional
sites were detected in D-and TC-loops. Genomic studies and
direct analysis of C synthase activities85,86 confirmed the absence
of RIuA-related activities in Archaea, while instead, an additional
family of Pus10-related proteins was found. One of the best stud-
ied members of this family, Pus10p from H. volcanii,87 fills out
the role of the TruB enzymes by acting as C synthase on posi-
tions 54 and 55 in archaeal tRNA,88 using a different recognition
mechanism for each position.89 Recognition by Pus10 proteins
probably involves the characteristic N-terminal THUMP
domain,47 that binds to the tRNA acceptor stem in a docking
model of the human Pus10 homolog.90 This binding mode is
supported by a recent cocrystal structure of a THUMP domain-
containing enzyme, 4-thiouridine synthetase.91 Generation of
C55 is undisturbed by deletion of Cbf5,87 which can also gener-
ate C55 in vitro.92 Whether Cbf5 can substitute Pus10p in gen-
erating C55 in vivo cannot be tested since a Pus10p knockout is
lethal.87 In contrast to Eubacteria, the pseudouridine formation

in archaeal rRNA is insured by H/ACA sRNA RNPs,86,87 and
thus the RsuA related family is also missing. Several rare sites of
pseudouridine modification in archaeal tRNAs still have not
been assigned to a particular enzyme,86,87 but highly promiscu-
ous enzymes like TruD (Pus7)93 may be responsible for C for-
mation at these locations.

The best studied lower eukaryote, S. cerevisiae, displays 4 com-
mon C synthase families (see Fig. 5, RsuA- and Pus10-related
families are missing). In Eukarya, not only tRNAs and rRNA are
modified to pseudouridine, but also snRNAs. Recent genome-
wide pseudouridine profiling even revealed hundreds of Cs in
mRNA and provided further evidence on Cs in snoRNAs.24,25

Additional complexity comes from distinct cellular compart-
ments (and their respective specific RNA species) coexisting in
eukaryotic cells. Thus, nuclear (cytoplasmic) tRNAs and rRNA
are not necessarily modified by the same machinery as their mito-
chondrial counterparts. This duality clearly exists for Pus1/
Pus294,95 and Pus8/Pus996 pairs for tRNA modification and for
Cbf5/Pus515,97 for rRNA pseudouridine formation. However,
some enzymes like Pus398, Pus499 and Pus6100 have dual func-
tions and are partially imported to mitochondrial compartment.
As for bacterial C synthases, many yeast enzymes demonstrate
both region-specificity and multisite-specificity to account for the
large number of modification in all types of cellular RNAs. For-
mation of some pseudouridine residues in yeast RNAs, notably
U2 snRNA and U6 snRNA (dashed circles in Fig. 5, see also
below) and mRNA is stress-regulated.24,66,101 Upon heat shock
the localization of Pus7p changes from nuclear to in part cyto-
solic.25 TruA family member Pus1p, as well as yeast TruD homo-
log Pus7p,102 in contrast to their bacterial counterparts, modify

Figure 2. Structure of the archaeal ACA RNP198 (left) and the eukaryotic H/ACA RNP199 (right). Guide RNA in black,
substrate RNA turquoise. Catalytically active component is light blue Cbf5 (NAP57)
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Figure 3. Distribution of C and C synthases in E. coli: Enzymes and their
substrates positions color-coded: TruA in purple, RIuA and family mem-
bers green, RsuA family members orange, TruB blue, all reviewed in,200

and TruD124 yellow. Substrate residues of RIuD are shown in a dashed
box to indicate model helix H69.

Figure 4. Distribution ofC andC synthases in H. volcanii: TruA purple87,
TruD86 yellow, Pus10p87 brown, Cbf586,87 blue, positions with yet
unknown enzyme86 in gray. Note that position 52 is only partially modi-
fied83 and that ribosomal Cs are only available for 16S and not for 23S
and 5S rRNA. 86
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various positions in a large variety of substrates, including U2
snRNA66,103,104, various positions in various tRNAs95,105,106, 5S
rRNA107 and mRNA.24,25 The loose specificity of eukaryotic
Pus1p may be related to its additional C-terminal domain,
which, in contrast to E. coli TruA, causes it to act as monomer.108

This difference in structure results in substrate specificity for a
minimal substrate defined solely by shape and not by
sequence.109 In contrast, Pus7p acts on a specific recognition
sequence.102 This striking difference in substrate recognition
could be confirmed in pseudouridine profiling of mRNA.24,25

Occurrence and formation ofC in human
The precise pseudouridylation pattern of human RNAs

remains only partially uncovered (see Fig. 6). Despite hard efforts
in direct RNA sequencing of cytoplasmic and mitochondrial
tRNAs, only some species have been analyzed in detail,1 and
some existing pseudouridine sites still escape identification. How-
ever, the overall profile of human tRNA modification is similar to
the one from S. cerevisiae, even if some minor sites have not (yet)
been detected in human. For instance, C32, very common in
Eubacteria and in yeast, has been mapped in only one cyto-
plasmic human tRNA so far, tRNAHis.1 Known human C syn-
thases belong to 5 families, only the RsuA-related family is
missing (like it is also the case for S. cerevisiae). One can also
notice duplication of some C synthase genes, as Pus1/Pus1L,
Pus7/Pus7L, TruB1/TruB2.110 All stand-alone human C

synthases are supposed to modify mostly tRNAs, since the great
majority of known sites in rRNA and snRNA are attributed to
specific H/ACA-snoRNA-guided machinery. However, the
implication of stand-alone enzymes (like highly promiscuous
Pus1 or/and Pus7) in modification of these species cannot be for-
mally excluded. Only a few predicted human C synthases have
been studied up to date, only the specificity of hPus1 was experi-
mentally confirmed,109,111 assignment of the other proteins is
mostly based on the sequence homology and the properties of
the human and archaeal counterparts and thus remains only ten-
tative. Some of human C synthases are predicted to have prefer-
ential mitochondrial localization and are thus supposed to
modify tRNAs in this compartment. Like in S. cerevisiae, C13
and C35 are missing in mitochondrial tRNA, while other sites
are quite well conserved.

Regulation of and viaC
Levels ofC differ from tissue to tissue112 and may be cell cycle

dependent.113 This implies that C levels are regulated and, in
turn, that there is a biological benefit to this regulation. Consis-
tent with this picture, additional Cs can be induced in yeast U2
snRNA and U6 snRNA in site-specific and stimulus specific
manner66,101 and the mTOR pathway induces a higher C con-
tent in 28S rRNA of CHO cell cultures.114 In mouse, C is
directly involved in activation of nuclear receptors via pseudouri-
dylation of steroid receptor RNA activator (SRA).115 Such

Figure 5. Distribution of pseudouridine and pseudouridine synthases in yeast: Cellular location of enzyme and substrates as well as substrate position are
given for TruA family members Pus1p95,103,106, Pus2p94 and Pus3p98 (purple), RIuA family members Pus5p,97 Pus6p,100 Pus8p96 and Pus9p96 (green), TruD
homolog Pus7p104,105,107 (yellow) and stand-alone TruB homolog Pus4p99 (blue), as well as the RNA-guided TruB homolog Cbf5 (blue) for U2 RNA201 und
U5 snRNA25. Modification sites without attributed enzymatic activity are indicated in gray. Mitochondrial LSU rRNA contains only one C residue at posi-
tion 2819 generated by Pus5.97 Note that for clarity the at least 44 ribosomal Cs formed by Cbf515 are only suggested and that U2 snRNA positions 56
and 93 and U6 snRNA at position 28 have a dashed outline due to their inducibility.66,100 Pus7p is shown in the cytoplasm with dashed outline, since the
enzymes changes its localization from nuclear to cytoplasmic upon heat shock.25
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regulatory function in transcription is related to the concept of a
regulatory role of C in translation. Interestingly, C can suppress
non-sense codons in vitro and in vivo, if it is artificially and site-
specifically introduced into mRNA.65 This led to a detailed study
on possible effects pseudouridine modified nonsense and sense
codons.116 Nonsense suppression may be caused via a C-A base

pair, which is thought to stabilize the 2 non-canonical base pairs
completing the codon-anticodon interaction.117 Indeed 2 recent
studies reported various inducible Cs in yeast mRNA.24,25 Fur-
ther investigation identified the enzyme Pus7p to be mainly
responsible for heat shock induced pseudouridylation in yeast: A
change in localization of the enzyme from mainly nuclear to also
cytosolic seems to allow mRNA pseudouridylation that presum-
ably contributes to mRNA stability.25

The mechanism ofC formation

Kinetics
Kinetic studies onC synthases depict them as slow in catalysis

under multiple turnover conditions (see Table 1) with changes
in RNA conformation118, catalysis119,120 and catalysis or product
release119 as rate limiting steps.

Table 1. Overview on Km and kcat ofC synthases

Enzyme Organism Family KM / nM kcat / s
¡1

RIuD205 E. coli RIuD 980 § 180 »0.033
TruB116,120, 123,135 E. coli TruB 146-780 0.12-0.7
TruA119,131 E. coli TruA 940 0.18-0.7
RIuA138, 206,207 E. coli RIuA 108-308 0.1
TruD208 E. coli TruD 380 0.001
Pus1p111 H. sapiens TruA 32 —
Pus1p118 S. cerevisiae TruA 420-740 »0.006
Pus10p47 P. furiosus Pus10p 400 0.9

Figure 6. Distribution of C and C synthases in Homo sapiens: Cellular location of substrates and substrate position are given for TruA family members
Pus1,111 Pus1L, Pus3 (UniProt Acc. number Q9BZE2) (purple), TruB family members TruB1110, TruB2110 and Cbf5202 (blue), TruD family members Pus7 and
Pus7L (UniProt Acc. number Q9H0K6), RIuA family members PusD1 (UniProt Acc. number Q9UJJ7.1), PusD3 (UniProt Acc. number Q6P087.3) and PusD4
(UniProt Acc. number Q96CM3.1) (green) and Pus1090 (brown). In addition to tRNA and rRNA snRNA and snoRNA are modified. Note that, to current
knowledge,C-positions in snRNAs U2, U4 and U6, exclusively formed by H/ACA Box RNPs.203 Positions with known or putative guide RNAs are depicted
in blue, while gray positions await guide RNA identification.203 Not shown areC-containing SRA RNA204 and human telomerase RNA.45
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Judging from the apo-enzyme121, cocrystal structure16 and
kinetic studies119,120 E. coli TruB, serving as a general role model
for C synthases, acts via an induced fit mechanism that consists
of at least 4 steps: (i) initial RNA binding (ii) induced fit (iii)
catalysis (iv) product release. The process of base-flipping
involves a non-essential12,122 histidine5 for TruB family members
or an arginine in other C synthases.12,47,77,78 The most obvious
explanation for C formation being slow is that the chemistry of
the reaction is rate limiting and may not allow faster catalysis.119

Several C synthases were found to act more efficiently on weakly
structured RNAs and avoid modification of stable
RNAs.76,80,102,123,124 Stabilizing RNA modifications are of coop-
erative and/or pleiotropic nature73,125,126 and single modifica-
tions were often found to be non-quantitative.83,127

Mechanistic studies onC synthases using 5-
fluorouridine

Inhibition ofC synthases by the anti-cancer drug 5-fluoroura-
cil128 (5FU) was investigated in several organisms.129-132 While
the original target of 5FU is thymidylate synthase, it may also
inhibit formation of ribothymidine if incorporated into RNA,
where it is also commonly regarded as inhibitor of C formation.
SDS-PAGE stable, but heat disruptable 5FU-RNA-C synthase
complexes,77,131-134 requiring the catalytic aspartate, were
reported for several Pus enzymes, leading to the proposal of a
Michael addition like mechanism of C formation.131,133 In this
mechanism, the catalytic aspartate would attack the Michael
acceptor C6 of the base (see Fig. 7), while the alternative, so

Figure 7. The “Michael” addition-like mechanism of C formation modified from Czudnochowski and coworkers.78 The substrate is either 5-fluorouridine
(R D F) or uridine (R D H ). To account for the “generally accepted covalent adduct” of the substrate base’ C6 to the catalytic aspartate of the enzyme (if
the substrate is 5FU), the aspartate would have to attack in an Michael addition-like manner. The protonation- and deprotonation steps proposed by
Czudnochowski et al. would be carried out by yet unidentified bases (1B, 2B, 3B). Please note that turnover of U and 5FU both result in compound 5. This
final intermediate is either deprotonated to eventually result in pseudouridine or hydrated in case of 5FU (gray shaded reaction step) to generate 5S-6R-
6-hydroxy-5-fluoro-pseudouridine.
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Figure 8. For figure legend, see page 1548.
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called “acylal mechanism” would involve an aspartate attack on
the C1’ of the ribose (see non-gray reaction path in Fig. 8a).133

Cocrystal structures of active, e.g. refs.16,77,78,121,134-136, but
not of inactive137 C synthases with 5FU RNA contain a hydrated
and rearranged 5FU, 5S-6R-6-hydroxy-5-fluoro-pseudouridine.
Evidence that the hydration is caused by attack of water132,138,139

does not favor one mechanism over the other, but is strengthened
by a fortuitous adduct of RNA with C synthase RIuB, where a
conserved, but not catalytically essential135 Tyrosine78 substitutes
water. In one case the SDS PAGE stable adduct proved sensitive
to X-ray exposure136, implying that the covalent adduct cannot
be visualized in crystals because it was destroyed during
measurement.

One C synthase, E. coli TruB, failed to form a SDS PAGE
stable complex with 5FU-containing RNA and failed to be inhib-
ited in kinetic studies,132 which is consistent with turnover of
5FU to the same rearranged, hydrated product by several E. coli
enzymes.139 In depth NMR analysis of E. coli TruB-5FU-RNA
products, revealed a second, minor product in the arabino con-
formation, specifically resulting from turnover of 5FU-RNA.140

To account for the lack of arabino product in U turnover com-
pared to 5FU turnover, Miracco and Mueller suggested that U
and 5FU might be turned over by different mechanism. Pseu-
douridine could either be formed by the acylal mechanism, which
is shown in the non-gray reaction path of Figure 8a, or by a third
‘glycal mechanism’ shown in Figure 8b. Miracco and Mueller
hypothesize that 5FU turnover by the acylal mechanism (Fig. 8a)
might open an additional, reaction manifold, shaded gray in
Figure 8A, which is unavailable to uridine.140 They suggested
that step ‘iv b’ and the following reaction path leading to the ara-
bino product are restricted to 5FU due to lower reactivity: The
electron-withdrawing fluorine substituent might stabilize the free
anion of the fluorinated pyrimidine, thereby decreasing its
nucleophilicity.140 Please note that the glycal intermediate in
Figure 8a can, in contrast to its counterpart in Figure 8b, be con-
verted to either the ribo product (“H to top face”) or to the ara-
bino product (“H to bottom face”), again due to the assumed
long lifetime of the intermediate. E. coli RIuA might also form
an arabino product, as 2 products detectable in preliminary
NMR data imply.139 Undoubtedly, this analysis is the most
sophisticated and most reliable analysis of 5FU-turnover by a C
synthase reported until now. In this respect it is particularly sur-
prising that a minor arabino product was not reported in any of
the available cocrystal structures of 5FU-RNA and C synthases.
We checked the B-factors of the respective O2’ in cocrystal struc-
tures of 3 different enzyme families for irregularities: Indeed we
found them to be mostly unremarkable.16,76,77,120,133-135 This

indicates a confidence of the ribo conformation compared to an
arabino conformation that is similar to the accuracy of the whole
structure. Seemingly the arabino product is either not contained
in the crystals or not detectable for yet unknown reasons.

Of note, related modification enzymes use both, the attack on
C1’68,141 and the C6 Michael addition mechanism, respec-
tively.142-147 The most instructive hint in this case might be, that
related transglycosylases actually proceed by a C1’ attack as
reviewed in ref. 148.

Functions ofC residues in RNAs

Structural effects - tRNA
The most conserved C modifications stabilize the tertiary

structure of tRNA, be it at position 32,149 39150,151 or 55.152

Conformational effects caused by C39 influence anticodon rec-
ognition153,154, missreading and frame shifting in yeast (together
withC38)155, and interaction with HIV RNA.156

Several eukaryotic cytoplasmic tRNAs carry C at the antico-
don positions 34, 35 and 36, where the modification is intro-
duced in intron-dependent manner, as reviewed in ref. 157. C35,
the only modification tolerated at that position158, is especially
conserved in tRNATyr of a large variety of eukaryotes1, including,
e.g., the amobea Tetrahymena thermophila159 and Xenopus.160

Presumably, C35 confers superior stabilization to the anticodon
by replacing a (U33)O2’-HC5(U35) hydrogen bond by the
stronger (U33)O2’-H-N1(C35).158 Until now there is no mech-
anistic basis for other anticodon Cs, namely at positions 34 and
36, that can occur single1 or as pair.161

The function of C in mitochondrial tRNAs is less character-
ized. In case of human C occurs at positions 27, 28, 41, 42, 49,
40, 50 and 67, and occasionally at 55.162 A well understood, but
special case demonstrating a possible role of nucleoside modifica-
tions is human mitochondrial tRNALys. The conformational
equilibrium of this tRNA is influenced by nucleoside modifica-
tions, including 2 Cs. These Cs, located at positions 27 and 28,
have, in contrast to the usual role of C, a slight destabilizing
effect on the canonical cloverleaf structure.163

Role ofC in the helix 69 of the ribosome

The role of C in ribosomes was reviewed recently,15 a deeply
investigated motif conserved over all domains is helix 69 (H69).
The three Cs in the isolated H69 of E. coli (indicated by the
dashed box in Fig. 3) show complicated pleiotropic effects,164

Figure 8 (See previous page). The acylal mechanism and the glycal mechanism forC formation in a version modified from ref. 139. (A) In case of 5FU the
acylal intermediate can result in compound 5 to eventually yield the 5S-6R-6-hydroxy-5-fluoro-pseudouridine found in the crystal structures. However, an
equilibrium of the 5FU-acylal intermediate with an oxocarbonium intermediate (compound 5b) might open an additional gray shaded reaction manifold
exclusively to 5FU. This would account for the arabino-isomer as minor product of E. coli TruB action on 5FU RNA that was discovered by Miracco and
Mueller.139 Pseuoduridine could be formed by the not-shaded acylal mechanism, the only difference would be the last step: The ‘F’ would be a proton
that is abstracted to generate the product. (B) Miracco and Mueller proposed that pseudouridine could also be formed by a third glycal mechanism. This
mechanism resembles the gray reaction manifold in a) but yield only one product in ribo conformation.
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potentially involving increased base stacking and N1H hydrogen
bonding165,166 and influence of a m3C modification167 and
pH.168 These effects are equally present in human H69169,170

and in whole ribosomes171, and influence ribosomal subunit
association.172 These conformational effects still await full
clarification.

C in spliceosomal branch-site architecture

C in small nuclear RNAs was thoroughly reviewed recently,
e.g. in refs. 15,41 A prominent example is a C residue in eukary-
otic U2 RNA that stabilizes and fine-tunes spliceosomal branch-
site interaction39,173, involving a water-CNH1 hydrogen
bond.174,175

Functional importance for RNA

C in artificial mRNAs
Synthetic replacement of all uridines by C renders mRNAs

non-immunogenic176, increases biological stability176-178 and
enhances translation in vivo176,179,180, while reducing PKR acti-
vation.181 In contrast, studies with in vitro assays suggested that
mRNAs where all Us were changed to Cs inhibit translation at
the initiation and elongation levels.182

C in eukaryotic mRNAs
Recently at least 260Cs in 238 mRNAs of Saccharomyces cere-

visiae could be identified with most frequent occurrences in the
GUA valine codon and an initial screen of highly expressed genes
identified 96 Cs in 89 human mRNAs.24 A second study could
link 41 Cs in 41 mRNAs to specific C synthases in yeast and
136 mRNA sites in human to specific C synthases.25 Although
the majority of modifications could be induced by starvation24 or
heat shock25, their actual functional relevance remains to be
proven. In case of yeast most pseudouridines are introduced not
by H/ACA box RNPs but by 4 out of 9 stand-alone protein C
synthases: Mainly by Pus1p and Pus7p, but also by Pus2p and
Pus4p.24,25 Occurrences of C in mRNA are widely distributed
over coding, as well as non-coding 5’ and 3’ sequences. It is there-
fore possible that a portion of modification sites mimic Pus sub-
strates rather by coincidence than due to an actual advantage
gained from pseudouridylation.24

RluD/ribosomal assembly
Knockout of RIuD, the enzyme generating the 3 Cs H69 of

the E. coli ribosome (see dashed box in Fig. 3), interferes with
ribosome assembly,183 implying requirement for normal growth
in E. coli K12,184 in contrast to wild type E. coli.185 A mutated
release factor 2 rescues DRIuD E. coli K12,186 which is consistent

with increased affinity of native release factor 2 to pseudouridy-
lated H69.187 In yeast the loss of Cs in Helix69 impairs growth
and influences ribosome synthesis188 and function synergisti-
cally,189 but also with pleiotropic effects.188,190

Implications in human pathologies
Pseudouridine related enzymes have been implicated in vari-

ous human diseases, e. g. in Crohn’s disease and Celiac disease191

and X-linked ichthyosis.71 The involvement of NEP1, a N1-C
specific methyltransferase, in the Bowen-Conradi syndrome192

and dyskerin in X-linked dyskeratosis congenita193 may not be
directly related to C, but rather caused by involvement of the
proteins in ribosomal assembly194 and telomere maintenance,
respectively.195,196 A recent study detected a slightly lower pseu-
douridylation level in dyskeratosis congentia patients compared
to healthy individuals and verified Cs in the telomerase RNA
component that may be involved in the disease.25

A mutation in the human PUS1 gene leads to hypomodifica-
tion in mitochondrial tRNAs by preventing hPus1p activity,
resulting in mitochondrial myopathy and sideroblastic ane-
mia.197 Due to the wide substrate specificity of Pus1p discussed
above, hypomodification of RNAs other than tRNA might con-
tribute to the disease. 162

Conclusions and outlook

To date enzymes and substrate positions for C formation are
quite well understood in the major model organisms E. coli, H.
volcanii and S. cerevisiae. In contrast the chemical mechanism of
C formation is as elusive as ever. Possible are either an acylal
mechanism139, where the catalytic Asp acts as general base as
inferred from the pH dependency of the TruB reaction122 or a
Michael addition mechanism that would not account for a (still
not directly characterized) covalent adduct of the enzyme to C6
of the target base in RNA.78 These mechanistic studies suffer
from ambiguous mutagenesis approaches, which were unable to
identify the major basic and acidic residues required for either
mechanisms (abbreviated as ‘B’ in Fig. 7 and 8).

The next task on hand is undoubtedly the functional charac-
terization ofC in mRNA and elucidating the modifications regu-
latory properties. Such properties should intensify the interest in
human C synthases, of which only hPus1p is characterized109,111

and all others lack evidence on protein level (Fig. 6).
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