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Recent work including high-resolu-
tion genome-wide analysis uncov-

ered a new trimeric complex involved in
transcription elongation, both as an inte-
gral part of the NuA4 histone acetyl-
transferase and as an independent
functional entity. The complex is con-
served in eukaryotes and is named TIN-
TIN, for Trimer Independent of NuA4
for transcription Interactions with
Nucleosomes. This point of view covers
the current knowledge regarding
TINTIN’s function in modulating chro-
matin structure and influencing tran-
scription elongation in eukaryotes. It also
points to several physical and functional
links to co-transcriptional processes,
including interactions with the mRNA
splicing machinery and the nuclear
exosome.

NuA4/TIP60 for Nucleosome
Transactions

Biogenesis of mRNA is vital for trans-
lating genetic information into protein. It
is a multistep event involving transcription
and mRNA processing in the nucleus fol-
lowed by export of mRNA to the cyto-
plasm where protein synthesis takes place.
All the steps in this process are coupled
and tightly regulated to ensure that only
properly processed mRNA is efficiently
exported to cytoplasm.1,2 Chromatin
structure and dynamics plays a critical role
in regulating transcription3 and also
appears to be central to the process of link-
ing transcription to mRNA processing
steps.4

As with any other DNA related pro-
cess, the different stages of transcription

are profoundly affected by chromatin
structure, which is specifically modulated
so that transcriptional machinery can
access DNA.3 Specific post-translational
modifications of histones within chroma-
tin play critical roles in the process. The
majority of chromatin modifying enzymes
can only act on chromatin when function-
ing as part of a multiprotein assembly.
One essential and highly conserved chro-
matin modifying enzyme is the NuA4
(TIP60 in mammals)5 histone acetyltrans-
ferase complex. NuA4 has been implicated
in the regulation of gene transcription
through local recruitment by DNA bound
transcription factors6-9 or by histone
marks and other regulators.10-13 Notably
NuA4 contains subunits, which are also
present in other chromatin modifying
enzymes. Of particular interest is chromo-
domain containing subunit Eaf3. It not
only resides in NuA4, but is also a subunit
of another complex with opposing activ-
ity, the Rpd3S histone deacetylase com-
plex. While NuA4 is generally linked to
transcriptional activation by its acetylation
activity in “opening” promoter nucleo-
somes,6,9 Rpd3S is associated with
repressed chromatin structure on coding
regions. Rpd3S deacetylates the nucleo-
somes and ensures proper refolding of
chromatin and inhibition of spurious
transcription from cryptic promoters
within the coding region of genes.14-16

Interestingly the chromodomain of Eaf3
interacts with H3K36me3 and recruits
Rpd3S to the gene coding regions.14-16 It
remained puzzling for some time, why
Eaf3 directs only Rpd3S to H3K36me3
over gene bodies, but not NuA4? Subse-
quently it was shown that combined
action of PHD domain of Rco1 and
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chromodomain of Eaf3 specify recogni-
tion of the methyl H3K36 mark by the
Rpd3S complex.17

Adding to the complexity, we recently
provided evidence for the presence of Eaf3
in another small complex consisting of
Eaf5/Eaf7/Eaf3.18 Tandem affinity purifi-
cation followed by gel filtration clearly
demonstrated that the Eaf5/7/3 trimer
exists as a native complex outside of
NuA4. We further showed that eaf5/7
mutant cells share similar phenotypes, in
which some are shared with other compo-
nents of NuA4 while others are specific to
the trimer, further supporting the notion
of an independent function. Due to its
biochemical characteristics and molecular
functions, this newly characterized sub-
module is named as the TINTIN com-
plex, for Trimer Independent of NuA4
involved in Transcription Interactions
with Nucleosomes. The Eaf7 homolog in
higher eukaryotes MRGBP interacts
directly with MRG15, the human homo-
log of Eaf3. Gel filtration and a large-scale
proteomic study indicate that the
MRGBP-MRG15 complex also exists
independently of the TIP60 complex.19

Results in our lab (K. Jacquet and J. Côt�e;
in preparation) also demonstrate the dis-
tinct function of MRGBP-MRG15. Since
there is no homolog of Eaf5 in human
cells, MRGBP-MRG15 dimer is likely the
functional homolog of the yeast TINTIN
complex.

Our studies clearly demonstrate that
Eaf5/7/3 exists as a separate entity as well
as part of the larger NuA4 complex. While
we showed that TINTIN tethers NuA4
through Eaf5, preliminary results indicate
that the binding of TINTIN to NuA4 is
mediated by its interaction with NuA4
scaffold subunit Eaf1 (AL. Steunou, J.
Cote, unpublished data). However, it is
still not known how this association to
NuA4 is regulated. It is possible that the
selective association/detachment of TIN-
TIN to NuA4 is regulated through differ-
ent cell cycle stages or in response to
upstream signaling regulated by post-
translational modifications (PTMs) on
either protein. The identification of the
TINTIN complex further highlights the
major challenge of shared or common
subunits in the study of chromatin modi-
fying complexes. It is thus required to

proceed with caution when selecting tar-
gets to investigate the specific roles of
these multisubunit players.

TINTIN role in transcription
elongation

Native chromatin structure is intrinsi-
cally incompatible with elongating RNA-
PII. During transcription elongation,
chromatin structure is modulated in order
to allow access to elongating RNAPII.3,20

However, the proper refolding of chroma-
tin after transcription by RNAPII is of
utmost importance to the cell. Detrimen-
tal consequences that result from its defi-
ciency include spurious transcription from
cryptic promoters within the coding
region of gene.21,22 Histone chaperones,
chromatin modifying enzymes and ATP
dependent chromatin remodelers23,24 are
all key factors necessary for proper chro-
matin refolding.

Compared to NuA4, TINTIN com-
plex is more highly enriched over coding
regions relative to promoters in genomic
mapping, suggesting the involvement in
transcription elongation.18 Furthermore,
we showed that the trimer travels with
elongating Pol II over the gene bodies by
utilizing a dual interaction surface with
both H3K36me3 and phosphorylated
RNAPII (Ser2). Both interactions are
required for normal association on the
body of transcribed genes, but Ser2-P on
Pol II C-terminal domain (CTD) could
be more important for targeting while
H3K36me3 may be more linked to action
on nucleosome dynamics, as is the case for
Rpd3S.25,26 This association to coding
regions seems to destabilize nucleosomes,
as trimer mutants suppress cryptic tran-
scription detected in set2 deletion strains.
Intriguingly, by interacting with histone
chaperons, TINTIN prevents the incorpo-
ration of new histones and helps recycle/
refold nucleosomes after the passage of
pol II. Some of the critical players in chro-
matin refolding and histone exchange
include histone chaperones Spt6, FACT,
Asf1 and the chromatin remodelers Chd1
and Isw1.24 It will be interesting to study
whether there is crosstalk between TIN-
TIN and these key players of chromatin
refolding. If so, the underlying mecha-
nisms would be pursued. Further analysis
including mutant effects on cryptic

transcription or the global transcriptome
by RNA-seq would shed light on this
pathway.

TINTIN and mRNA processing
It is well-established that mRNA proc-

essing occurs during transcription. Alter-
native splicing (AS) requires a vast array of
proteins that catalyze splicing events. Both
optimal RNA polymerase II elongation
rate as well as the Pol II CTD play critical
role in mRNA processing.2,27-29 Chroma-
tin structure and epigenetics also play
important roles in co-transcriptional splic-
ing.4,30 One of the key events in the AS
process is recognition of the splice site by
proteins that either promote or suppress
splicing. Polypyrimidine-tract binding
protein (PTBP) is a splice junction-bind-
ing protein that suppresses splicing result-
ing in exon exclusion. PTB-dependent
genes are enriched in H3K36me3. The
high levels of H3K36me3 along the gene
attract MRG15, which in turn interacts
with PTB, recruiting it to the nascent
RNA.4 Furthermore, the MRGBP-
MRG15 dimer has now been linked to
the splicing process in mammals linked to
pausing of elongating polymerases carry-
ing Ser2-P on their CTD.31 In yeast,
TINTIN is associated with highly
expressed genes. Interestingly, most of
yeast intron-containing genes are highly
expressed ribosomal protein (RP) genes.
Moreover, TINTIN shows functional
interaction with SWR1-C and
Bdf1,18,32,33 important regulators of alter-
native splicing.34 It is likely that the trimer
plays a similar role as MRGBP-MRG15
in splicing. Further study on the role of
TINTIN in mRNA splicing will shed
more light on this critical process in the
context of chromatin.

TINTIN and mRNA quality control
Secondary mass-spectrometry hits in

Eaf7-TAP purifications also include pro-
teins associated with the exosome35 (and
our unpublished data). An important
quality control for mRNA production is
the degradation of aberrant transcripts by
the exosome. The exosome is a highly
conserved multiprotein complex with
3-5’ exonuclease activity.36,37 Depletion
of exosome subunits results in an in-
crease in transcription read-through.38,39
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Interestingly we detected a small but
reproducible increase of transcription
read-through in eaf5/7 mutants using a
reporter plasmid. Importantly, eaf7 and
eaf5 mutants also show a negative genetic
interaction with several components of
the nuclear exosome.40 Since mRNA bio-
genesis/processing events are tightly cou-
pled, it is not surprising that eaf5/eaf7 also
show negative interaction with the THO-
TREX mRNA export machinery. Alto-
gether, these studies point to a role for
TINTIN, not only in co-transcriptional
nucleosome recycling, but also in mRNA
processing, splicing, termination and
quality control. Further studies are cer-
tainly needed to confirm and dissect the
function of TINTIN in relation to the
processing of the mRNA molecules.
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