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Introduction
Cancer and its treatment exert a heavy toll on the body, 
leaving permanent reminders of their presence. The 
toll can be both physical and psychological, and of the 
myriad symptoms which may result, chronic pain is 
commonly encountered with a prevalence of approxi-
mately 30%.1,2 Increased survival rates result in 
increased numbers of patients experiencing persistent 
pain. This can be due either to the disease process or 
from treatment. Pain negatively impacts on a survivor’s 
quality of life, affecting their ability to recover and 
regain the functional levels possessed prior to their 
diagnosis. Additionally, persistent pain impedes 
employment prospects and negatively influences social 
interactions and emotional well-being.3,4

This review will describe some of the common 
causes of persistent pain in cancer survivors, detailing 
our current understanding of the pathophysiology, 
outlining the clinical manifestations of individual pain 
states and exploring preventative measures. Persistent 

pain in cancer survivors represents a major clinical 
challenge.

Chemotherapy-induced peripheral 
neuropathy
Peripheral neuropathies represent a major cause of 
pain in cancer survivors and may arise at any stage of 
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the disease process. Causes of peripheral neuropathy in 
cancer vary, but it can result from direct effects of the 
tumour itself as observed in paraneoplastic polyneu-
ropathies,5 or from its treatment with chemotherapeu-
tic agents, termed chemotherapy-induced peripheral 
neuropathy (CIPN).6 Although chemotherapeutic 
neurotoxicity may affect the central nervous system, 
peripheral sensory neuropathy is most prevalent, 
affecting from 10% to 100% of patients depending on 
factors such as the presence of co-morbidities, choice 
of chemotherapeutic agent and cumulative dose.7,8 
CIPN represents a major concern in the management 
of malignancy. Many antineoplastic agents are neuro-
toxic, and the symptoms which occur with CIPN are 
often severe enough to make dose adjustment or cessa-
tion of treatment necessary, resulting in potentially 
suboptimal therapy.9

Pathophysiology
The underlying pathophysiology of CIPN is complex 
and to a certain extent dependent on the causative agent 
(Table 1). The polyneuropathy encountered in CIPN is 
predominantly sensory in nature, with both large and 
small sensory fibres affected, motor nerve fibre involve-
ment being less common and often subclinical.10

Sensory nerves are pseudounipolar in structure, with 
one cytoplasmic extension travelling to the periphery 
and the other to the spinal cord from the cell body 
located in the dorsal root ganglion (DRG). This single 
peripheral axon is of varying length, but it may be over 
1.5 m in the limbs.11 Myelinated large diameter Aα and 
Aβ fibres act as afferents from low-threshold tissue 
mechanoreceptors. Small calibre myelinated Aδ and 
unmyelinated C fibres transmit nociceptive information 
from the peripheries,12 and the skin is richly innervated 
by a dense plexus of these neurones (Figure 1(a)).13,14 
Unmyelinated fibres cross the epidermal–dermal junc-
tion (basement membrane) into the epidermis, forming 
intra-epidermal nerve fibres (IENFs). These nocicep-
tors respond to thermal, mechanical and chemical 
stimuli.15 A diverse array of receptors and signalling 
molecules are present in these nociceptor terminals.16

Individual neurones are dependent upon a complex 
arrangement of anterograde and retrograde axonal 
transport systems to deliver proteins, lipids and other 
substrates to the periphery and to return harmful 
metabolites to the soma to be processed.17 Disruption 
of this system renders the neurone, whose peripheral 
segment already functions on a physiological ‘knife-
edge’, vulnerable to damage.18

Microtubule disruption
The pathogenesis of CIPN has not been fully eluci-
dated. Chemotherapeutic agents interfere with neuronal 

functioning via a number of mechanisms, with individ-
ual agents differentially affecting specific peripheral 
nerve structures.19 Predominant among these mecha-
nisms is the disruption of the intracellular microtubule 
scaffold which facilitates axonal transport, leading to a 
reduction in peripheral nutrient supply and subsequent 
neuropathy. Agents which interfere with microtubules 
include the taxanes, colchicine which inhibits microtu-
bule self-assembly and vinca alkaloids such as vincris-
tine which induce microtubule instability.20–22 Such 
neuropathies manifest themselves in the form of neu-
ronal ‘die back’ caused by the Wallerian degeneration of 
the distal segments of nerves, which, due to their dis-
tance from the nerve soma are most susceptible.7 This 
explains the ‘length dependent’ nature of the neuropa-
thy.23 For Aδ and C fibres innervating the skin, die back 
causes a reduction in the density of unmyelinated fibres 
crossing into the epidermis with those fibres remaining 
having abnormal morphology and function (Figure 
1(b)).24 Reductions in IENF density or the degenera-
tion of terminal unmyelinated fibres is a common lesion 
in multiple toxic neuropathies.25,26 However, it is impor-
tant to recognise that neuronal die back may potentially 
represent a common final neurodegenerative feature of 
a multifactorial process.

Several exceptions to the microtubule disruption 
mechanism of CIPN exist. In some animal models of 
CIPN, there is little evidence of gross damage to 
nerves.27 Significant dose-limiting peripheral neuropa-
thy is commonly reported with bortezomib, an agent 
which does not affect microtubules28 while colchicine, 
a formidable disruptor of microtubule structure does 
not cause pain.29 Putative mechanisms have been 
developed providing alternative neuronal targets for 
chemotherapy agents. These have focussed on chemo-
therapy-related mitotoxicity leading to interruptions in 
neuronal energy supply (the peripheral mitotoxicity 
theory), on the indirect triggering of immunological 
mechanisms and the sensitisation of neurones through 
changes in ion channel function.30

Mitotoxicity
Structural and functional abnormalities in mitochon-
dria are closely associated with painful neuropa-
thies,31,32 with the degree of mitochondrial dysfunction 
correlating with observed pain behaviour in animal 
models of CIPN.33,34 High energy demand regions of 
the neurone, such as the IENFs, are disproportionately 
affected by any deficiencies in energy supply which 
leads to malfunction of Na+/K+ pumps, increased 
spontaneous firing of Aδ and C fibres,35 fibre swelling 
and distortion and ultimately die back.36 Mitotoxicity 
occurs through several mechanisms; platinum com-
pounds bind directly to and damage mitochondrial 
DNA,37 paclitaxel causes swollen, vacuolated and 
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functionally impaired mitochondria,38 while vincris-
tine and bortezomib both activate mitochondrial cas-
pase, a process integral to apoptosis.32,39 Interestingly, 
compounds that prevent mitochondrial damage, such 
as acetyl L-carnitine40 and caspase inhibitors, are asso-
ciated with reductions in neuronal death and neuro-
pathic pain in animal models41,42 raising the possibility 
of novel therapeutic targets.43

Neuro–immune mechanisms
Neuro–immune interactions in both the central and 
peripheral nervous system are known to play a major 
role in the development of neuropathic pain.44–47 In 
CIPN, neuronal soma and glial cells in the DRG (out-
side the blood–spinal cord barrier) are exposed to high 
levels of antineoplastic agents. Glial cell dysfunction48 
and an increase in activated macrophages can occur49,50 
leading to abnormal cellular signalling and changes in 
expression of mediators and genes associated with both 
pain and cell death. These include nerve growth factor 
(NGF);51 tumour necrosis factor-α (TNF-α); interleu-
kins (ILs) IL-1β, IL-6 and IL-8;52 and activation of pro-
apoptotic genes.53 These changes occur prior to the 
gross anatomical disruption seen in a proportion of 
more established CIPN and may provide a partial 
explanation as to why pain precedes functional neu-
ronal changes. Peripherally, Langerhans cells, avid syn-
thesisers of pro-inflammatory mediators,54 have been 
shown to increase in paclitaxel-evoked painful neuropa-
thy42 as well as in painful peripheral neuropathies asso-
ciated with other disease states.55,56 The potentially 

pivotal role played by pro-inflammatory cytokines is 
further reinforced by the effect blocking these media-
tors has on the development of CIPN. Administration 
of an anti TNF-α antibody in a rat model of borte-
zomib-induced painful neuropathy prevents the devel-
opment of allodynia57 and vincristine-induced 
hyperalgesia in rats is abolished by bradykinin B1 and 
B2 receptor antagonists.58

Neuronal sensitisation
Structural changes in axonopathic sensory neurones 
are further compounded by alterations in the function, 
distribution and number of ion channels. Energy defi-
cits due to mitochondrial dysfunction result in mem-
brane depolarisation and spontaneous neuronal 
discharge.35 Individual chemotherapeutic agents have 
been demonstrated to directly affect specific ion chan-
nels. Oxaliplatin, in a mouse model of CIPN, markedly 
reduces the expression of membrane K+ channels 
TREK1 and TRAK and increases the expression of a 
range of excitatory channels resulting in cold hyper-
sensitivity.59 Additionally, oxaliplatin has been shown 
to up-regulate spinal N-methyl D-aspartate (NMDA) 
receptors.60 In the rat, paclitaxol sensitises the poly-
modal transient receptor potential vanilloid 4 (TRPV4) 
receptor leading to enhanced nociception.61 The pres-
ence of increased levels of reactive oxygen species 
(ROS, markers of cellular oxidative stress) and NGF in 
C fibres, a situation not uncommonly encountered in 
CIPN, contributes to increased expression of TRPV1 
thermo-receptors.62

Figure 1. Immunohistochemical staining (primary antibody to PGP 9.5) of sensory nerve fibres in human skin: (a) shows 
normal intra-epidermal nerve density and (b) shows reduced intra-epidermal nerve density as seen in small fibre 
neuropathies. Both images 20×objective, scale bar 20 µm, dotted line demarcates the epidermal–dermal junction.
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Clinical features
As a predominantly sensory neuropathy, CIPN pre-
sents with signs and symptoms resulting from the dis-
turbance of sensory function.63 These include 
paraesthesia, numbness, impaired vibration, tempera-
ture and proprioceptive sensation, dysaesthesia and 
neuropathic pain.64 The distribution of the sensory 
symptoms is length dependent, commencing peripher-
ally, normally in either the fingers or toes with gradual 
proximal spread, leading to a characteristic symmetri-
cal ‘glove and stocking’ pattern.65 Mixed sensory–
motor and autonomic neuropathies may occur; 
autonomic dysfunction commonly occurring in vin-
cristine- and bortezomib-related CIPN which causes 
paralytic ileus and orthostatic hypotension.66

Development of the symptoms of CIPN is tempo-
rally related to the commencement of chemotherapy 
with peak incidence dependent on agent and dose,8 
and is cumulative in nature, with higher doses of drug 
leading to greater neurotoxicity.39 Cessation of anti-
neoplastic treatment, however, does not guarantee res-
olution, with symptoms persisting in a large proportion 
of patients,67 resulting in marked reductions in post-
treatment quality of life.68,69 A further complicating 
factor is the phenomenon of ‘coasting’, whereby the 
symptoms of peripheral neuropathy may continue to 
progress or even first appear following termination of 
treatment.6 Coasting is commonly associated with 
platinum-derived agents, although it may be seen with 
other chemotherapeutics such as bortezomib.70

Detection/diagnosis
The presence of CIPN is determined by a combination 
of clinical history and examination findings, aug-
mented by specific diagnostic tools and investigations. 
Pre-, peri- and post-chemotherapy neurological assess-
ments are advised as they permit the patient’s baseline 
status to be established and facilitate early detection of 
CIPN.71

Clinical examination in patients with CIPN may 
prove unremarkable as subtle changes in peripheral 
sensory thresholds are not detected by tests of gross 
neurological function. A more targeted examination 
may isolate abnormalities in two-point discrimination 
(touch), vibration sensation and proprioception in a 
symmetrical peripheral pattern.7 Localised distal are-
flexia may also be detected and acts as a surrogate 
marker for the presence of more advanced CIPN.10 
Ramifications of autonomic nerve involvement, such 
as postural hypotension, may be detected by measur-
ing lying and standing blood pressure.

To aid CIPN diagnosis, a number of clinical tools 
have been developed which rely upon subjective and 

objective methods.72 These include the World Health 
Organisation CIPN grading scale,73 the Eastern 
Cooperative Oncology Group (ECOG) neuropathy 
scale and the National Cancer Institute Common 
Toxicity Criteria (NCI-CTC) neuropathy score.74 The 
utility of these tools is hampered by high levels of inter-
observer variability, the lack of a single universally 
accepted assessment tool and the omission of pain as an 
assessment parameter.75 A recent study assessed the 
validity and reliability of a number of different grading 
scales used in CIPN,76 including the NCI-CTC, the 
Total Neuropathy Score Clinical Version (TNSc), the 
modified Inflammatory Neuropathy Cause and 
Treatment (INCAT), the modified sensory sum score 
(mISS), the European Organisation for Research and 
Treatment of Cancer’s (EORTC) QLQ-C30 and QLQ-
CIPN20 quality-of-life measures in 281 patients with 
stable CIPN. The study demonstrated good validity 
and reliability scores for the set of selected impairment 
and quality-of-life outcome measures. Additionally, the 
group utilised data generated on limitations of activity 
and participation to create a Rasch-built overall disabil-
ity scale (R-ODS) for CIPN, which the authors advo-
cate, is used in future clinical studies.77

The measurement of nerve conduction velocities 
(NCV) in sensory and motor nerves and sensory nerve 
action potential (SNAP) may indicate axonal loss but 
are of minimal use in the presence of DRG or small 
sensory fibre pathology.23 Measurement of SNAPs 
(combined with clinical scoring tools) may in the 
future enable patients undergoing chemotherapy to be 
risk stratified mid-treatment for the risk of developing 
CIPN. This would potentially abate the need to termi-
nate chemotherapy treatment by permitting early iden-
tification of patients at risk of high-grade neuropathy 
allowing prompt chemotherapy dose reduction before 
nerve damage occurs.78 Work is currently ongoing to 
identify and investigate novel biomarkers for CIPN.

Detection of small fibre pathology remains chal-
lenging because of the technical difficulties of perform-
ing nerve conduction studies on C and Aδ fibres. 
Quantitative sensory testing (QST) allows the identifi-
cation of fibre-type involved in CIPN symptoms.79 
However, QST findings do not always correlate with 
clinical symptoms and requires specialist equipment, 
and time and resources are not always available in 
clinic. Despite its sensitivity, there is little evidence that 
QST can provide an earlier diagnosis than patient 
symptom reporting,80 although some evidence does 
exist for a correlation between final CIPN severity and 
attenuation in vibration sensation.81

IENF loss can be assessed using immunohisto-
chemical techniques on skin biopsies,82 quantified to 
enable a diagnosis of small fibre neuropathy.24 
Although invasive, biopsies can provide an accurate 
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evaluation of ‘die back’ associated with peripheral 
neuropathies. Epidermal innervation does not, how-
ever, correlate with the degree of pain experienced by 
CIPN patients.83 Despite the lack of validation in 
CIPN, biopsy may have utility when compared to 
other diagnostic modalities.84

Radiotherapy
Physics and underlying principles
Ionising radiation has been utilised for over 100 years 
in the treatment of cancer, either as a primary therapy 
or as an adjunct to surgery or chemotherapy. It remains 
a common component of cancer management with 
approximately 50% of patients receiving a form of 
radiotherapy during their treatment.85 Ionising radia-
tion induces DNA damage in target cells through two 
distinct mechanisms. First, destruction of chemical 
bonds by the ionising radiation results in the produc-
tion of ROS which damage DNA. Second, ionising 
radiation directly damages DNA and the regulatory 
proteins which facilitate DNA repair.86

The underlying treatment principle is that the DNA 
repair capacity of healthy cells is generally greater than 
that of cancerous cells, and that cancer cells proliferate 
more rapidly than most normal cells. Damage to DNA 
results in death of the affected cell through apoptosis 
or cell senescence.87 Efficacy of radiotherapy is also 
influenced by the degree of hypoxia of the cell (hypoxic 
cells are radio-resistant), the ability of the surviving 
cells to re-populate and the intrinsic radio-resistance of 
tumour cells.88

Painful side effects
Avoidance of damage to non-cancerous tissues outside 
the target zone is a major priority in the use of ionising 
radiation. However, damage not only occurs directly to 
those cells directly exposed to ionising radiations, but 
there is a separate indirect mechanism of ‘radiation 
induced bystander effects’ (RIBEs).89 Although poorly 
understood, collateral damage is induced in radiation-
naïve cells by harmful signals transmitted from neigh-
bouring irradiated cells. RIBE embodies a plethora of 
deleterious cellular processes including alterations in 
gene expression, mitochondrial damage, increased 
intracellular ROS levels and apoptosis.90

Side effects of radiotherapy can be classified as 
being acute or late, the latter occurring 90 days after 
treatment and potentially lasting many years, the for-
mer manifesting at the time of treatment and resolv-
ing following treatment cessation.91 Radiotherapy is 
conventionally administered in divided doses or frac-
tions, the intensity of this being influenced by the 

need to limit the number of patients developing late 
complications to between 5% and 10%.92 Late side 
effects arise from regional damage to tissues and 
include radiation-induced fibrosis, atrophy vascular 
and neural damage.93

Abdominal visceral pain
The mucosa of the gastrointestinal tract, with its rapid 
cell turnover is particularly susceptible to radiation-
induced damage resulting in nausea, vomiting and 
diarrhoea. Progression to late bowel toxicity following 
radiotherapy of the abdominal, pelvic and lumbar 
regions leads to chronic pain. In patients who receive 
radiotherapy for cancers of the pelvis, chronic abdomi-
nal pain is encountered in approximately 10–15% of 
cases,94,95 leading to marked reductions in survivor’s 
quality of life.96 Preoperative radiotherapy for bowel 
cancer is associated with survivors experiencing higher 
rates of non-specific abdominal pain than radiation-
naïve patient’s years after treatment.97 The incidence 
and severity of late toxicity symptoms encountered in 
patients is influenced by total radiotherapy dose, dose 
per fraction, volume of intestine irradiated and previ-
ous abdominal surgery.96

In a proportion of patients, acute inflammatory 
changes in the gut mucosa fail to resolve following ces-
sation of radiotherapy, resulting in pronounced and 
progressive intestinal fibrosis and ischaemia because of 
vascular sclerosis.98,99 These changes in turn lead to gut 
dysmotility, stricture formation and obstruction all of 
which ultimately manifest as chronic abdominal pain.100

Preventative strategies attempt to ameliorate the 
degree of gut fibrosis either by interfering with radia-
tion specific mechanisms of injury or by increasing the 
tolerance of normal tissue to radiation.101 Refinements 
in dosimetry and beam targeting, the use of anti-
inflammatory and antioxidant agents and therapies 
aimed at increasing tissue vascularity and oxygen sup-
ply such as hyperbaric oxygen have been tried.102 
Combining agents with differing therapeutic targets 
(such as pentoxifylline (PTX), which improve perfu-
sion due to vasodilatation and is anti-inflammatory, 
and Vitamin E, an antioxidant) may be beneficial.103–106 
These medications have been recommended by some 
authors, despite the lack of large randomised-con-
trolled trials (RCTs).107

Neural injury
Late-radiation toxicity may also manifest in the form of 
neural damage, the classic example being brachial 
plexus neuropathy (BPN), encountered following radi-
otherapy in the region of the plexus.108,109 The brachial 
plexus consists of nerve fibres relaying sensory, 
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autonomic and motor innervation to and from the 
arm, forearm and hand. Correspondingly, the majority 
of symptoms of BPN are experienced in the ipsilateral 
upper extremity and include paraesthesia, motor weak-
ness, pain and oedema.110 The aetiology of radiation-
induced neural injury is essentially a progressive 
process of intra- and extra-neuronal fibrogenesis driven 
by ROS and pro-inflammatory mediators. This process 
subsequently results in demyelination, direct axonal 
injury and nerve ischaemia due to damage to the per-
fusing microvasculature.111

Radiation-induced neuronal injury is characterised by 
its clinical heterogeneity and variable onset time; some 
patients experience symptoms within a year of their radi-
otherapy, while in others problems may occur a decade 
later.112 BPN occurrence is influenced by a range of fac-
tors including dosimetry (greater dose = faster onset)113 
and age of the patient (younger patients develop symp-
toms more quickly).114 Symptomatology of BPN also 
exhibits considerable variation with some patients expe-
riencing sensory disturbance as their predominant symp-
tom with minimal pain, while other patients may be 
afflicted by severe neuropathic pain.115

In assessment of radiation-induced BPN, it is 
important to consider and exclude the presence of 
malignant invasion of the brachial plexus, which also 
causes sensory disturbance and pain leading to the 
potential for misdiagnosis.116 Differences in the fea-
tures of the conditions do exist, and these are outlined 
in Table 2. Investigations such as magnetic resonance 
imaging can help in reaching a definitive diagnosis.117

Persistent post-surgical pain
Surgery remains an important treatment modality for 
cancer as well as used for diagnosis and palliation. 
Chronic pain developing after surgery (persistent post-
surgical pain (PPSP)) is a relatively new concept, but it 
is an important condition118 and contributes to the 
symptom burden of cancer survivors, negatively affect-
ing their quality of life.

PPSP remains poorly defined, but it is broadly rec-
ognised as being pain present more than 2–3 months 
after surgery. To make the diagnosis, surgical and 

pre-existing causes of the pain should have been 
excluded.119,120 The condition is common, with estima-
tions of its prevalence ranging from 10% to 30% of all 
post-surgical patients.121 Certain procedures are asso-
ciated with a greater risk of developing PPSP, includ-
ing breast surgery, thoracotomy, cardiac surgery, limb 
amputation and hernia repair.122 Even relatively lim-
ited surgery such as the resection of cutaneous mela-
noma has been shown to be associated with the 
development of PPSP.123

Pathophysiology
The acute pain of surgery comprises of a combination of 
nociceptive, inflammatory and acute neuropathic ele-
ments.119 PPSP possesses many of the characteristics 
and features of neuropathic pain,124,125 although it only 
fully meets the diagnostic criteria of neuropathic pain in 
a relatively small proportion of patients.126 The underly-
ing mechanisms which lead to the transition from acute 
pain to PPSP have not been fully delineated127 but 
reflect the complex processes which occur when tissues 
are injured. A constellation of neurone terminal fibres, 
cells and immunocytes populate the skin and via release 
of signalling molecules are affected to varying degrees 
by the noxious insult of surgery.128,129 These processes 
cause localised neuronal sensitisation,130,131 and the 
resulting afferent barrages of nociceptive signalling leads 
to central sensitisation.119 This neuroplastic process is 
consequent on alterations in gene expression,132 neuro–
immune interactions in the spinal cord and DRG,45 and 
manifests as many of the features encountered clinically 
in PPSP such as the generation of spontaneous pain, 
hyperalgesia, hypersensitivity and other abnormal sen-
sations arising at the site of injury.122 Central sensitisa-
tion plays a key role in the development and perpetuation 
of PPSP133 in combination with other peripheral 
processes.124

Risk factors
Although it is undoubtedly common, some patients 
undergo surgery and do not develop PPSP, implying 
certain factors may predispose individuals to the 

Table 2. Main, distinguishing features of radiation-induced brachial plexopathy and malignant invasion of the brachial 
plexus.

Radiation-induced brachial plexopathy Malignant invasion of the brachial plexus

Trunks of brachial plexus 
predominantly involved

Upper trunks Lower trunks

Timescale of onset 1–10 years after radiotherapy Typically a short timescale
Pain commonly a major feature No Yes
Associated signs and symptoms Cutaneous radiation changes, 

lymphoedema
Nil
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condition. Attempts to identify potential risk factors 
have highlighted a number of important variables 
related both to the patient and the surgery performed.

Surgery involving the division or prolonged retrac-
tion of nerves such as axillary clearance or thoracot-
omy are associated with higher rates of PPSP.119 
However, robust evidence that damaging specific iso-
lated nerves, such as the intercostobrachial, results in 
an increased risk of developing PPSP is currently 
lacking.134 Additional surgical factors which may 
increase the risk of developing PPSP include exten-
sive tissue disruption and damage (but not in breast 
procedures135), the use of surgical drains136 and a 
duration of surgery greater than 3  hours.137 Acute 
pain over the first 3–4 post-operative days increases 
the risk of transition to a persistent pain state.138 
Multiple studies have shown that severe acute pain 
accurately predicts the development of PPSP,136,139 
likely related to peripheral and central neuronal sen-
sitisation.120 Similar neuroplastic influences are 
thought to account for the fact that the presence and 
intensity of preoperative pain strongly predicts the 
occurrence of persistent pain after a number of differ-
ent types of surgery.140–142

A range of disparate patient factors have also been 
shown to contribute to an individual’s risk profile for 
developing PPSP. Age and sex are important, with 
younger females at higher risk of developing pain chro-
nicity.143,144 The degree of anxiety or depression pre-
sent or the propensity to catastrophise renders patients 
more vulnerable to PPSP,145–147 and it influences inde-
pendent of the surgery performed.148

Despite the logical assumption that the use of adju-
vant chemotherapy or radiotherapy would potentiate 
the development of PPSP, multiple studies have failed 
to definitively show an association.134,149 Nevertheless, 
some chemotherapy is associated with an increased 
risk of peripheral neuropathy150 and work in animal 
models of PPSP have demonstrated a role for the 
TRPV1 channel (whose expression is increased in 
CIPN) in the development of cutaneous hypersensitiv-
ity following surgery.151

Risk prediction
Predicting the risk of the development of PPSP is a 
nascent field, but it is potentially beneficial if modifia-
ble factors can be identified. Current studies have pre-
dominantly focused on identifying those patients at 
high risk of developing severe acute post-surgical pain 
either by screening for known risk factors152, or by 
using defined psychophysical tests such as the patient’s 
response to painful stimuli.153,154 Work on predicting 
persistent pain following surgery has been relatively 
limited in comparison.155–157

Prediction of developing PPSP could identify pre-
ventative strategies. A range of interventions have been 
investigated including pre-emptive analgesia in the 
form of gabapentinoids and NMDA receptor antago-
nists,158–160 regional nerve blocks, infiltration of local 
anaesthetics161 and the use of psychological interven-
tions and education.162 Many of the studies in this area 
are contradictory, and the jury is out concerning the 
utility of individual interventions.163 More work in this 
field is clearly indicated.164

Treatment of pain in cancer survivors
Poorly managed pain significantly contributes to a 
decreased quality of life in cancer survivors. Treatments 
should comprise a multidisciplinary biopsychosocial 
approach which aims to address all aspects and ramifi-
cations of the pain and disability.

PPSP and pain due to late radiation toxicity are 
both similarly benighted by a paucity of research into 
their effective treatment. Much of the pain experienced 
by cancer survivors exhibits neuropathic features and 
is often considered pain of predominantly neuropathic 
origin, although this is not irrefutable. In PPSP, a series 
of small studies of anti-neuropathic agents, such as 
amitriptyline and venlafaxine for different PPSP 
states165,166 have proved inconclusive, despite the 
apparent neuropathic nature of PPSP.124 Topically 
applied 5% lidocaine patches have shown some prom-
ise in the treatment of scar pain following cancer sur-
gery, albeit in a small open-label study.167 Extrapolation 
of clinical guidelines for other neuropathic pain (pre-
dominantly not based on data from cancer survivors), 
such as those recently published by the United 
Kingdom’s National Institute of Clinical Excellence,168 
is an empirical and pragmatic approach in the absence 
of any suitable alternative.

In severe radiation-induced BPN surgical explora-
tion and subsequent fibrinolysis, revascularisation or 
omental patching of the plexus is advocated by some, 
although it is a high-risk approach feasible in only a 
few subjects.110 For the majority of patients, the 
emphasis of treatment is supportive allied with anti-
neuropathic and opioid drugs and coupled with physi-
otherapy and other rehabilitative approaches.169 The 
prognosis for patients with radiation-induced BPN 
(RIBPN), however, remains poor, with complete reso-
lution of symptoms and the total restoration of limb 
function being rare.112,114

The abdomino-visceral manifestations of late-radia-
tion toxicity are also difficult to control. Visceral pain 
states present a challenge, as pain is often intertwined 
with physiological and functional derangement of the 
organ system, and many analgesic agents (such as opi-
oids) may further contribute to this dysfunction. 
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Treatment of this condition is also hampered by a lack 
of understanding and recognition among healthcare 
professionals.170 Focus must be not just on the control 
of pain but on optimising visceral functionality (which 
may in turn also improve pain), ideally by specialist 
centres.171 The pharmacological management of vis-
ceral pain is complex.172 With such a paucity of evi-
dence to guide management, a rational multidisciplinary 
approach, including ‘opioid sparing’ medications 
should be taken.173

There are limited drug treatments for CIPN. A sin-
gle small RCT of duloxetine demonstrated reduced 
pain intensity in patients with CIPN, although this cor-
responded to only a reduction of just over 1 on a 0–10 
Likert pain scale.174 Despite the limited evidence for 
the use of other anti-neuropathic agents, recently pub-
lished guidelines recommend that both amitriptyline 
and gabapentin may be trialled in CIPN given their 
proven efficacy in other neuropathic pain states.175 
Topical preparations are also used clinically (often off 
licence) to treat CIPN. Capsaicin 0.025% cream, 8% 
patches or 5% lidocaine patches have all been shown to 
be efficacious in a variety of other peripheral neuropa-
thies,176,177 although robust evidence for their use in 
CIPN is lacking. A number of potential treatments are 
being evaluated, including topical menthol (an inacti-
vator of nociceptor voltage-gated sodium channels),178 
tetrodotoxin (voltage-gated sodium channel inhibi-
tor)179 and the cannabinoid receptor agonists WIN55, 
212-2 and AM1710.180

Conclusion
Our continually ageing and expanding population cou-
pled with increases in the number of patients being 
successfully treated for cancer is resulting in greater 
numbers of cancer survivors. Many of these survivors 
experience the after effects of both their malignancy 
and the treatment they receive for it. Pain represents 
one of the most common and unpleasant of these after 
effects, profoundly influencing the quality of life expe-
rienced by cancer survivors and detrimentally affecting 
their recovery and rehabilitation.

Pain in cancer survivors may be caused by a number 
of disparate mechanisms related to both the underlying 
disease and the differing modalities used to treat it; 
surgery, radiotherapy and chemotherapy or a combina-
tion of all three. Our understanding of the exact patho-
physiological processes which result in pain remains 
sparse, but ongoing work is likely to lead to improved 
appreciation and treatment possibilities to reduce the 
symptom burden for cancer survivors.
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