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Gene expression regulation relies on a
variety of molecular mechanisms

affecting different steps of a messenger
RNA (mRNA) life: transcription, proc-
essing, splicing, alternative splicing,
transport, translation, storage and decay.
Light induces massive reprogramming of
gene expression in plants. Differences in
alternative splicing patterns in response
to environmental stimuli suggest that
alternative splicing plays an important
role in plant adaptation to changing life
conditions. In a recent publication, our
laboratories showed that light regulates
alternative splicing of a subset of Arabi-
dopsis genes encoding proteins involved
in RNA processing by chloroplast retro-
grade signals. The light effect on alterna-
tive splicing is also observed in roots
when the communication with the pho-
tosynthetic tissues is not interrupted,
suggesting that a signaling molecule trav-
els through the plant. These results point
at alternative splicing regulation by retro-
grade signals as an important mechanism
for plant adaptation to their
environment.

The Life of a mRNA in Plants

The birth of mRNA molecules in
plants does not differ much from that of
other eukaryotes. Transcription from a
DNA template is carried out by RNA
polymerase II (Pol II) to form the precur-
sor mRNA (pre-mRNA) molecule. The
pre-mRNA undergoes 5’ end capping,
splicing and 3’ end cleavage and polyade-
nylation, processes that have been shown
to be coupled to transcription.1

Splicing is performed by the spliceo-
some, a ribonucleoprotein machinery that

recognizes splice sites consisting of con-
sensus sequences: strong splice sites are
more adjusted to the consensus, and there-
fore more efficiently recognized compared
to weak splice sites. Competition between
strong and weak splice sites along the
nascent pre-mRNA leads to alternative
splicing.2 Transcriptome diversity is
increased by alternative splicing since it
allows a single gene to produce 2 or more
mature mRNA variants that are similar
but not identical, expanding the coding
capacity of eukaryotic genomes.2,3 Alter-
native splicing can also regulate mRNA
levels through degradation of specific
alternative splicing isoforms by nonsense-
mediated mRNA decay, introducing a
quality control mechanism.4 Once in the
cytoplasm, translatable mature mRNA is
also subjected to different pathways of
degradation. Each of these processes from
transcription to degradation can be regu-
lated, thus allowing multiple layers of
gene expression regulation.

Transcription and Alternative
Splicing

Alternative splicing regulation is
mostly performed by splicing factors that
recognize cis-acting elements present in
the RNA molecule, known as splicing
enhancers or silencers. However, many
different approaches, both in vivo and in
vitro, have revealed another layer of regu-
lation that involves a mechanistic coupling
between transcription and splicing
machineries.5 Accumulated evidence indi-
cates that pre-mRNA splicing occurs,6 or
is committed to occur, co-transcription-
ally. This means that the actual splicing
reactions take place, or that the factors
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needed for splicing are recruited to the
pre-mRNA target sequences, before RNA
Pol II has reached the end of the gene and
while the transcript is still associated to
chromatin.7,8 Chromatin structure, nucle-
osome positioning, post-translational his-
tone modifications and the existence of
adaptor complexes between the chromatin
and splicing machineries can regulate
alternative splicing through its coupling
with transcription.7 Changes in RNA Pol
II elongation rate can also modulate alter-
native splicing: in most cases slow RNA
Pol II elongation leads to higher inclusion
of alternative exons;9 however, it has also
been reported that slow elongation can
cause exon skipping.10

Alternative Splicing in Plants

Approximately 60% of Arabidopsis
genes produce different transcript iso-
forms due to alternative splicing.11 This
percentage is lower than that of mamma-
lian cells (95% in multiexonic genes),12

but still high enough to consider alterna-
tive splicing as a main contributor to
expanding the repertoire of transcripts
and proteins in plants.13

The frequency of different alternative
splicing events in plants has been deeply
studied. Intron retention is the most
prominent event in plants, whereas cas-
sette exons are the most common alterna-
tive splicing event in animals. However,
the alternative splicing landscape is more
complex since multiple splicing events
may occur in the same transcript, raising
the question of a possible coordination
between them.11

Different cell types, tissues, develop-
mental stages and environmental condi-
tions show differences in the presence and
abundance of splicing factors that contrib-
ute to modulate alternative splicing
patterns.11 Widespread changes in the pat-
terns of splicing mRNA isoforms in
response to stress and developmental cues
suggest an important role for alternative
splicing in plant development and envi-
ronmental responses.3 Alternative splicing
is important for photosynthesis, flowering,
defense responses and the circadian
clock.13

Several abiotic stresses can regulate
alternative splicing, such as high or low
temperature, drought, salt stress or light.14

Global changes in alternative splicing
were found under salt stress, which involve
about 49% of all intron-containing genes.
Among them, most genes that showed sig-
nificant changes were associated with spe-
cific functional pathways, such as stress
response and RNA splicing.15 Light/dark
conditions affect alternative splicing of a
subset of Arabidopsis genes preferentially
encoding proteins involved in RNA proc-
essing. The alternative splicing of At-
RS31, which encodes a serine/arginine-
rich splicing factor, changes in different
light conditions through a mechanism
that involves the chloroplast (see below).16

Altogether, conspicuous and wide-
spread differences in alternative splicing
patterns in response to environmental
stimuli suggest that alternative splicing
plays important roles in plant adaptation
to changing life conditions.

Nuclear Gene Expression
Regulation by Light: the Role

of Retrograde Signals

One key strategy for plants to adapt to
challenges imposed by stress conditions
and to cope with the changing environ-
ment is the fine tuning of gene expression
in response to those changes.17,18 As
briefly described before, gene expression
regulation can rely on a wide variety of
molecular mechanisms affecting different
steps of the mRNA life like transcription,
processing, splicing, alternative splicing,
transport, translation, storage and decay.19

Light is one of the most important envi-
ronmental cues for almost all living organ-
isms and it is also the source of energy for
plants.20 It is therefore not surprising that
plants have adopted the ability to sense
multiple parameters of light signals,
including light quantity (fluence), quality
(wavelength), direction and duration.21

Light signals are perceived through differ-
ent families of photoreceptor proteins.
Red and far-red lights are sensed by phyto-
chromes. Blue and ultraviolet (UV)-A
wavelengths are sensed by cryptochromes,
phototropins, and members of the Zei-
tlupe family in Arabidopsis, whereas UV-B

is perceived by the UVR8 photoreceptor.
Light perception by these photoreceptors
triggers many biological processes, includ-
ing gene expression regulation by signal
transduction or by nuclear relocalization
of light-activated photoreceptors.22-24

Besides photoreceptor proteins, once a
green seedling is established, chloroplasts
play a key role in sensing light fluctuations
and in the communication of these
changes to the nucleus by retrograde sig-
naling pathways.25,26 Two different
modes can be established for retrograde
signaling. First, there is a chloroplast bio-
genic control of nuclear genes during early
plastidial development, triggered by sig-
nals related to the photosystems and pig-
ment biogenesis, and, secondly, there is a
chloroplast operational control associated
with signals induced by the function of
mature chloroplast to regulate plant
responses to varying light conditions.27-30

Most of the operational retrograde signals
are dependent on the quantity and/or
quality of light. Changes in light quality
might lead to preferential excitation of
one of the photosystems (PS), leading to
redox changes in intersystem electron car-
riers, particularly the plastoquinone (PQ)
pool and the cytochrome b6f complex,
whereas high light reduces the whole elec-
tron transfer chain and causes accumula-
tion of reducing equivalents in the stroma
as well as the production of reactive oxy-
gen species (ROS).31,32 Redox signals
from photosynthetic electron transport
components have been shown to control
the expression of genes in the chloroplast
genome at both the transcriptional and
translational levels, as well as the expres-
sion of nuclear genes mainly at the tran-
scriptional level.33 The redox state of the
PQ pool in particular has been strongly
suggested as a prominent candidate for
the origin of chloroplast redox signals.
This has been demonstrated by using the
photosynthetic electron transfer inhibitors
2,5-dibromo-3-methyl-6-isopropyl-ben-
zoquinone (DBMIB) and 3-(3,4-dichloro-
phenyl)-1,1-dimethylurea (DCMU) and
by modulating the redox state of the PQ
pool by light that predominantly excites
either PSII or PSI reducing or oxidizing
the PQ pool, respectively.32,34 Interest-
ingly, changes in temperature, light condi-
tions, CO2 availability and nutrients
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impact on the photosynthesis efficiency,
changing the photosynthetic electron flux
and the redox state of the components
involved in it.35 Therefore, signals arising
from the photosynthetic electron transport
chain components (i.e.: PQ pool) will be
integrating diverse environmental cues to
regulate gene expression in order to fine
tune plant responses.36 While the trans-
mission pathway followed by the redox
signals remains still elusive, evidence for
the effects of these signals on nuclear gene
expression including the regulation of
transcription, stability and translational
efficiency is continuously growing.34,37,38

Other signals, not directly derived from
the redox state of the components of the
photosynthetic electron transport chain
have been reported. Among these, ROS
-continuously produced during photosyn-
thesis by partial reduction of oxygen mole-
cules or energy transfer to them- were
shown to work as signaling molecules
affecting nuclear gene expression.39-43

Finally, to add more complexity to this
scenario, it is interesting to point out that
different light signals are connected with
signals from other pathways and both,
light receptor proteins and chloroplast
derived signals, interact in the same net-
work and contribute to the control of
plant responses and development.44-46

Regulation of Alternative
Splicing by Light: a Novel Role

for Retrograde Signals

Light induces massive reprogramming
of the plant transcriptome. Up to one
third of the transcriptome can be regu-
lated by light in Arabidopsis and similar
results were obtained in other plant spe-
cies.47,48 Noticeably, many of the genes
affected by light conditions encode tran-
scription factors or proteins with DNA
binding domains.49 Besides the transcrip-
tional effects, chromatin modifications are
tightly regulated by light.50 As an exam-
ple, acetylation of lysine 9 in histone 3
(H3K9ac), a mark that positively corre-
lates with active transcription, is enriched
in light regulated genes, in a light inten-
sity-dependent manner.51 Alternative
splicing is also under light control. Pio-
neer work of Mikio Nishimura,

performed in pumpkin in the 90’s,
showed that light regulates alternative
splicing patterns of the transcripts coding
for a hydroxypyruvate reductase and an
ascorbate peroxidase, determining differ-
ent subcellular localizations of the protein
products.52,53 More recently it was shown
that alternative splicing regulation of cir-
cadian clock-related genes in Arabidopsis is
important for the proper functioning of
the biological clock,54,55 and that light is
affecting the alternative splicing of splicing
factor coding genes.56,57 It was also shown
that an Arabidopsis mutant for a gene that
codes for an ortholog of the human poten-
tial splicing factor SR140 fails in phyto-
chrome B responses.58 Furthermore, a
recent publication reveals that light-regu-
lated alternative splicing is important in
shaping transcriptome responses to light
in the moss Physcomitrella patens.59 The
authors proposed that alternative splicing
is rapidly fine-tuned by light in this system
and these responses are misregulated in P.
patens mutants defective in red light sens-
ing phytochromes. In summary, plant
responses to light also include alternative
splicing regulation, and the photoreceptor
proteins might be key players in this
scene59

In a recent publication, our laborato-
ries showed that light regulates alternative
splicing of a subset of Arabidopsis genes
encoding proteins involved in RNA proc-
essing by chloroplast retrograde signals.
Earlier evidence had shown that the
mRNA for a negative regulator of tetra-
pyrrole biosynthesis of Chlamydomonas
reinhardtii, the product of a FLU-like
gene, undergoes alternative splicing whose
pattern is controlled by light and plastid
signals.60 Using the alternative splicing of
At-RS31, a gene encoding a serine argi-
nine-rich splicing factor61 as a model, we
showed that light modulates the relative
amounts of its mRNA isoforms in a way
that the protein coding isoform (mRNA1)
is more abundant in light. The participa-
tion of phytochrome and cryptochrome
photosensory pathways was ruled out for
the regulation of this event by light/dark
transitions. Changes in At-RS31 alterna-
tive splicing occur in seedlings both under
prolonged light/dark regimes and under
natural short day (8:16 hr light:dark) pho-
toperiod conditions but not in long day

photoperiods. Photosynthetically active
different light qualities produce similar
effects than white light, in a light inten-
sity-dependent manner. The light signal-
ing pathway does not involve the
circadian clock since the light/dark effect
on splicing is still observed in several clock
mutants. Since photoreceptor proteins are
not involved in this regulatory mechanism
we tested whether the chloroplast, which
is able to sense and to communicate light
signals to the nucleus, was triggering the
alternative splicing changes in response to
light. Consequently, drugs that disrupt
chloroplast function like DCMU and
DBMIB abolish the splicing responses to
light showing the involvement of the
organelle in the pathway. Both DCMU
and DBMIB inhibit the overall electron
transport chain, but whereas DCMU
increases the oxidized PQ pool by block-
ing the electron transfer from the PSII to
PQ, DBMIB keeps the PQ pool reduced
by preventing the electron transfer to cyto-
chrome b6f. DCMU duplicates the effect
of darkness but DBMIB mimics the light
effect on At-RS31, revealing that the
reduced PQ pool upregulated by light ini-
tiates the retrograde signaling pathway.
The nature of the retrograde signal is4 still
unknown, however. Interestingly, we
showed that alternative splicing regulation
of At-RS31 by light would be important
for plant survival when facing suboptimal
light conditions. Furthermore, the light
effect on At-RS31 alternative splicing is
also observed in roots when the communi-
cation with the photosynthetic tissues is
not interrupted, suggesting that a signal-
ing molecule travels through the plant.16

These results pointed at alternative splic-
ing regulation by retrograde signals as an
important mechanism for plants to adapt
to the environment. Effort must be made
to identify the signal that travels from the
chloroplast to the nucleus as well as the
nature of the molecule that communicates
the light effect to the roots.

Perspectives: Searching
for the Signal(s)

In the next years effort has to be done
to clarify how much of the genome is
regulated at the level of alternative splicing
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in response to light by the different path-
ways, the role of photoreceptor proteins,
plastid signals, and the possible interac-
tions between them.

The chloroplast and the sensitivity of
the photosynthetic mechanisms make this
organelle ideal for the integration of dif-
ferent signals,33 not only from the envi-
ronment, but also derived from the
different tissues, developmental and nutri-
tional states of plants. Besides the chloro-
plast retrograde signals derived from the
redox state of the photosynthetic electron
transport chain components, and those
related to ROS, other retrograde signals
related to chloroplast biogenesis have been
studied:25,28 tetrapyrroles,30 those linked
to thioredoxins,62,63 and other mecha-
nisms.64,65 Sugars produced by photosyn-
thesis, besides being the main source of
biochemical energy, are also sensed as sig-
nals in the plant cell.66,67 The interaction
of chloroplast signals with retrograde sig-
nals generated in mitochondria deserves
further investigation.68 We are just start-
ing to understand the way in which the
different pieces work together: which
genes are regulated, which processes are
affected (i.e., chromatin, transcription,
splicing, translation), and the possible

connections and cross regulations of the
different layers (Fig. 1).
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