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Abstract

Introduction—Melanocytes produce pigment granules that color both skin and hair. In the hair 

follicles melanocytes are derived from stem cells (MelSC) that are present in hair bulges or sub-

bulge regions and function as melanocyte reservoirs. Quiescence, maintenance, activation, and 

proliferation of MelSC are controlled by specific activities in the microenvironment that can 

influence the differentiation and regeneration of melanocytes. Therefore, understanding MelSC 

and their niche may lead to use of MelSC in new treatments for various pigmentation disorders.

Areas covered—We describe here pathophysiological mechanisms by which melanocyte 

defects lead to skin pigmentation disorders such as vitiligo and hair graying. The development, 

migration, and proliferation of melanocytes and factors involved in the survival, maintenance, and 

regeneration of MelSC are reviewed with regard to the biological roles and potential therapeutic 

applications in skin pigmentation diseases.

Expert Opinion—MelSC biology and niche factors have been studied mainly in murine 

experimental models. Human MelSC markers or methods to isolate them are much less well 

understood. Identification, isolation and culturing of human MelSC would represent a major step 

toward new biological therapeutic options for patients with recalcitrant pigmentary disorders or 

hair graying. By modulating the niche factors for MelSC it may one day be possible to control 

skin pigmentary disorders and prevent or reverse hair graying.

Correspondence to: David E. Fisher MD, PhD, Edward Wigglesworth Professor & Chairman, Department of Dermatology, 
Director, Melanoma Program MGH Cancer Center Director, Cutaneous Biology Research Center Massachusetts General, Hospital, 
Harvard Medical School Bartlett 6, 55 Fruit Street, Boston, MA 02114, Tel: 1-617-643-5428, Fax: 1-617-643-6588, 
dfisher3@partners.org.
1st Author: Ju Hee Lee, MD, PhD, Department of Dermatology, Cutaneous Biology Research Center, Massachusetts, General 
Hospital, Harvard Medical School, Bartlett 6, 55 Fruit Street, Boston, MA 02114, Tel: 1-617-643-6453, Fax: 1-617-643-6588, 
Jlee150@mgh.harvard.edu
Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University, College of Medicine, 50-1, Yonsei-ro, 
Seoudaemun-gu, Seoul, Korea, 120-752, Tel: 82-2-2228-2080, Fax: 82-2-393-9157, juhee@yuhs.ac

Financial and competing interests disclosure
The author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial 
conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock 
ownership or options, expert testimony, grants or patents received or pending, or royalties.

HHS Public Access
Author manuscript
Expert Opin Biol Ther. Author manuscript; available in PMC 2015 October 23.

Published in final edited form as:
Expert Opin Biol Ther. 2014 November ; 14(11): 1569–1579. doi:10.1517/14712598.2014.935331.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

melanocyte; melanocyte stem cell; pigmentation; vitiligo; graying hair

1. INTRODUCTION

Melanocytes that are located in the epidermis and hair follicles of the skin play a major role 

in pigmentation of the skin or hair. Pigment producing cells are also distributed in the eyes, 

ears, brain, heart, lung, and bone [1–3]. The functions of melanocytes in these other locations 

are not known in detail, although a role in scavenging reactive oxygen species has been 

reported [4,5]. In the skin, melanin pigment is taken up by skin keratinocytes and organized 

into a shield around the nucleus where it is thought to protect genomic DNA from the 

harmful effects of ultraviolet light. Pigment produced by the melanocytes in hair follicles is 

incorporated into the growing hair and therefore determines the coat color in mammals. : 

The maintenance of the melanocyte is dependent on a population of melanocyte stem cells 

(MelSCs), a quiescent population that is present in the bulge region of the hair follicle and 

acts as a melanocyte reservoir. After migration into epidermis, MelSCs give rise to 

differentiated, pigment-producing melanocyte. Also, as many local and systemic factors are 

thought to participate in the pathogenesis of skin diseases such as vitiligo and hair growth 

disorders, it is important to understand the environmental effects on melanocytes including 

serotoninergic/melatoninergic system in the skin response to stresses as well as cytochrome-

dependent and proopiomelanocortin (POMC) systems [6–10].

Skin and hair melanocytes are derived from neural crest cells early in development [11–14]. 

The cranial and trunk-located neural crest stem cells differentiate during migration. 

Melanoblasts are precursor cells with properties similar to Schwann cell precursors and they 

share various signaling pathways with neurons [15–18]. After migration into the epidermis, 

melanocyte precursor cells are positioned in the lower permanent portion (LPP) during 

formation of the hair placode. The melanocytic lineage population in this region is thought 

to include melanocyte stem cells (MelSCs), previously known as amelanotic melanocytes in 

human follicles. These melanocyte precursor cells can remain and persist in the dermis of 

the skin, and have been suggested to have overlapping characteristics with cells of the 

nervous system [19]. For example, cultured melanoblasts can be differentiated towards 

neurons, glial cells, or smooth muscle cells [20–22]. This indicates that neural crest stem cell-

derived melanoblasts in the skin retain reprogramming ability and show multipotency 

related to signals from the microenvironment. Also, melanocytes are sensory and regulatory 

cells for the maintenance of the cutaneous homeostasis and have been defined as 

neuroendocrine cells that could efficiently regulate local and systemic homeostasis [7,14,23].

During the hair cycle, MelSCs differentiate into terminally differentiated melanocytes that 

produce mature pigment containing melanosomes, and that are incorporated into the 

growing hair shaft (anagen coupled melanogenesis) resulting in pigmented hair [24–30]. In 

catagen, melanin formation is switched off and is absent throughout telogen [26]. A key 

factor during melanocyte differentiation is microphthalmia associated transcription factor 

(MITF) [31–34]. MITF controls the expression of key pigment synthetic genes including 
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TRP-1, DCT, and tyrosinase [32]. Various extracelluar signaling pathways converge on 

MITF to control both migration and survival of melanoblasts [35–40].

2. MELANOCYTE STEM CELLS IN THE HAIR BULGE

Differentiated melanocytes in the hair bulb and melanocyte precursor cells (transient 

amplifying (TA) cells) in the outer root sheath originate from MelSCs in the hair follicle 

bulge region (Figure 1). In mice, MelSCs can be identified by use of 

dopachrometautomerase (Dct) promoter. Specifically in Dct promoter-LacZ reporter 

engineered mice, non-pigmented small oval-shaped cells with scant cytoplasm that share 

similarity with amelanotic melanocytes localized in the lower permanent portion of the hair 

follicle stain LacZ-positive and therefore are identified as MelSCs [41]. In contrast to bulb 

melanocytes, these MelSCs exhibit low expression of pigmentation-related genes [42–45]. 

Osawa et al. isolated murine MelSCs and analyzed their gene expression patterns, finding 

that multiple key genes such as Dct and Pax3, potential candidate MelSC markers, were also 

expressed in transient amplifying (TA) cells. Other important melanocytic genes such as Kit, 

Si, Tyr, Tyrp1, Mki67, Lef1, Sox10, and Mitf were expressed at higher levels only in TA 

cells, not in MelSC [42].

MelSCs remain in a quiescent state during the telogen phase of the hair cycle without 

transcription of pigmentation-related genes [29,42,44,45]. However, once activated in the 

anagen phase of the hair cycle, pigmentation-related genes are upregulated and the cells 

proliferate with dendrite formation [41]. After the mid-anagen phase, the pigmentation-

related genes are downregulated and MelSCs become inactivated again [46–48]. Repeated 

hair cycles result in melanocyte differentiation from the MelSCs, and eventually 

differentiated melanocytes undergo apoptosis during the catagen stage of the hair 

cycle [49,50], although MelSCs still remain in the LPP of the hair follicle. The terminal 

differentiation of melanocytes within the hair follicle is coupled with hair cycle 

progression [51]. During the catagen and telogen stages, MelSCs reside in the LPP region of 

the hair, indicating that MelSC activation is related to the niche factors during the hair 

follicle cycle [24,41,52]. In humans, a selective MelSC marker has not been elucidated, in part 

because of the limited availability of genetic studies of these human amelanotic 

melanocytes [53]. Human amelanotic melanocytes are considered equivalent to MelSCs in 

mice because they show similar morphology and location in the LPP [46,53–55].

3. MELANOCYTE STEM CELL NICHE

The specific niche environment that surrounds MelSC plays a major role in regulating 

quiescence, differentiation, proliferation, and survival of MelSC [41,43,46,56]. For example, 

certain environmental conditions can maintain quiescent characteristics of MelSCs by 

downregulating basal transcription and translational levels of some housekeeping 

genes [42,57].

Although many factors, including genes, transcription factors, and signaling pathways are 

implicated in embryonic development, differentiation, and proliferation of the melanoblast 

and melanocyte (e.g. c-Kit, SCF, Ednrb, Wnt, Mitf, Pax-3, Sox-10, and c-myc), the niche 

factors that directly regulate the MelSCs are incompletely understood [58–61]. Some niche 

Lee and Fisher Page 3

Expert Opin Biol Ther. Author manuscript; available in PMC 2015 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



factors have been proposed to affect MelSC maintenance and quiescence in mice, and have 

been summarized in Table 1. For example, MITF, known as the master regulator of 

melanocyte development, differentiation, and pigmentation, also plays an important role in 

MelSC maintenance [46,59,62]. Bcl2, a survival gene which is a downstream target of MITF, 

plays a central role in MelSCs [46,63]. Bcl2 protects against apoptosis of melanocytes and 

promotes the survival of MelSCs, thus mutation of Bcl2 causes melanocyte loss [63–65]. 

More specifically, it was observed that germ line BCL2 knockout results in complete loss of 

melanocyte stem cells at post-natal day 8, but this death did not occur for bulb melanocytes. 

As a consequence, fur remained fully pigmented through the initial hair follicle cycle, but 

became white starting at the second hair follicle cycle. Additional analysis revealed that 

TGF-β signaling is related to MelSC quiescence or MelSC depletion (in the absence of 

Bcl2) [41,46,63–65].

B-Raf and C-Raf protein kinases are important effectors of the MAPK pathway downstream 

of RAS [66,67]. Recently, a double-knockout of B-raf and C-raf in mice showed marked 

abnormality in coat color although single mutation of B-raf or C-raf did not show this 

phenotypic change, demonstrating a key function for these kinases (and likely for the 

MAPK pathway) in the self-maintenance of MelSCs [68].

MelSCs reside in the hair follicle bulge area where epidermal stem cells are located [48]. It is 

likely that factors related to epidermal stem cells may also affect MelSCs in the niche 

because of the proximity of these stem cell populations within the bulge. Wnt ligands are 

responsible for the activation of MelSCs to proliferate into melanocyte precursor cells 

whereas transforming growth factor-beta (TGF-β) is vital for the quiescence maintenance of 

MelSCs, a vital aspect of stemness [47,69,70]. Wnt signaling is upstream of Mitf and Pax3, 

which are also related to MelSC maintenance [71]. These Wnt pathway targets-- especially 

Pax3, Sox10, and Mitf--are likely to regulate MelSC maintenance. In particular Pax3 

prevents terminal differentiation of MelSCs into melanocytes, a process which is 

antagonized by β-catenin [21,71,72]. Activation of the Wnt signaling pathway results in 

MelSC differentiation into melanocytes, whereas inhibition maintains the MelSC phenotype. 

The niche expresses Wnt inhibitors such as DKK3, Sfrp1, and Dab2 [71,73]. Also, MelSCs 

themselves express DKK5, Sfrp1, Dab2, or Wif1 [42,44,71] which may help to maintain 

MelSC progeny in the niche.

Notch signaling is also involved in MelSC survival and maintenance [74–76]. Genetic 

ablation of notch signaling resulted in premature hair graying in mice [74,75]. Moriyama et 

al. demonstrated that notch signaling acts through the Hes1 downstream transcription factor. 

This finding suggests that, as with melanoblast development and differentiation, interactions 

and collaborations between the melanocyte lineage cells and hair follicle stem cells (HFSCs) 

plays an important role in the regulation of MelSC maintenance [77]. It has also been shown 

that Col17a1-mediated HFSC depletion results in MelSC defects [47]. Tanimura et al. [70] 

demonstrated that MelSC maintenance was rescued via TGF-β in Col17a1-knockout mice 

expressing COL17A1 under control of the Keratin promoter, which targets epidermal 

keratinocytes.
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Chang et al. [78] also showed that the transcription factor NFIB that controls endothelin 2 

(Edn2) expression, plays the role of a coordinator of HFSC-MelSC behaviors within the 

niche. The uncoupling of stem cell synchrony by HFSC-specific conditional targeting of 

Nfib occurs by promoting MelSCs to produce premature melanin pigmentation and results 

in precocious MelSC differentiation and HFSC apoptosis. This finding suggests the 

importance of cooperation between stem cells within the niche in skin injury, stress, and 

disease states, including skin cancer development involving the NFIB pathway.

Because of the convenience of genetic manipulation and identification of phenotypic 

changes of coat color, experimental results regarding MelSC maintenance are almost all 

derived from mouse models. The exact mechanisms controlling human MelSC biology are 

poorly understood and may have differences from what we have learned in mouse models. 

Evidence from the clinical the setting can provide precious clues to melanocyte stem cell 

biology and potential therapeutic applications for the future.

4. MELANOCYTE STEM CELLS IN HUMAN SKIN DISORDERS

4.1 VITILIGO

Vitiligo is a condition that causes skin depigmentation and occurs in 0.5–1% of the 

population [79,80]. Autoimmune, genetic, viral, or oxidative stresses have been proposed as 

the pathogenic mechanism(s) of melanocyte loss although the most common subtypes are 

likely to be autoimmune-based [81]. There is still debate over the complete versus partial 

absence of melanocytes in the vitiligo lesions, but it is generally accepted that melanocyte 

number is reduced and some patients show complete melanocyte loss in severe cases.

After therapy for vitiligo, such as immune-suppressive modalities, repigmentation frequently 

begins in the peri-follicular area. This likely arises from the reservoir of MelSCs in the hair 

follicle bulge [82]. Previously described amelanotic melanocytes from the outer root sheath 

are thought to be a reservoir for this migration [41,83]. Although it is difficult to identify the 

presence of melanoblasts or MelSCs in the clinical setting, non-pigmented melanocytes have 

been identified microscopically in chronic recalcitrant vitiligo [84], which suggests that 

MelSCs can remain in the niche and potentially provide a chance of repigmentation. It is 

also possible that the undifferentiated state of melanocyte stem cells prevents autoimmune 

recognition if such recognition would have required expression of melanocytic 

differentiation factors/antigens. Seleit et al. also showed that 54% and 63% of melanocyte 

precursor cells/MelSCs remain at the interfollicular and follicular areas of vitiligo lesional 

skin respectively [85]. Another clinical study demonstrated that 65.5% of 352 vitiligo patches 

showed a perifollicular repigmentation pattern on systemic PUVA (psoralin UVA) 

treatment [86]. Another vitiligo treatment option, narrow band UVB (NB-UVB (311-nm)), is 

a relatively effective therapy and has been substituted for conventional PUVA therapy [87]. 

NB-UVB treatment induces Sox10, Kit, and MC1R and enhances differentiation of 

melanocytes, possibly from the MelSCs [88]. The mechanism of repigmentation after UV has 

been also studied. UVB irradiation induces wnt7a activation, which triggers MelSC 

differentiation through the activation of β-catenin and migration of melanocyte precursor 

cells to the epidermis with Kit induction [89]. The distribution of MelSCs and melanocytes in 

vitiliginous lesions is schematically illustrated in Figure 1.
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Several areas are known to resist repigmentation during vitiligo treatment, such as the hands 

and feet [79] or leucotrichia-associated lesions [90]. The most relevant reasons for 

recalcitrance to photochemotherapy in acral vitiligo lesions seem to be inherent lower 

melanocyte density, lower melanocyte stem cell reservoirs, and lower baseline levels of 

epidermal stem cell requiring factors [91].

Becasue MelSCs reside in the outer root sheath of hair follicles, suspensions of outer root 

sheath cells have functioned as a source of MelSC when transplanted into patients with 

vitiligo or leukoderma [92,93]. Vanscheidt and Hunziker [92] have used single-cell 

suspensions of plucked hair follicles in the treatment of vitiligo with good results. Mohanty 

et al. [93] reported that application of non-cultured autologous outer root sheath cell 

suspensions resulted in repigmentation in 65.7% of vitiligo patches. Although a larger long-

term study is essential for validation of the efficacy, these studies demonstrated a therapeutic 

potential of using MelSCs in pigmentary disorders. This approach is a more focused strategy 

than the use of epidermal suction blister transplants for treatment of vitiligo, which are used 

quite widely throughout the world. Considerable research is still required in order to refine 

methods for use of melanocyte stem cells in vitiligo treatment. These will include methods 

for isolation, culture, supplementation, protection, and reactivation to repopulate epidermal 

melanocytes within hypopigmented lesions.

Epidermal melanocytes originate from follicular MelSCs after skin injury by a mechanism 

dependent on the melanocortin 1 receptor (MC1R) pathway. Thus, it is plausible that 

modulating the MC1R pathway might contribute to improvement to pigmentary disorders 

such as vitiligo, melasma, or postinflammatory hyper/hypopigmentation [94]. Furthermore, 

other clinical and cosmetic implications of MelSCs have been postulated in a review by 

Stanley [95]. Considering stem cell anatomy and biology, permanent hair removal by 

electrolysis or laser treatment should be focused on eliminating the hair bulge, even though 

there is some difficulty in targeting selectively the bulge areas. Because MelSC are 

unpigmented, they present challenges as targets of selective photothermolysis.

4.2 GRAYING HAIR

To study the mechanism by which MelSCs differentiation into hair follicle melanocytes, 

observational experiments of the coat color phenotype in genetically manipulated or mutant 

mice have been used. MelSCs reside in the lower permanent portion (LPP) of the follicle, 

also called the bulge region due to the insertion of the arector pili muscle at that location. 

Nishimura et al. [46] identified a mechanism for age-related hair graying in mice as MelSC 

depletion in the bulge and sub-bulge area. Loss of the same melanocyte population was also 

observed in an age-correlated fashion in human hair follicles (Figure 2). MelSC depletion 

was accompanied by ectopic pigmentation of bulge melanocytes -- a phenomenon which is 

predicted to be inconsistent with maintenance of the non-differentiated state required for 

maintenance of “stemness”. Indeed the presence of pigmented bulge melanocytes inversely 

correlated with melanocyte stem cell loss, and was also associated with apoptosis of these 

cells, suggesting that this ectopic pigmentation event represents a mode of melanocyte stem 

cell attrition during aging. Importantly, Nishimura and colleagues went on to demonstrate 

that MelSC depletion and subsequent graying hair is induced by genotoxic stresses (e.g., 
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ionizing radiation, H2O2 treatment, DNA damaging drugs, or DNA repair deficiencies) in 

mouse models, and these stresses also induce premature ectopic pigmentation in the bulge–

sub-bulge area where the MelSCs are located [96] (Figure 2).

Although the mechanism of hair graying is generally accepted to be incomplete MelSC 

maintenance and MelSC depletion, the ability to utilize MelSC for expansion and/or 

transplantation as a treatment for graying hair or leukotrichia remains a significant technical 

challenge. The bulge area of hair follicles shows a decrease in MelSCs and ectopic 

differentiation in the bulge–sub-bulge area upon aging [46]—findings which are seen in 

different mammalian species, suggesting that MelSC maintenance is incomplete with aging 

and results in stem cell depletion as well as hair graying. Two broad strategies which may 

conceptually improve the hair graying phenotype—but which carry technical challenges at 

this time—are to 1) identify a means of expanding and transplanting the melanocyte stem 

cells, or 2) identify a means of preventing the process by which melanocyte stem cells 

become ectopically pigmented and lose their stemness capabilities (Figure 2).

4.3 WOUND HEALING

Stem cells are activated for differentiation during tissue regeneration to provide functional 

mature cells [97]. Apart from the conventional function of melanocytes in pigmentation, a 

role for melanocytes in epithelial regeneration has recently been proposed. Chou et al. [94] 

performed an experiment that demonstrated migration and proliferation of MelSCs out of 

the niche after skin wounding or UVB irradiation (Figure 3). They further showed that this 

phenomenon is associated with the MC1R–ACTH-α-MSH signaling pathway and that 

MelSC migration preceded melanocyte proliferation. These findings imply that MelSCs play 

a role in wound healing after skin injury rather than simply maintaining quiescence, and 

suggest that follicular MelSCs may indeed be a source of epidermal melanocytes.

5. EXPERT OPINION: POTENTIAL CLINICAL APPLICATIONS OF 

MELANOCYTE STEM CELLS

Development of MelSCs as a biologic therapeutic method will require a better 

understanding of MelSC characteristics and identifying markers. So far, studies on MelSCs 

have been performed in murine models rather than in humans. Modeling of the interactions 

of stem cells and niche components observed using in vivo systems by isolation and culture 

of MelSCs has been attempted. Using keratinocyte XB2 cells as feeder cells, stem cell 

factor, and basic fibroblast growth factor (bFGF), Nishikawa-Torikai et al. [98] tried to 

culture MelSCs in Dct(tm1(Cre)Bee)/CAG-CAT-GFP mice and demonstrated replication/

proliferation and differentiation of the MelSCs although there was no evidence of dormant 

MelSCs. Furthermore, MelSCs could be isolated by a fluorescent activated cell sorter using 

the markers of c-Kitlow, side scatterlow, suggesting an undifferentiated state of MelSCs in 

mice. These cells could differentiate into melanocytes and application of this technology to 

human MelSCs will allow further investigation of human MelSC isolation.

For repigmentation in vitiligo, various medical therapies may be employed including 

corticosteroids, immunomodulators, phototherapy, 308-nm Excimer laser, or other adjuvant 
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therapies, whereas for stable hypopigmentary lesions, surgical therapies using cells or grafts 

may be utilized [99]. Although isolated or cultured MelSCs have not yet been used in the 

clinic, mature melanocytes have been transplanted into vitiligo lesions [100,101]. To date, 

many studies have used cultured/non-cultured melanocytes with/without keratinocytes or 

epidermal grafts containing melanocytes as treatment for depigmented lesions. Compared 

with epidermal grafting, transplantation of a non-cultured epidermal suspension showed 

better results, suggesting that keratinocytes and niche factors are crucial for 

repigmentation [102].

In addition, non-cultured epidermal suspension and outer root sheath (ORS) cells from 

extracted hairs showed statistically similar clinical repigmentation results in patients with 

stable vitiligo, indicating that epidermal melanocytes and follicular MelSCs may have 

similar effects [103]. However these modalities are mixtures of various cells, thus we cannot 

define the effect of MelSCs or melanocytes only. Although transplantation of cultured 

melanocyte suspensions showed excellent results in stable localized vitiligo with 84–94% 

repigmentation [101,104,105], in theory MelSCs may have the greater therapeutic potential of 

a more long-term benefit. The superiority of transplantation of MelSCs with renewal factors 

or terminally differentiated melanocytes should be determined after MelSCs can be isolated.

In addition, there has been an attempt to culture ORS cells from the hair follicles to 

regenerate melanocytes because the bulge area of ORS contains MelSCs as well as other 

stem cells. As ORS cells include pluripotent neural crest stem cell (NCSC)-like stem cells 

and quiescent stem cells that have potential to be differentiated into various cell types, ORS 

cells are a valuable resource in regenerative medicine [106]. Dieckmann et al. demonstrated 

methods to isolate melanocytes from ORS cells in human anagen hair and propagated them 

in vivo; moreover, the yields of the melanocytes could be improved by a sequential 

method [107,108]. Although this method is not yet used in the clinical setting, the source of 

the melanocytes could be the MelSCs in ORS and this represents a promising method for 

biologic therapeutics in the near future. Moreover, with narrow band-UVB (NB-UVB) 

treatment, hair follicle NCSCs were directly affected and differentiated into a melanocyte 

lineage that produced pigmentation in vitro [88]. Such studies suggest that these MelSC 

reservoirs are important for repigmentation of the skin. Thus, NB-UVB treatment together 

with biologic therapeutics using MelSCs is expected to have efficacy for pigment production 

in hypopigmentary disorders. The use of induced pluripotent stem (iPS) cells to generate 

melanocytes has also have been explored in several experiments, but has not yet been 

proved in vivo [109].

MelSCs are also responsible for hair graying; however, effective therapeutic methods to 

prevent or reverse hair graying have not been reported. Considering the pathogenesis of the 

graying hair, prevention of MelSC depletion, enhancement of MelSC renewal or 

maintenance, and control of the MelSC niche should be therapeutic directions for hair 

graying. For hyperpigmentary skin disorders, few studies involving MelSCs have been 

reported so far. Although congenital melanocytic nevi were revealed to be derived from skin 

stem cells that have melanocytic differentiation in immunohistochemical studies, further 

studies of MelSC biology in recalcitrant pigmentary disorders such as melasma and 

melanocytic nevi should be performed [110].
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In summary, methods for identification, isolation, and culturing of murine MelSCs have 

been developed and provide the biomolecular basis for research on the characterization and 

function of MelSCs. These findings will facilitate updated research in humans and further 

clinical applications of MelSCs can be expected. With the identification of specific markers 

for human MelSCs and in vivo tracing, we may be enable to elucidate the biology of 

MelSCs and melanocyte lineages. Furthermore, such efforts will provide novel therapeutics 

using MelSCs for various pigmentary disorders and hair graying, as well as a valuable 

model pertinent to other stem cell research.

Abbreviations

MelSC melanocyte stem cell

LPP lower permanent portion

MITF microphthalmia associated transcription factor

SCF stem cell factor

TGF-β transforming growth factor-beta

NB-UVB narrow band UVB

ORS outer root sheath.
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Figure 1. 
Possible related pathways in MelSC survival, maintenance, and differentiation. MITF, 

Bcl-2, B-Raf, C-Raf, TGF-b, Notch pathways are involved in MelSC survival and 

maintenance. PAX-3 and Wnt pathways are related to MelSC differentiation.
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Figure 2. 
MelSC in vitiligo. In the vitiligious lesion, the number of functional melanocytes and MelSC 

is decreased compared with the adjacent non-vitiligious lesion. MelSC or melanocyte 

precursor cells can remain in the hair bulge and provide the chance of repigmentation. 

During the process of repigmentation after the treatment of vitiligo, repigmentation 

frequently starts in the perifollicular area from the hair bulge MelSC. Sox10, Kit, MC1R, 

and wnt7a are related to MelSC activation, migration, and differentiation.
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Figure 3. 
MelSC in graying hair. Factors such as aging and genotoxic stress can induce hair graying 

through MelSC loss or MelSC differentiation into melanocytes. Repeated MelSC loss 

induces MelSC depletion and leads to hair graying. For hair pigmentation, not only MelSC 

maintenance but also melanogenesis of hair matrix melanocytes and melanin transfer to the 

hair shaft should occur. MelSC maintenance and activation are regulated by niche factors 

including Bcl-2, MITF, B-raf, C-raf, TGF-β, PAX3, Wnt, and Notch.
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Figure 4. 
MelSC in wound healing. Wounded skin lacks melanocytes on the basal layer of the 

epidermis. As wound healing progresses, activated MelSC migrate to the epidermis from the 

hair bulge area rather than proliferating. The MelSC then proliferate into melanocytes to be 

the source of epidermal melanocytes and maintain the cutaneous epithelium biology. This 

migration and proliferation of MelSC after skin wounding is dependent on the MC1R–

ACTH-α-MSH signaling pathway.
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Table 1

Niche factors that affect melanocyte stem cell maintenance and quiescence in mice

Protein Function Mouse model Result Reference

Bcl-2 MelSC maintenance Bcl-2 null mice Pigmentation loss Veis et al. [111]

Kamada et al.[112]

Yamamura et al. [64]

Mak et al. [63]

Mitf MelSC survival
MelSC maintenance

Bcl-2 deficient mice Pigmentation loss
LPP colonization

Nishimura et al. [46]

C-Kit Bcl activation
Not required for MelSC

c-Kit KO No hair color change McGill et al. [62]

BRAF, CRAF MelSC maintenance Raf KO mouse Graying hair Valluet et al [68]

TGF-β MelSC maintenance TGFbRII-deficient
mice

Loss of MSC Nishimura et al. [47]

Pax3 MelSC differentiation
MelSC development

Mitf activation
Coexpression with Mitf and Sox 10

Lang et al. [72]

Wnt MelSC differentiation
MelSC maintenance

Control Pax3,
Mitf function

Kubic et al. [71]

Lang et al. [72]

Moriyama et al. [74]

Notch MelSC survival
MelSC maintenance

RBP-J KO mice Premature hair graying Osawa et al. [76]

Moriyama et al. [74]

Schouwey et al. [75]
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