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Life on Earth is dictated by circadian
changes in the environment, caused

by the planet’s rotation around its own
axis. All forms of life have evolved clock
systems to adapt their physiology to the
daily variations in geophysical parame-
ters. The intestinal microbiome serves as
a signaling hub in the communication
between the host and its environment.
We recently discovered that the micro-
biota undergoes diurnal oscillations in
composition and function, and that these
oscillations are required for metabolic
homeostasis of the host. Here, we high-
light these findings from the perspectives
of microbial system stability and meta-
organismal metabolic health. We also
discuss the contribution of nutrition and
biotic interventions on diurnal processes
of the microbiota and their potential
involvement in diseases commonly asso-
ciated with circadian disruption.

Introduction: Circadian Rhythms
as a Principle of Life on Earth

The temporal instability of the envi-
ronment is an inherent property of life on
Earth. Light, temperature, and availability
of nutrients fluctuate on the scale of sea-
sons, months, and days. These characteris-
tics are met by the development of clock
systems in all domains of life which couple
organismal activity to the geophysical
time, thereby synchronizing physiological
processes to daily variations in environ-
mental conditions.1

In mammals, this synchronization is
achieved by a molecular clock comprising

a network of several transcriptional factors
which is present in virtually all cells of the
body. Several features make mammalian
clocks suitable to adapt to the conditions
imposed by the daily geophysical fluctua-
tions: (1) Circadian clocks are self-sus-
tained and intrinsic; and (2) their rhythm
can be entrained by environmental signals,
called “Zeitgeber” (timing cue), including
light, temperature, and feeding times.2

The coordination of circadian clocks
within the body and across organs follows
a hierarchical principle. The master pace-
maker, located in the brain, is light-
entrainable and influences the activity of
peripheral clocks.3 Nonetheless, periph-
eral clocks can be dominantly entrained
by food and thereby uncoupled from the
activity of the master clock.4,5 On a
molecular level, the circadian clock is
driven by rhythmic interlocked negative
feedback loop between the transcription
factors BMAL1/CLOCK and Period/
Cryptochrome. Additional feedback loops
extend to the nuclear receptors of the
ROR and REV-ERB families. This net-
work coordinates the rhythmic expression
of up to 15% of the entire transcriptome
of each cell in a circadian manner.6

The prokaryotic circadian clock has
primarily been studied in light-responsive
cyanobacteria.7 Remarkably, in this sys-
tem, a circadian clock of just 3 proteins
(KaiA, KaiB, and KaiC) can be sustained
even in the absence of transcription,8

although a transcriptional feedback is
required for its stability.9 This suggests
that molecular clocks can assume diverse
forms and compositions across the
domains of life. This is particularly
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interesting in the context of multi-domain
ecosystems, in which the activity of
eukaryotic and prokaryotic symbionts
must not only be adjusted on one another,
but also to the environmental fluctuations
over the course of a day. It has recently
been established that the community of
intestinal bacteria colonizing a mamma-
lian host, termed intestinal microbiome,
constitutes such an ecosystem.

Temporal Stability of the
Intestinal Microbiome

There is a growing body of evidence
indicating significant contribution of the
gut microbiome to host health and dis-
ease. The microbiome was shown to be an
important effector of host metabolism, in
energy harvest from food,10 changing host
propensity toward weight-gain11,12 driv-
ing host metabolic stability13 or instabil-
ity,14 and determining personal responses
to biochemical compounds such as
drugs15 and dietary supplements.16 The
microbiome also works in coordination
with the host immune system and can
promote resistance to infection. A dis-
rupted microbiome may exacerbate
immune disorders such as colitis,17 and a
healthy one can be used therapeutically to
cure life-risking infections.18 The effect of
the microbiome is not limited to the gut,
and it may exert its influence systemati-
cally. One such recent example is featured
in a mouse model of autism spectrum dis-
order, in which a healthy microbiome was
shown to be able to ameliorate some neu-
rological features of this disease.19 The
extent of effect of the microbiome on all
these aspects is governed by its composi-
tion and function, but in contrast to host
genetics, which remain constant through-
out its life, the composition and function
of the gut microbiome is dynamic and
potentially amenable to change.

Different stages of life are characterized
by different microbiota configurations,
which are assumed to have coevolved with
host developmental stages.20 The initial
inoculation of mammalians with gut
microbes takes place at birth, when pass-
ing through the birth canal, and neonatal
microbiomes are shaped by maternal
microbes and maternal lactic compounds.

These natural processes were shown to
increase heterogeneity and diversity of the
infant microbiome21 and to enhance
immune specificity.22,23 Upon stabiliza-
tion of the adult microbiome, its composi-
tion remains relatively constant, with a
retention rate of approximately 60% over
5 years.24 However subtly, the composi-
tion of the microbiome maintains a rate of
change well into old age, with distinct
microbiomes in elderly subjects.25,26

While long-term compositional
changes are important to the general
understanding of host-microbiome coevo-
lution and to the composition of the
microbiome in health and disease, they
only partially describe the variation land-
scape of the microbiome. The long-term
resistance to perturbation may be over-
come by diet, drugs and food supple-
ments, in a process that depends both on
the composition of the microbiome and
on the type of perturbation. It is widely
agreed that dietary changes are major driv-
ers of microbiome variation. Restriction
of caloric intake for a period of a year can
cause a major and persistent shift in
microbial composition, which is reflected
primarily in the well-studied Firmicutes-
to-Bacteroidetes ratio.27 Dietary perturba-
tion may also cause more rapid and
transient changes in microbial composi-
tion and function. A drastic change in
fiber consumption was shown to shift
microbial composition within 10 days,
with a major part of the change showing
24 hours from perturbation.28 Another
study has shown that switching to strictly
plant-based or animal-based diets drives
an enrichment of microbial functionality
associated with the decomposition of
plant-material or animal-material,
respectively.29

Diurnal Oscillations of the
Intestinal Microbiome

We recently revealed an additional
layer of temporal fluctuations in the com-
position and function of the intestinal
microbiome, which occurs at the scale of
hours and follows diurnal rhythmicity.30

We found that up to 20% of all commen-
sal species in mice and humans undergo
diurnal fluctuations in their relative

abundance, resulting in rhythmic changes
of the entire bacterial community over the
period of one day. This leads to time of
the day-specific abundances of major com-
ponents of the intestinal microbiota. For
instance, the common mouse and human
commensal genus Lactobacillus increases
in relative abundance during the resting
phase (the light phase in a mouse) and
declines during the active phase.30 Of
note, a recent study confirmed these
observations, indicating that microbiota
oscillations exist across animal facilities
and housing conditions.31 Indeed, diurnal
fluctuations in bacterial abundances are
not tied to a particular microbiota config-
uration, but can be observed in mice and
humans that feature inter-individual vari-
ability in the composition of commensal
bacteria.30 Importantly, these fluctuations
result in time of the day-specific func-
tional profiles of the microbiome: energy
harvest, DNA repair, and cell growth are
primarily performed during the active
phase of the host, while detoxification and
chemotaxis are more abundant during the
resting phase of the host (Fig. 1). This
suggests that specialist members of
the microbiota gain abundance at the
expense of other commensals, or the entire
biome content changes dynamically in
response to food intake and nutrient avail-
ability, which results in temporal parti-
tioning of the metabolic activity
performed by the whole community.

Interestingly, these temporal oscilla-
tions of the microbiome do not seem to
be intrinsic and self-sustained, but require
a functional clock of the host. Mice lack-
ing PER1 and PER2, 2 major components
of the molecular clock, do not feature
daily rhythmicity in bacterial composition
and function.30 This indicates that infor-
mation about the time of day is communi-
cated to the microbiome by the host, and
that this provides a means of synchroniz-
ing the activity of the meta-organism. It
also indicates the co-evolutionary impact
of the circadian clock, by demonstrating
that diurnal rhythmicity can be achieved
at several different levels of a prokaryotic-
eukaryotic ecosystem (molecular and
behavioral rhythmicity on the host side,
community rhythmicity on the microbial
side) and that coordination exists between
these levels.
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These findings also present a new per-
spective on the stability of the intestinal
ecosystem. The described compositional
and functional oscillations generate hour-
scale fluctuations around a stable state that
has so far been observed in longitudinal
studies over longer periods of time. The
dimension of day time should therefore be
considered when interpreting studies of
human and mouse microbiota composi-
tion. How the intestinal ecosystem orches-
trates its rhythmic fluctuations and
ensures a recurrent pattern in a 24-hour
period remains elusive. In addition, the
daily adaptations in oscillations around a
stable composition might confer a large
range of biological benefits to the ecosys-
tem, including the prevention of patho-
genic invasion of the microbial niche, and
the detoxification of noxious xenobiotics.
The introduction of such factors into the
intestinal community is not constant over
the course of a day, and anticipatory daily
fluctuations in microbiome activity might
be necessary to prevent detrimental effects
on the ecosystem.

Dietary Determinants
of Microbial Oscillations

A fundamental task of the circadian
clock is the temporal orchestration of
metabolism. Several interdependencies
between the circadian clock and metabolic
pathways have been identified, for
instance the coupling of the NADC path-
way to the core molecular clock.32-36 The
cross-talk between metabolic pathways
and the circadian clock ensures a temporal
profiling of metabolic activities through-
out the day. This tightly controlled
sequence of metabolic events is necessary
to synchronize the anabolic and catabolic
pathways of energy turnover to diurnal
variations in nutrient availability. Indeed,
feeding time is a central driver of periph-
eral body clocks, as evidenced by 3 strik-
ing observations: First, timed feeding in
which access to food is only provided at
restricted times of the light-dark cycle
uncouples peripheral clocks from the mas-
ter clock in the brain, demonstrating
autonomy of peripheral clocks and domi-
nant entrainment by feeding times.37,38

Second, mice with genetic disruption of

the circadian clock not only lose a large
proportion of transcriptome oscillations,
but also their strict nocturnal feeding pat-
tern, indicating that the circadian clock
governs the behavioral circuits determin-
ing rhythmic feeding-fasting activity.
Third, timed feeding can, at least in part,
restore this loss of transcriptional and
behavioral rhythms, suggesting that oscil-
latory processes exist which solely rely on
feeding rhythms, and can persist in the
absence of a functional circadian
clock.39,40

We found all 3 paradigms of food-
entrainable clocks to apply to the intesti-
nal microbiota. Limiting food access in
mice to the dark or light phase only
induced a phase shift in microbial oscilla-
tions while keeping the overall number of
oscillatory commensals constant. Further-
more, the loss of bacterial oscillations in
Per1/2-deficient mice, which are dysfunc-
tional in the circadian clock, was restored
by subjecting them to scheduled feed-
ing.30 Therefore, feeding times are a dom-
inant driver in the temporal orchestration

of microbiome activity over the course of
a day.

In addition to the timing of food
intake, the type of food that is consumed
seems to determine the activity of the cir-
cadian clock. Mice fed a high-fat diet
exhibit attenuated amplitudes of clock
gene oscillations, alterations in locomotor
activity rhythms, and massive reprogram-
ming of the circadian transcriptome.41,42

High-fat diet also alters the diurnal orga-
nization of the microbiome. While cyclic
rhythmicity in the abundance of commen-
sal bacteria generally persists in mice on
high-fat diet, their overall number is
reduced compared to controls, and cyclic
bacteria species are not identical between
the 2 conditions.31 The type of food is
therefore a determinant of extent and
magnitude of microbial community oscil-
lations. Interestingly, time-restricted feed-
ing prevents the adverse metabolic effects
of high-fat feeding on the host,43,44 indi-
cating that not the high-caloric, high-fat
content of the diet per se, but rather the
mistiming of nutrient availability with

Figure 1.Model of cooperative host-microbial diurnality Light entrains the master clock of the host,
whose rhythmic activity determines the time of food intake. Feeding times are controlling diurnal
activity of the microbiome, which in turn is necessary for metabolic homeostasis of the host.
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respect to circadian metabolic activity is
responsible for the development of meta-
bolic disease. Time-restricted feeding did
not rescue the detrimental effect of high-
fat feeding on diurnal oscillations in the
intestinal microbiota; however, certain
commensal species regained rhythmic
activity upon scheduled feeding.31

Therefore, in addition to the entrain-
ment of the host circadian system, feeding
rhythmicity also exerts a powerful effect
on the symbiotic community of bacteria
colonizing the mammalian intestine
(Fig. 1).

Linking Circadian Disruption,
Metabolic Disease, and the

Microbiome

Disruption of the circadian clock is a
common hallmark of modern human life-
style that was made possible with the
invention of electric light, thereby creating
independence of environmental light
availability and uncoupling human activ-
ity from the diurnal timing of geophysical
conditions. Together with the increase in
global traveling activity across time zones,
these changes have posed new challenges
to the human circadian clock machinery,
including repetitious re-adaptation to
environmental light-dark conditions dur-
ing jet lag and shift work. Chronic disrup-
tion of the circadian clock has been
associated with a number of diseases,
including obesity, diabetes, and cancer.
Notably, these very conditions have been
repeatedly associated with an aberrant
composition of the intestinal microbiome,
termed dysbiosis.45-49 Indeed, dysbiosis
arises under conditions of clock defi-
ciency, either in mice with genetic dele-
tion of core clock components, or in
humans and mice exposed to chronic
environmentally induced circadian distur-
bances modeling jet lag or chronic shift
work.30,50 This aberration of normal bac-
terial community composition seems to
be functionally involved in the adverse
metabolic consequences of clock disrup-
tion: Antibiotic treatment ameliorates
obesity and glucose intolerance in mice
subjected to jet lag, and transfer of dysbio-
sis from jet lagged mice and humans to
germ-free mice fully transfers metabolic

disease manifestations to a new host.30

These observations add circadian clock
disruption to the list of conditions that
can lead to microbe-induced obesity.
They also suggest that the microbiota
might constitute a previously unrecog-
nized link between the rise of metabolic
diseases and misalignment between the
body clock and the geophysical time.

Perspective

The identification of diurnal micro-
biota oscillations provides a new perspec-
tive on our understanding of the interplay
between the circadian clock and the envi-
ronment. The rhythmic adaptation to
geophysical fluctuations over the course of
a day seems to be a functional principle
that extends to the entire meta-organism
of both host and symbiotic communities.
Interestingly, both parts do not perform
their rhythmic functions independently
from one another, since the host circadian
clock is required for diurnal oscillations of
microbiota composition and function,
and the presence of the microbiota is
required for rhythmic signaling events in
intestinal epithelial cells.51 The mecha-
nisms of this novel aspect of host-micro-
biota interplay, the role of microbial
oscillations for the beneficial effects of die-
tary interventions, and the connection of
microbiota rhythmicity with the effects of
the host circadian clock on metabolic
health and longevity are intriguing aspects
arising from the recognition of daily
microbial cycles.

Furthermore, the diurnal program of
the microbiome and its disruption in vari-
ous settings of disease may offer an oppor-
tunity for nutritional and biotic
interventions. Since feeding times are a
major driver of microbial cycling, it might
be possible to direct microbial activity to a
preferred time of day. For instance, differ-
ent diseases might be associated with exac-
erbated, diminished, or phase-shifted
microbiome rhythms, and timed feeding
might provide an elegant means of dietary
intervention in order to restore healthy
oscillations of commensals. Similarly, the
impact of pro- and pre-biotic interven-
tions on diurnal activity of the micro-
biome remains unknown, and will present

an attractive avenue of future research on
this new dimension of host-microbial
interactions.
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