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Summary

Concomitant interventions are often introduced during a longitudinal clinical trial to pa-

tients who respond undesirably to the pre-specified treatments. In addition to the main

objective of evaluating the pre-specified treatment effects, an important secondary objec-

tive in such a trial is to evaluate whether a concomitant intervention could change a patient’s

response over time. Because the initiation of a concomitant intervention may depend on the

patient’s general trend of pre-intervention outcomes, regression approaches that treat the

presence of the intervention as a time-dependent covariate may lead to biased estimates for

the intervention effects. Borrowing the techniques of Follmann and Wu (1995) for modeling

informative missing data, we propose a varying-coefficient mixed-effects model to evaluate

the patient’s longitudinal outcome trends before and after the patient’s starting time of

the intervention. By allowing the random coefficients to be correlated with the patient’s

starting time of the intervention, our model leads to less biased estimates of the intervention

effects. Nonparametric estimation and inferences of the coefficient curves and intervention

effects are developed using B-splines. Our methods are demonstrated through a longitudinal

clinical trial in depression and heart disease and a simulation study.

Key words: Change-Point Models; Concomitant Intervention; Longitudinal Study; Polyno-

mial Splines; Shared Parameter Model; Varying-Coefficient Model.
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1 Introduction

A main objective of longitudinal analysis in clinical trials is to evaluate the effects of co-

variates of interest on the time-trends of the outcome variables. The treatment effects

are usually modeled using a time-invariant categorical covariate, while the other covariates

can be either time-invariant or time-dependent. Recent advances in longitudinal analysis

have led to a wide range of regression methods. For parametric models, estimation and

inference procedures, such as maximum likelihood estimation, the restricted maximum like-

lihood (REML) estimation and the generalized estimating equations (GEEs), can be found

[1-4]. For models involving nonparametric components, smoothing methods, such as local

polynomials and splines, are often used [5-9].

The above regression approaches generally lead to satisfactory results when the sub-

jects are properly randomized so that the treatments and the covariates are not subject

to “selection bias”. In many longitudinal studies, however, concomitant interventions are

initiated, usually due to ethical reasons, to patients who exhibit less satisfactory trends in

their medical outcomes. This phenomenon bears some resemblance to longitudinal studies

with informative missing data, where patients with undesirable outcome trends tend to drop

out early from the study, except that in our situation the outcomes of these patients are

continuously observed under the additional concomitant treatment. In a randomized longi-

tudinal clinical trial with pre-specified treatments, patients who have taken a concomitant

intervention in addition to their assigned treatments may generally have different disease

pathology from those who do not need the intervention. Thus, in addition to the primary

goal of evaluating the effect of the main treatment, an important objective is to evaluate

the effects of the additional concomitant intervention(s) among eligible patients.

Our motivating example is the Enhancing Recovery in Coronary Heart Disease (EN-

RICHD), which is a randomized clinical trial that evaluated the efficacy of a psychosocial

treatment versus usual cardiological care on survival and depression severity in 2,481 pa-
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tients with depression and/or low perceived social support after acute myocardial infraction.

Depression severity was measured by Hamilton Rating Scale for Depression (HRSD) and

Beck Depression Inventory (BDI), where higher HRSD and BDI scores indicate worsened

depression. In addition to the randomized treatments, patients with high baseline de-

pression scores and/or nondecreasing BDI trends were eligible for pharmacotherapy with

antidepressant. Antidepressants were also prescribed at the requests of the patients or their

primary care physicians. Details of the study design, objectives and major findings of the

trial have been described [10,11]. Taylor et al. [12] compared the survival rates for death

and cardiovascular morbidity and mortality among 1,834 depressed patients in this trial

and found that the use of selective serotonin reuptake inhibitors seemed to reduce sub-

sequent cardiovascular morbidity and mortality. Bang and Robins [13] also analyzed the

same data but a cross-sectional component only. However, the question of whether these

antidepressant medications had added benefits for lowering the BDI scores of patients in

the psychosocial treatment arm who had undergone this concomitant intervention during

the trial was not addressed. To answer this question, we treat the patient’s starting time of

pharmacotherapy as a subject-specific “change-point” and evaluate the effects of pharma-

cotherapy on the patient’s BDI scores over time using different models before and after the

“change-point”. We attempt to model the relationships between the subject’s parameters

for BDI trends and his/her change-point time using a B-spline nonparametric approach. It

is important to note that in the ENRICHD trial pharmacotherapy was not simply initiated

based on certain common HRSD or BDI threshold values, which may require a different

methodology.

Methodologically, Murphy, van der Laan and Robins [14] studied estimation and causal

inferences for the mean responses to dynamic treatment regimens that were tailored to

subjects’ individual needs. Their designs involve a set of treatment intervals specified by

selected time points and a pre-specified sequential randomization rule that assigns subjects

to different treatment levels. The main difference between our data structure and their dy-

4



namic regimens is that the concomitant interventions considered in this paper are often not

assigned based on specific treatment rules, so that their estimating equations may not be

directly applied to the current context. Also Wall, Dai and Eberly [15] examined the impact

of a misspecified time-varying covariate when they analyzed the effect of (nonrandomized)

alcoholism treatment on medical utilization in the GEE framework. They implicitly sug-

gested that a change-point model was a way to go but did not provide a solution.

We propose in this paper a nonparametric approach for estimating the effects of a con-

comitant intervention in longitudinal clinical trials. The proposed methodology is based on

a varying-coefficient mixed-effects model and a B-spline least-squares estimation method.

A key question that has not been previously well-understood in the literature is why a naive

linear mixed-effects model (e.g., Verbeke and Molenberghs [3], Sec. 3.3) could lead to biased

estimates when a concomitant intervention is present. Using the general framework of the

change-point shared-parameter model (Section 2.3), we show that the mixed-effects mod-

els without properly incorporating the joint distributions of the random parameters and

the starting time of the concomitant intervention are misspecified models. On the other

hand, our varying-coefficient mixed-effects model is a flexible nonparametric version of the

change-point shared-parameter model which can adequately incorporate the concomitant

intervention starting time when the joint distribution of the random parameters and the

concomitant intervention starting time is completely unknown. Because our model may

include both parametric and nonparametric components, our B-spline estimation method

is more flexible than the usual local smoothing methods, such as kernel or local polynomial

methods, in the sense that it can be naturally adapted to both parametric and nonparamet-

ric situations [8, 9]. Although certain components of our approach, such as B-splines, have

been used for other longitudinal settings in the literature [5-9], the systematic modeling and

estimation procedure proposed in this paper fills a gap for obtaining unbiased estimates in

longitudinal clinical trials with the presence of a concomitant intervention.

Our modeling approach, however, shares some similarities with the shared parameter
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model that addresses the informative missingness [16,17]. Follmann and Wu [17] used this

approach to link a mixed-effects model for the response variable and a marginal model

for the characteristics of missing data, such as time to drop-out. Their conditional model

resembles our varying-coefficient model with only the observations before the change-points.

In contrast, our model also includes the response curves after the change-points. Unlike

the classical change-point problems where all the subjects have the same change-point and

its location is the unknown parameter to be estimated, individual starting times of the

concomitant intervention are observed in our data [18,19].

We describe our regression models and its biological interpretations in Section 2. Sub-

sequently, we propose a class of nonparametric estimation and inference procedures based

on B-splines in Sections 3 and 4, apply these methods to the ENRICHD data in Section 5,

and present a simulation study in Section 6. Finally, we discuss some potential extensions

of our methods in Section 7.

2 Change-Point Mixed-Effects Models

2.1 Data Structure

We consider a study with n randomly selected subjects. For the ith subject, ni is the

number of visits, Tij ∈ [T0, T1] is the trial time or study time at the jth visit, Yij is the

real-valued outcome measured at Tij and Xi = (1, X1i, . . . , XPi)T is the RP+1-valued time-

invariant covariate vector. Here [T0, T1] is the known time interval for the study. We assume

that the study has one concomitant intervention, and each subject has one change-point

from non-intervention to intervention within the study period [T0, T1]. Let Si be the ith

subject’s intervention starting time or change-point time, and δij = 1[Tij≥Si] the intervention

indicator at the jth visit. The time from the concomitant intervention to the jth visit is

Rij = Tij − Si. The observed data are {(Tij, Yij ,Xi, Si); 1 ≤ j ≤ ni, 1 ≤ i ≤ n}.

Because our objective is to investigate the relationships between Yij and (Tij,Xi) before
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and after the change-point Si, our model does not include subjects who have not received the

concomitant intervention within the study period [T0, T1]. In some situations, these subjects

may provide useful information for the pre-intervention covariate effects on Yij . However,

models incorporating such subjects require additional assumptions and/or models on the

treatment receipt pattern and disease pathology. Hence, discussion on this problem is out

of the scope of this paper. When the context is clear, we may interchange intervention with

concomitant intervention and denote the random variables by (T, Y,X, S, δ, R).

2.2 A Naive Linear Mixed-Effects Model: Review

Intuitively we may evaluate the intervention effects by comparing the response trajectories

before and after the change-points. For the ease of notation, we discuss the case without X.

Suppose that Yij are given by Yij = a0i + a1iTij + εij when Tij < Si and (a0i + b0i) + (a1i +

b1i)Tij + εij when Tij ≥ Si for some subject-specific parameters (a0i, a1i, b0i, b1i) and mea-

surement errors εij . The individual intervention effects for the ith subject are characterized

by (b0i, b1i), and the marginal intervention effects for the population are then characterized

by E(b0i, b1i)T = (β0, β1)T . Using the framework of linear mixed-effects models (see Ch.3

in [3]), an intuitive change-point model is




Yij = TT
ijai +

(
T∗

ij

)T
bi + εij ,

(
aT

i ,bT
i

)T ∼ MVN
(
(αT , βT

)T
, Γ) for some unknown (α, β, Γ),

(2.1)

where, for known constants D1 and D2, ai = (a0i, . . . , aD1i)T , bi = (b0i, . . . , bD2i)
T , Tij =

(1, Tij, . . . , T
D1
ij )T , T∗

ij = (δij , δijTij , . . . , δijT
D2
ij )T , εij are mean zero error processes, and

(aT
i ,bT

i )T and εi = (εi1, . . . , εini)
T are independent. The intervention effects are character-

ized by bi for the ith subject and E(bi) = β for the population. A crucial assumption of

(2.1) is that {ai,bi} and Si are independent. Although it appears that the time-varying

intervention is incorporated as a covariate by the term involving δij , we will demonstrate in

Sections 5 and Section 6 that, by ignoring the correlations between {ai,bi} and Si in the
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distribution assumption of {ai,bi}, (2.1) is a misspecified model for our data and may lead

to biased estimates for the intervention effects.

2.3 The Shared-Parameter Model

To model the initiation of the concomitant intervention, a natural extension of (2.1) is to

allow the intervention starting time Si to be correlated with the pre-intervention random

coefficients ai or more generally {ai,bi}. When the context is clear, we will denote by

µ1(·; ai) and [µ1(·; ai) + µ2(·;bi)] the subject-specific response curves before and after the

start of the intervention, respectively. We interpret µ2(·;bi) as the intervention effect. Given

{Tij ,Xi, Si}, our shared-parameter model is




Yij = µ1(Tij ,Xi; ai) + δij µ2(Tij ,Xi, Rij;bi) + εij ,

(
aT

i ,bT
i , Si

)T ∼ Joint Distribution,
(2.2)

where εij are mean zero errors with cov(εij1 , εij2) = σij1j2 , εi1j1 and εi2j2 are independent

if i1 6= i2, and, conditioning on {ai,bi}, Si and {Tij ,Xi} are independent. In addition, we

assume that {ai,bi} and {Tij ,Xi} are independent.

Let Yi = (Yi1, . . . , Yini)
T , Ti = (Ti1, . . . , Tini)

T and H(·, ·) be the joint distribution

function of {ai,bi}. The joint likelihood of (Y T
i , Si)T given {Ti,Xi} is

f(Yi, Si|Ti,Xi) =
∫

f(Yi|Ti,Xi, Si, ai,bi)f(Si|ai,bi) dH(ai,bi), (2.3)

where f(·|·) denotes the conditional density. Because of the extra f(Si|ai,bi) in the inte-

grand, (2.3) differs from the usual likelihood functions for the mixed-effects models (see p24

in [3]).

Unlike (2.1), (2.2) is a change-point model with shared parameters {ai,bi} which de-

termine both the response curves of Yij and the distribution of Si. The shared parameters

approach was proposed for modeling the behaviors of informative missing data [7]. In (2.2),

the correlation between Si and ai suggests that the ith subject’s intervention starting time

is determined by the pre-intervention response curve µ1, while the correlation between Si
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and bi suggests that Si may also influence the response curve µ2 that characterizes the

intervention effect.

2.4 The Varying-Coefficient Mixed-Effects Model

The approach based on the joint likelihood (2.3) can be computationally complicated and

requires some assumptions about the distribution of Si. In this paper, we consider a simpler

method based on the conditional model, which is robust to the distributional assumption

of Si. The conditional distribution can be written as

f(Yi|Si, Ti,Xi) =
∫

f(Yi|Ti,Xi, Si, ai,bi)dG(ai,bi|Si) . (2.4)

Then we can rewrite (2.2) as a varying-coefficient model using the conditional distribution of

{ai,bi} given Si. When µ1 and µ2 are linear functions, let µ1(Tij,Xi; ai) = ZT
ijai for Zij =

(Zij0, . . . , ZijD1)
T generated by {(Tij,Xi); 1 ≤ j ≤ ni, δij = 0}, and µ2(Tij ,Xi, Si;bi) =

WT
ijbi for Wij = (Wij0, . . . , WijD2)

T generated by {(Tij,Xi, Si); 1 ≤ j ≤ ni, δij = 1}.

Writing α(Si) = E(ai|Si), β(Si) = E(bi|Si), a∗i = ai − α(Si) and b∗
i = bi − β(Si), our

varying-coefficient mixed-effects model has the expression




Yij = ZT
ij [α(Si) + a∗i ] + δijWT

ij [β(Si) + b∗
i ] + εij ,

(
a∗T

i ,b∗T
i

)T
∣∣∣ Si ∼ G(·|Si)

(2.5)

where, for Si = s, G(·|s) is a distribution function with mean zero and covariance matrix

cov[(a∗T
i ,b∗T

i )T |s] = C(s). Marginal parameters of interest are α(s) and β(s). When

Si = s, the mean intervention effect is β(s), and β(s) = 0 for all s ∈ (T0, T1) implies that

the concomitant intervention had no marginal effect on the response curve.

An obvious choice for G(·|Si) is the multivariate normal distribution with mean zero

and covariance matrix C = cov[(a∗T
i ,b∗T

i )T |s], which, for simplicity, is assumed to be time-

invariant. Extensions to time-dependent covariances can be made by modeling C(s). Since

explicit forms of G(·|Si) are often unknown, modeling α(s) and β(s) is often more important

than modeling C(s). In linear models, we have α(s; γ) = (α0(s; γ0), . . . , αD1(s; γD1))
T ,
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β(s; τ) = (β0(s; τ0), . . . , βD2(s; τD2))
T ,

αd(s; γ) =
Ld∑

l=0

γdlTdl(s) and βd(s; τ) =
Md∑

m=0

τdmT ∗
dm(s) (2.6)

where {Ld, Md} are fixed, and {Tdl(s), T ∗
dm(s)} are known transformations of s. The choice

of Tdl(s) = sl and T ∗
dm(s) = sm leads to polynomials for (2.6).

Extended linear models can be used to approximate {α(s), β(s)} when their parametric

forms are unknown. Let {Bd1(s) = (Bd10(s), . . . ,Bd1Ld1
(s))T ; 0 ≤ d1 ≤ D1} and {B∗

d2
(s) =

(B∗
d20

(s), . . . ,Bd2Md2
(s))T ; 0 ≤ d2 ≤ D2} be some pre-specified basis functions. Then α(s)

and β(s) can be approximated by

αd(s; γ) ≈
Ld∑

l=0

γdlBdl(s) and βd(s; τ) ≈
Md∑

m=0

τdmB∗
dm(s), (2.7)

where Ld and Md may tend to infinity as n → ∞. Popular basis choices include trun-

cated polynomial bases, Fourier bases or B-splines. In this paper, we restrict our attention

to B-splines with fixed knot sequences because of their superior numerical stability. The

smoothing parameters {Ld,Md} may be chosen subjectively or by a variable selection pro-

cedure, such as cross-validation and information criteria [8,9,20]. An alternative smoothing

approach is to approximate {α(s), β(s)} by smoothing splines [21,22]. Because the explicit

expressions and statistical properties of smoothing spline estimators are generally different

from B-splines, we do not discuss this class of estimators in this paper.

3 Estimation Methods

3.1 Likelihood-Based Estimation

If (2.3) has an explicit parametric expressions, the parameters can be in principle estimated

by maximizing the log-likelihood
∑n

i=1 log f(Yi, Si|Ti,Xi). Suppose that (2.5) and (2.6) are

satisfied, G(·|s) is Gaussian, and (εi1, . . . , εini)
T ∼ N(0, Γi). We can estimate {γ, τ} by
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maximizing the partial likelihood

L
(
{γ, τ}|Ti,Xi, Si

)
=

n∑

i=1

log
[∫

f(Yi|Ti,Xi, Si, ai,bi) dG(ai,bi|Si)
]

. (3.1)

Let Wi be the matrix whose jth row is (ZT
ij , δijWT

ij), Td(s) = (Td0(s), . . . , TdLd
(s))T , T ∗

d (s) =

(T ∗
d0(s), . . . , T ∗

dMd
(s))T , T (s) = diag{T T

0 (s), . . . , T T
D1

(s), T ∗T
0 (s), . . . , T ∗T

D2
(s)}, T (Si) = Ti,

and Vi be the covariance matrix of

eij = ZT
ija

∗
i + δijWT

ijb
∗
i + εij , 1 ≤ j ≤ ni. (3.2)

The matrix representation for (2.7) is (αT (s; γ), βT(s; τ))T = T (s)(γT , τT )T , where γd =

(γd0, . . . , γdLd
)T , γ = (γT

0 , . . . , γT
D1

)T , τd = (τd0, . . . , τdMd
)T and τ = (τT

0 , . . . , τT
D2

)T . When

Vi are known, maximizing (3.1) leads to



γ̂ML(T )

τ̂ML(T )


 =

{
n∑

i=1

[WiTi]
T V−1

i [WiTi]

}−1 {
n∑

i=1

[WiTi]
T V−1

i Yi

}
(3.3)

provided that
∑n

i=1[(WiTi)TV−1
i (WiTi)] is nonsingular. When Vi are unknown but can be

consistently estimated by a non-singular V̂i, we can estimate {γ, τ} by {γ̃ML(T ), τ̃ML(T )}

which are given by (3.3) with Vi substituted by V̂i.

Substituting {Tdl(s), T ∗
dm(s)} in (3.3) with the basis functions {Bdl(s),B∗

dm(s)}, we can

compute {γ̂ML(B), τ̂ML(B)}. Likelihood-based nonparametric estimators of {α(s), β(s)}

under (2.7) and known Vi are

(
α̂T

ML(s;B)), β̂T
ML(s;B)

)T
= B(s)

(
γ̂T

ML(B), τ̂T
ML(B)

)T
,

where Bi = B(Si), B(s) is defined similarly to T (s) with {Tdl(s), T ∗
dm(s)} replaced by {Bdl(s),

B∗
dm(s)}. Nonparametric estimators computed with V̂i used in (3.3) are

(
α̃T

ML(s;B), β̃T
ML(s;B)

)T
= B(s)

(
γ̃T

ML(B), τ̃T
ML(B)

)T
.

3.2 Least-Squares Based Estimation

Likelihood-based estimates of {α(s), β(s)} can not be computed when the explicit forms of

G(·|Si) and the distribution of εij are unknown. In such situations, a practical approach is
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to first parameterize {α(s), β(s)} by certain parametric models {α(s; γ), β(s; τ)} and then

derive the weighted least-squares estimators {γ̂LS , τ̂LS} which minimize

`(γ, τ) =
n∑

i=1

{[
Yi −

(
ZT

i α(Si; γ) + (δW)T
i β(Si; τ)

)]T

× Λi

[
Yi −

(
ZT

i α(Si; γ) + (δW)T
i β(Si; τ)

)]}
, (3.4)

where Zi = (Zi1, . . . ,Zini)
T , (δW)i = (δi1Wi1, . . . , δiniWini)

T , and Λi are some pre-

specified symmetric nonsingular ni × ni weight matrices. The weighted least-squares es-

timators for (2.6) are



γ̂LS(T )

τ̂LS(T )


 =

{
n∑

i=1

[WiTi]
T Λi [WiTi]

}−1 {
n∑

i=1

[WiTi]
T ΛiYi

}
, (3.5)

where
∑n

i=1[WiTi]TΛi[WiTi] is nonsingular, and the jth row of Wi is (ZT
ij , δijWT

ij). Sub-

stituting the basis approximations (2.7) in (3.4), the least-squares based nonparametric

estimators of {α(s), β(s)} are

(α̃T
LS(s;B), β̃T

LS(s;B))T = B(s)
(
γ̃T

LS(B), τ̃T
LS(B)

)T
, (3.6)

where {γ̃LS(B), τ̃LS(B)} are given in (3.5) with T (s) replaced by B(s). Consistency and the

rates of convergence for (3.6) can be derived [9].

Clearly, (3.5) and (3.6) are the same as the likelihood-based estimators when Λi = V−1
i

and normality assumptions hold. In practice, Vi are usually unknown and often difficult to

estimate, so that subjective choices for Λi are used. Guidance on this choice is also available

[8,9,23].

3.3 Estimation of the Covariances

The covariance structure Vi defined in Section 3.1 can be modeled in a number of ways.

By the definition of eij in (3.2), the (j1, j2)th component of Vi is

Vi,j1,j2 = E(eij1eij2) = ρi,j1,j2(A,B,C) + σi,j1 ,j2 , (3.7)
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where A = E(a∗ia
∗T
i ), B = E(b∗

ib
∗T
i ), C = E(a∗ib

∗T
i ), σi,j1,j2 = E(εij1εij2) and

ρi,j1,j2(A,B,C) = ZT
ij1AZij2 + ZT

ij1C (δij2Wij2) +
(
δij1W

T
ij1

)
CZij2

+
(
δij1W

T
ij1

)
B (δij2Wij2) .

For the special case that εij are independent measurement errors such that σi,j1 ,j2 = 0 if

j1 6= j2 and σ2 if j1 = j2, Vi adopts the parametric model Vi(A,B,C, σ2) with Vi,j1,j2 =

ρi,j1,j2(A,B,C) if j1 6= j2 and ρi,j,j(A,B,C) + σ2 if j1 = j2 = j. Other structures for Vi

can be formulated by modeling σi,j1,j2 [4].

For the general case of εij having unknown correlation structures, σi,j1,j2 is an non-

parametric component in (3.7), hence can be either directly estimated or approximated

by a parametric model. Under a different regression model, a local smoothing technique

was suggested but can be computationally intensive [24]. To ease the computational bur-

den, a consistent covariance estimator can be constructed by B-spline approximations [9].

σi,j1,j2 can be approximated via B-spline by σi,j1,j2(u,v) =
∑K1

k=1

∑K1
l=1 uklBk(Tij1)Bl(Tij2)

if j1 6= j2, and
∑K2

k=1 vkBk(Tij) if j1 = j2 = j, where {Bk} is a spline basis with a fixed

knot sequence, u = {ukl = ulk; k, l = 1, . . . , K1} and v = {vk; k = 1, . . . , K2}. Substituting

σi,j1,j2(u,v) into (3.7), Vi is approximated by Vi(A,B,C,u,v) such that

Vi,j1,j2 =





ρi,j1,j2(A,B,C)+
∑K1

k=1

∑K1
l=1 uklBk(Tij1)Bl(Tij2), if j1 6= j2;

ρi,j1,j2(A,B,C)+
∑K2

k=1 vkBk(Tij), if j1 = j2 = j.

Once an approximate parametric model for Vi is established, estimation of Vi can be

achieved by least squares. Let êij = Yij − [ZT
ijα̂(Si) + δijWT

ij β̂(Si)] be the residual of Yij

computed based on some consistent estimators α̂(s) and β̂(s). If Vi,j1,j2 = ρi,j1,j2(A,B,C)+

σi,j1,j2(u,v), we can estimate Vi by Vi(Â, B̂, Ĉ, û, v̂) where (Â, B̂, Ĉ, û, v̂) minimizes

n∑

i=1

ni∑

j1 ,j2=1,j1<j2

{
êij1 êij2 −

[
ρi,j1,j2(A,B,C)+

∑

k

∑

l

uklBk(Tij1)Bl(Tij2)

]}2

subject to ukl = ulk when j1 6= j2, and
n∑

i=1

ni∑

j=1

{
ê2
ij −

[
ρi,j,j(A,B,C)+

∑

k

vkBk(Tij)

]}2

,
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when j1 = j2 = j.

Here, Vi(Â, B̂, Ĉ, û, v̂) needs not to be positive definite for a finite sample, although, by

consistency, it is asymptotically positive definite [9]. The problem of imposing finite sample

positive definiteness to the spline estimators of Vi deserves substantial further investigation.

The adequacy of Vi(Â, B̂, Ĉ, û, v̂) depends on the choices of knots and the degrees of the

splines. Although it is possible to develop data-driven knots using cross-validation or the

generalized cross-validation, statistical properties of such procedures are currently unknown.

Subjective knot choices, such as using a few equal spaced knots, often give satisfactory

results in biomedical applications.

4 Inferences

4.1 Inferences for Linear Models

Following the classical inferential framework with linear mixed-effects models, we consider

the inferences for the fixed effects of (2.5) and (2.6) given {(Zi, δij ,Wij, Si); 1 ≤ i ≤

n, 1 ≤ j ≤ ni}. From (3.5), E[γ̂LS(T )] = γ, E[τ̂LS(T )] = τ and the covariance of

(γ̂T
LS(T ), τ̂T

LS(T ))T is

[
n∑

i=1

(WiTi)TΛi(WiTi)

]−1 [
n∑

i=1

(WiTi)TΛiViΛi(WiTi)

][
n∑

i=1

(WiTi)TΛi(WiTi)

]−1

.

Let ξ̂T
LS = (γ̂T

LS(T ), τ̂T
LS(T ))T , ξ = (γT , τT)T , and Lξ̂LS and Lξ be their corresponding linear

combinations. Following the central limit theorem (see Sec.1.9.3 in [25]), it can be shown

that, when n is sufficiently large, Lξ̂LS is asymptotically distributed as N(Lξ, V ar(Lξ̂LS)),

where V ar(Lξ̂LS) can be derived from the covariance matrix of ξ̂LS . Substituting V ar(Lξ̂LS)

with a consistent estimate V̂ ar(Lξ̂LS), an approximate (1−α) confidence interval for Lξ is

Lξ̂LS ± Zα/2

[
V̂ ar

(
Lξ̂LS

)]1/2
, (4.1)

where Zα/2 is the [100× (1 − α/2)]th percentile of the standard normal distribution.
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Let L be any given matrix with rank(L) = d. The above asymptotic approximations

can be used to test the null hypothesis, H0: Lξ = C for a known constant vector C, versus

the alternative, HA: Lξ 6= C. An α-level approximate χ2-test rejects the null hypothesis if

(
Lξ̂LS −C

)T {
L

[
Cov(ξ̂LS)

]
LT

}−1 (
Lξ̂LS − C

)
≥ χ2

d,α, (4.2)

where χ2
d,α is the [100× (1 − α)]th upper percentile of the χ2

d-distribution.

4.2 Bootstrap Confidence Intervals

Nonparametric inferences for the smoothing estimators of α(s) and β(s) can be constructed

using the “resampling-subject” bootstrap [8,26]. For the construction of bootstrap pointwise

confidence intervals (CIs), this procedure generates bootstrap samples {(Y b
ij ,Z

b
ij, (δijWij)b, Sb

i );

1 ≤ i ≤ n, 1 ≤ j ≤ ni} by sampling the subjects with replacement from the original data

and obtains the spline estimators α̃
(b)
LS(s,B) and β̃

(b)
LS(s,B). Repeat the procedure multiple

times, and let Lα/2(α̃LS,d(s,B)) and Uα/2(α̃LS,d(s,B)) be the lower and upper [100×(α/2)]th

percentiles of the bootstrap estimators of αd(s). An approximate (1 − α) pointwise CI for

αd(s) is [Lα/2(α̃LS,d(s,B)), Uα/2(α̃LS,d(s,B))]. Confidence intervals for βd(s) and other

parameters can be constructed similarly. Moreover, variances of the parameters can be

estimated by the sample variances of bootstrap estimates.

5 Application to Pharmacotherapy in the ENRICHD Study

As described in Section 1, our objective is to evaluate the additional effects of pharma-

cotherapy (antidepressants) on the trends of depression (measured by BDI scores) for pa-

tients who received pharmacotherapy during the six-month psychosocial treatment period.

Because pharmacotherapy was only designed as a concomitant intervention in this trial,

the starting time of pharmacotherapy was decided by the patients or their physicians. Un-

fortunately, since patients in the usual care arm did not have accurate pharmacotherapy

starting time and repeated BDI scores recorded within the first six-month period, the effects
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of pharmacotherapy could not be properly analyzed for these patients (refer to [11] for more

details). Ninety one patients (total 1,446 observations) in the psychosocial treatment arm

received pharmacotherapy as a concomitant intervention during this period and had clear

records of their pharmacotherapy starting time. Among them, 43 started pharmacotherapy

at baseline and 48 started pharmacotherapy between 7 and 172 days. The number of visits

for these patients ranges from 5 to 36 and has the median of 16. Patients who did not have

proper records of antidepressant use were excluded.

For the ith patient, Yij , Tij , Si, Rij = Tij − Si and δij = 1[Tij≥Si] are the BDI score,

trial time (in months), starting time of pharmacotherapy, time from initiation of pharma-

cotherapy, and pharmacotherapy indicator, respectively, at the jth visit. Our preliminary

examination of the data revealed that the BDI scores over Tij could be approximated by a

linear model (results not shown). An intuitive model is the following special case of (2.1),

Yij = a0i + a1iTij + b0iδij + b1iδijRij + εij , (5.1)

where E(a0i, a1i, b0i, b1i)T = (α0, α1, β0, β1)T and, when δij = 1 and Rij = r, (β0 + β1r)

describes the mean pharmacotherapy effect at r months since the start of pharmacotherapy.

Clearly, (5.1) ignores the correlation between Si and the pre-pharmacotherapy depression

trends. To evaluate whether (5.1) leads to potential bias, we next considered the following

special case of (2.5),

Yij = α0(Si) + α1(Si)Tij + β0δij + β1δijRij + eij , (5.2)

where eij = a∗i0 + a∗i1Tij + b∗i0δij + b∗i1δijRij + εij , α0(Si) = γ00 + γ01Si and α1(Si) =

γ10 + γ11Si. In (5.2), the mean pre-pharmacotherapy BDI trend is associated with Si

through intercept α0(Si) and slope α1(Si). At r months after the start of pharmacotherapy,

the mean pharmacotherapy effect is β0+β1r, where a negative value for β0+β1r corresponds

to a beneficial effect for reducing depression. To reduce model complexity, we assume in

(5.2) that β0(Si) ≡ β0 and β1(Si) ≡ β1 in the sense that the effects of pharmacotherapy

only depend on how long the antidepressant has been used, but not on when it was started.
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Table 1 summarizes the parameter estimates and their corresponding standard errors,

95% CIs and p-values obtained by the REML procedure with unstructured correlations.

The negative estimates for (β0, β1) under (5.1) and (5.2) suggest that the beneficial effect

of pharmacotherapy for this patient population is detected by both models. However,

a slightly stronger depression lowering effect is exhibited by (5.2). The 95% CI for γ01

suggests a negative correlation of Si with baseline BDI scores, so that patients with higher

baseline BDI scores tend to start pharmacotherapy sooner.

6 Simulation

Following the general framework (2.3), we consider a simulation design that resembles the

data structure of the ENRICHD trial. Each simulated sample contains n = 200 subjects.

Each subject has 30 “scheduled visits” at time points (Ti1, . . . , Ti,30) = (0, 0.2+e1, . . . , 5.8+

e29), where {el} are independently generated from uniform U(−0.2, 0.2) distribution, but

each scheduled visit has 40% probability skipped. This leads to unequal numbers of repeated

measurements among the subjects with ni being the number of repeated measurements

for the ith subject. The random parameters (aT
i ,bT

i )T = (a0i, a1i, b0i, b1i)T are generated

from the multivariate normal distribution with mean (25, 0,−4,−2)T and covariance matrix

cov(a0i, a1i, b0i, b1i) = diag(6.25, 1, 1, 1). For each {ai,bi}, we generate two different change-

point times: (a) Si ∼ N(10−0.3 a0i, 0.16); and (b) Si ∼ N(1+4 sin[(a0i−4)/9], 0.09). For

each given {Tij , Si, ai,bi}, Yij is generated from N(a0i+a1iTij +b0iδij +b1iδijRij , 4). When

{Si; i = 1, . . . , 200} are generated from (a), direct calculation based on conditional normal

distributions shows that the marginal model of Yij is (5.2) with γ00 = 31.49, γ01 = −2.60,

γ10 = γ11 = 0, τ0 = −4 and τ1 = −2. When {Si; i = 1, . . . , 200} are generated from (b),

we assume that the parametric form of α0(Si) is unknown and the marginal model of Yij is

Yij = α0(Si) + α1Tij + β0δij + β1δijRij + eij , (6.1)
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where eij = a∗i0 + a∗i1Tij + b∗i0δij + b∗i1δijRij , β0 = −4, β1 = −2 and α0(Si) is not a linear

function.

The simulation was repeated 2,000 times. For samples with Si generated from (a), we

first ignored the correlation between a0i and Si and estimated (α0, α1, β0, β1) using (5.1) with

unstructured correlations, and then fitted the data to (5.2) with α1(Si) ≡ α1 and estimated

(γ00, γ01, α1, β0, β1), all by REML. Table 2 summarizes the averages of the estimates, their

standard errors, and root mean-squared errors as well as the empirical coverage probabilities

of the 95% asymptotic CIs. The bias for the estimation of β0 in (5.1) can be seen from the

large average root mean-squared errors and the low coverage probabilities compared with

the estimates obtained using (5.2).

For samples with Si generated from (b), we approximated α0(s), s ∈ [0, 6], using the

quadratic B-spline with 2 equally spaced interior knots (see Ch.5.2 in [27]), and estimated

(α0(s), α1, β0, β1) under (6.1) using (3.5) and (3.6) with the Λi = Ini×ni weight. We com-

puted the 95% bootstrap CIs for (α1, β0, β1) and the 95% pointwise bootstrap CIs for α0(s)

at 60 equally spaced values of s ∈ [0, 6] using the percentile procedures with B = 300 boot-

strap replications. For comparison, we also fitted the data to (5.1), which assumes that

α0(s) ≡ α0, and estimated (α0, α1, β0, β1) using the same procedure of (3.5). Figure 1(a)

shows the spline-estimated coefficient curve α0(s) and the 95% pointwise bootstrap CIs

obtained from a randomly selected simulated sample and Figure 1(b) displays the empirical

coverage probabilities of the 95% pointwise bootstrap CIs, where true α0(s) is numeri-

cally calculated. Table 3 presents the same set of summary statistics used in Table 2 for

(α1, β0, β1) under both (5.1) and (6.1). Standard errors and CI coverage probabilities based

on either the bootstrap procedure (Section 4.2) or the least squares and normal approxi-

mation procedure (Sections 3.3 and 4.1) are compared, and the performances of the two

procedures are similar under each model. The large root mean-squared errors and poor

coverage probabilities for the estimates obtained under (5.1) suggest that ignoring the as-

sociation between a0i and Si may lead to erroneous conclusions in the present situation.
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7 Discussion

Our proposed methodology is focused on concomitant interventions in longitudinal clinical

trials and such interventions commonly appear in other settings. For example, subjects

in an epidemiological study may take antihypertensive medication during the study when

their blood pressure levels either exhibit some undesirable trends or stay in an intolerable

range. Crucial in dealing with this type of data is to model the intervention selection

mechanism as realistic as possible. In our pharmacotherapy example of the ENRICHD

trial, there was only a vague guideline for the initiation of pharmacotherapy, so that it

appeared reasonable to model the intervention selection mechanism through some shared-

parameters. We focus on the varying-coefficient model mainly because it has a simple and

clear biological interpretation for this example, its assumptions seem to be realistic for this

type of trials, and the nonparametric B-spline method can be easily implemented.

We also find that there are several possible extensions worthy of further investigation.

First, our data structure allows for only a single intervention with one change-point per

subject. Generally, subjects in longitudinal studies may have single or multiple concomitant

interventions which can be turned on or off at different time points. In such situations,

more general shared-parameter models may be needed to accommodate the possibility of

multiple interventions and/or multiple change-points. Second, our model relies on linear

functions to describe the trends before and after the intervention. It can be generalized to

models with nonlinear response curves. Finally, we use the classical frequentist’s framework

for the B-spline methods. In a different context, Fahrmeir and Lang [28] demonstrated

a promising Bayesian inference procedure for generalized additive mixed models based on

Markov random field priors. Analogous approaches for our model and estimators may lead

to useful confidence regions and model diagnostic procedures.
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Table 1. The ENRICHD Data Analysis

Model Parameter Estimate SE 95% CI p-value

α0 23.380 1.107 (21.167, 25.594) <0.0001

(5.1) α1 -0.619 0.479 (-1.577, 0.339) 0.199

β0 -3.410 0.994 (-5.399, -1.422) 0.0013

β1 -1.584 0.521 (-2.626, -0.542) 0.0039

γ00 25.670 1.431 (22.808, 28.533) <0.0001

γ01 -1.389 0.586 (-2.562, -0.216) 0.0180

(5.2) γ10 -0.278 0.822 (-1.922, 1.366) 0.736

γ11 0.078 0.174 (-0.272, 0.426) 0.654

β0 -4.302 1.041 (-6.385, -2.220) 0.0001

β1 -2.062 0.773 (-3.608, -0.516) 0.0105

Parameter estimates and their standard errors (SE), 95% confidence intervals (CIs) and p-values were ob-

tained by restricted maximum likelihood with unstructured correlations for models (5.1) and (5.2).

24



Table 2. Simulation results for (a) Si ∼ N(10− 0.3 a0i, 0.16)

Model Parameter Estimate SE
√

MSE CP

α0 = 25 25.018 0.202 0.211 0.940

(5.1) α1 = 0 -0.058 0.100 0.123 0.897

β0 = −4 -3.805 0.153 0.253 0.745

β1 = −2 -1.971 0.115 0.123 0.936

γ00 = 31.488 31.480 0.350 0.359 0.942

γ01 = −2.595 -2.592 0.131 0.134 0.943

(5.2) α1 = 0 0.001 0.099 0.099 0.951

β0 = −4 -4.004 0.152 0.154 0.946

β1 = −2 -1.998 0.114 0.114 0.955

Estimate, SE and
√

MSE denote the averages of estimates, standard errors and square root of the mean

squared errors and CP represents the estimated coverage probability of the 95% confidence intervals, com-

puted from 2,000 simulated samples. Parameter estimates and SEs were obtained by restricted maximum

likelihood with unstructured correlations.
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Table 3. Simulation results for (b) Si ∼ N(1 + 4 sin[(a0i − 4)/9], 0.09)

Model Parameter Estimate SE (SE*)
√

MSE CP (CP*)

α1 = 0 -0.862 0.150 (0.145) 0.874 0 (0)

(5.1) β0 = −4 -2.404 0.340 (0.329) 1.632 0.004 (0.007)

β1 = −2 -0.237 0.372 (0.390) 1.804 0.005 (0.012)

α1 = 0 -0.001 0.097 (0.101) 0.095 0.951 (0.956)

(6.1) β0 = −4 -3.999 0.264 (0.255) 0.267 0.942 (0.940)

β1 = −2 -1.991 0.258 (0.247) 0.259 0.944 (0.921)

Estimate, SE and
√

MSE denote the averages of estimates, bootstrap standard errors and square root of the

mean squared errors and CP represents the estimated coverage probability of the 95% bootstrap confidence

intervals, computed from 2,000 simulated samples. SE* and CP* denote the standard errors and coverage

probability of CIs obtained by the procedures in Sections 3.3 and 4.1. Parameter estimates were obtained

using (3.5) with Λi = Ini×ni .
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Figure 1: (a) True curve α0(s) (solid line), spline estimated curve α̃0(s) (dash line) and

pointwise 95% bootstrap percentile confidence intervals (dotted lines) obtained from a ran-

domly selected simulated sample. (b) Empirical coverage probability of pointwise 95% boot-

strap confidence intervals for α0(s) (solid line) and their sample mean (dash line).
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