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Microbially produced methane, a versatile, cleaner-burning alternative energy resource to fossil fuels, is sourced from a variety
of natural and engineered ecosystems, including marine sediments, anaerobic digesters, shales, and coalbeds. There is a prevail-
ing interest in developing environmental biotechnologies to enhance methane production. Here, we use small-subunit rRNA
gene sequencing and metagenomics to better describe the interplay between coalbed methane (CBM) well conditions and micro-
bial communities in the Alberta Basin. Our results show that CBM microbial community structures display patterns of ende-
mism and habitat selection across the Alberta Basin, consistent with observations from other geographical locations. While
some phylum-level taxonomic patterns were observed, relative abundances of specific taxonomic groups were localized to dis-
crete wells, likely shaped by local environmental conditions, such as coal rank and depth-dependent physicochemical conditions.
To better resolve functional potential within the CBM milieu, a metagenome from a deep volatile-bituminous coal sample was
generated. This sample was dominated by Rhodobacteraceae genotypes, resolving a near-complete population genome bin re-
lated to Celeribacter sp. that encoded metabolic pathways for the degradation of a wide range of aromatic compounds and the
production of methanogenic substrates via acidogenic fermentation. Genomic comparisons between the Celeribacter sp. popula-
tion genome and related organisms isolated from different environments reflected habitat-specific selection pressures that in-
cluded nitrogen availability and the ability to utilize diverse carbon substrates. Taken together, our observations reveal that both
endemism and metabolic specialization should be considered in the development of biostimulation strategies for nonproductive
wells or for those with declining productivity.

The deposition of plant-derived organic matter over geological
time has resulted in the formation of stratified hydrocarbon

resource environments known as coalbeds. This prevalent energy
resource has fueled human development for thousands of years
with concomitant environmental impacts, including landscape al-
teration, waste production, and greenhouse gas emissions (1, 2).
In contrast to solid fuel, cleaner-burning coalbed methane (CBM)
has become an increasingly attractive global energy resource.
While some fraction of CBM is produced under thermogenic con-
ditions, recent studies indicate that microbial communities in-
habiting coalbed ecosystems contribute substantially to methane
production (3). This has sparked both scientific and biotechno-
logical interest in coalbed microbial communities to enhance
CBM production from wells with low methane content or declin-
ing productivity (4–6).

Microbial diversity surveys using small-subunit rRNA (SSU; or
16S rRNA) gene sequencing have been conducted across geo-
graphically distinct coalbed ecosystems (7–11) and enrichment
cultures (6, 12). Taxonomic groups, including Firmicutes, Spiro-
chetes, Bacteroidetes, Proteobacteria (Alpha-, Beta-, Gamma-, and
Deltaproteobacteria) and Euryarchaeota, with the potential to me-
diate syntrophic interactions driving CBM production have been
observed in many coalbed ecosystems. While several of these
groups, including methanogenic Euryarchaeota, are directly im-
plicated in CBM production, microbial community interactions
and metabolic pathways mediating coal conversion into methane
remain poorly defined. Moreover, limited information exists on
how microbial community structure and function are shaped by
in situ well conditions, partially due to restricted access to sam-
pling.

The Western Canadian Sedimentary (Alberta) Basin encom-
passes a range of CBM ecosystems. Currently, the majority of the
Alberta Basin CBM is accessed from the Horseshoe Canyon, Man-
nville Group, and Ardley (Scollard) formations, where coal rank
varies from subbituminous to anthracite. Since 2001 more than
17,000 wells have been drilled across these formations for CBM
production, creating an opportunity for accessing subsurface
samples for microbial ecology studies (8, 13). The Mannville
Group tends to run much deeper than the other formations, with
concomitant increases in salinity, temperature, and pressure.
Moreover, Mannville coals are “wet,” and waters must be pro-
duced from the formation to lower the reservoir pressure prior to
well completion. Understanding structural and functional differ-
ences between microbial communities inhabiting these forma-
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tions is necessary for engineering strategies to enhance CBM pro-
duction, particularly from low-productivity wells penetrating
deeper formations. However, previous studies have been limited
to investigations of shallow low-rank coals (6) or summaries of
community structure and function across hydrocarbon resource
environments (14).

Here, we use SSU rRNA gene amplicon sequences recovered
from 10 Alberta Basin CBM wells to explore microbial commu-
nity structure among and between different coal ranks and well
conditions. Hierarchical clustering and indicator analysis were
used to define microbial consortia unique to each well site with the
potential to mediate biogenic CBM production. This information
was combined with metagenomic sequencing from a deep coalbed
to identify ecosystem-specific selection pressures shaping specific
community functions. Resulting data sets reveal patterns of ende-
mism and habitat selection within coalbed ecosystems relevant to
design and operation of microbially enhanced CBM production
scenarios.

MATERIALS AND METHODS
Sample collection. Multiple industrial partners collected coal cores and
associated drilling fluids, cuttings, and production waters during drilling
operations at 10 different well sites within the Alberta Basin (Fig. 1; Table
1). Unique identifiers were given to each sample according to its collection
method (cores, CR; cuttings, CT; drilling fluids, DF; production waters,
PW), well identification (ID) number, coal rank (high-volatile bitumi-
nous, HB; volatile bituminous, VB; subbituminous, SB), and depth (see
Table S1 in the supplemental material). Drilling crews collected all sam-
ples. While it was technically difficult to ensure aseptic collection, efforts
were made to prevent sample contamination by providing instructions to
crew members on how to minimize contamination risk and by providing
sterile collection containers. Core samples were cut into approximately
15-cm lengths and sealed into sterile vacuum bags at the well site prior to
laboratory transport. Cuttings were collected into sterile polyvinyl chlo-

ride containers and sealed immediately upon reaching the surface. Pro-
duced waters were sampled directly into sterile 4-liter fuel cans. All sam-
ples were transported and frozen at �80°C within 24 h of collection.
Physicochemical parameters for the samples, such as in situ pressures,
temperatures, and salinities, were provided by each company, which took
the measurements using standard oil and gas operating procedures.

DNA extraction. A subsection from the center of the cores was sam-
pled in an anaerobic chamber (5% H2, 95% N2) and aseptically crushed
into fines. Cuttings were used directly. Production waters and drilling
fluids were filtered through a 0.22-�m-pore-size filter, and DNA was
extracted directly from the filter paper. However, a recent report on the
presence of ultrasmall bacteria in groundwater indicates the potential of
smaller phyla not being represented in our community analyses (15). A
previously developed bead-beating method was used to extract DNA from
coal samples (16). Briefly, 0.5 g of each sample was added to tubes con-
taining 0.5 g of both 0.5- and 10-�m-diameter zircon beads, 300 �l of 50
mM phosphate buffer (pH 7.0), 300 �l of lysis buffer (10% SDS, 100 mM
NaCl, 500 mM Tris, pH 8.0) and 300 �l of 24:1 chloroform-isoamyl alco-
hol. Samples were prepared in triplicate. Sample tubes were subsequently
shaken on a bead-beater apparatus for 1 min, followed by centrifugation
at 13,000 rpm for 5 min. The supernatants were removed to new tubes,
and 7 M ammonium acetate was added to each tube to a final concentra-
tion of 2.5 M. The tubes were gently mixed, left on their sides for 2 min,
vortexed briefly, and finally centrifuged at 13,000 rpm for 7 min. The
supernatants were transferred to new tubes, 1 volume of 100% isopropa-
nol was added to each tube, and the tubes were kept at �20°C overnight.
The tubes were then centrifuged at 13,000 rpm for 30 min at 4°C, the
supernatant was removed, and the DNA pellet was allowed to dry for 2 h
before being resuspended on ice for 30 min in 30 �l of sterile nuclease-free
water (Ambion).

PCR amplification and pyrosequencing. The V6-V8 region of the
SSU rRNA gene was amplified from DNA templates using the universal
primer pair 926F (5=-AAACTYAAAKGAATTGRCGG-3=) and 1392R (5=-
ACGGGCGGTGTGTRC3=). Primers were modified to include 454 pyro-
sequencing adaptors, and reverse primers included a 5-bp bar code ac-
cording to previously published protocols (17, 18). Sixty samples were
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FIG 1 (A) Plan view outlining well locations sampled across the Alberta Basin. Colors indicate different coal ranks; shapes indicate method used to collect coal
samples. (B) Section view outlining well and sample depths for cores and cuttings. Colors indicate major coal formations; wells are indicated by identification
number (e.g., W01). Depth was measured as true vertical depth, except for the horizontal wells, which show the measured depth (length of the borehole). The true
vertical depths for these samples are shown in parentheses. (The maps were adapted with permission from the Alberta Geological Survey
[http://www.ags.gov.ab.ca/energy/cbm/coal_and_cbm_intro.html#coal_occurrences]).
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multiplexed on a single analysis chip. PCRs (50 �l) were performed in 12
replicates and pooled to minimize PCR bias. Each reaction mixture con-
tained 2 �l of each primer (20 pmol/�l), 25 �l of PCR master mix (con-
taining 0.05 units/�l Taq DNA polymerase, reaction buffer, 4 mM MgCl2,
and 0.4 mM each deoxynucleoside triphosphate [dNTP; Fermentas]), 21
�l of nuclease-free water, and 2 �l of DNA template (10 to 100 ng).
Negative controls were included with each reaction to ensure that no
contamination of DNA had occurred. PCR amplicons were diluted to 5
ng/�l and pooled in equal concentrations prior to sequencing. Emulsion
PCR and pyrosequencing were performed at Genome Quebec and McGill
University Innovation Centre (Montreal, Canada) on the Roche 454 GS
FLX Titanium platform (454 Life Sciences, Branford, CT, USA) according
to the manufacturer’s instructions.

Analysis of pyrotag sequencing data. SSU rRNA gene sequences were
processed using the software package Quantitative Insights Into Microbial
Ecology (QIIME), version 1.4.0 (19). Sequences with less than 150 bases,
ambiguous N bases, and homopolymer runs were removed before chi-
mera detection. Chimeric sequences were identified with QIIME via
ChimeraSlayer and removed prior to taxonomic assignment. A total of
763,488 nonchimeric SSU rRNA gene sequences were clustered at 97%
into operational taxonomic units (OTUs). Representative sequences from
each cluster were queried against the SILVA 111 rRNA database (20) using
the Basic Local Alignment Search Tool (BLAST) (21) to assign taxonomy.
Singleton OTUs (represented by one read only) were omitted from down-
stream analysis to reduce overprediction of rare OTUs (22). Prior to anal-
ysis, data sets were normalized to the total number of reads per sample.
Diversity metrics were calculated based on OTU tables rarefied to 1,050
reads (see Table S2 in the supplemental material).

Statistical analysis. Indicator analysis was performed to identify
OTUs specifically associated with microbial communities of similar tax-
onomic compositions using the package labdsv, version 1.5.0, in R based
on previously published methods (23, 24). Indicator groups were defined
based on hierarchical clustering of microbial communities from the dif-
ferent coalbed samples using the average linkage method and Bray-Curtis
dissimilarity implemented in R. The statistical significance of the indica-
tor value (i.e., P value) was calculated using a randomization procedure
based on Monte Carlo simulations.

Metagenomic sequencing, assembly, and binning. Total genomic
DNA was extracted from a coal cutting sample as described above and
sequenced on a Roche 454 GS FLX Titanium platform (454 Life Sciences,
Branford, CT, USA) according to the manufacturer’s instructions. Result-
ing reads were quality filtered using the Metagenomics Analysis Server
(MG-RAST) pipeline (25). Reads were dereplicated and filtered using a
minimum quality score of 20, a minimum length of 100 bp, and allowing
for no ambiguous bases. Filtered reads were subsequently assembled into
contigs using Newbler with overlap parameters of 95% minimum identity
and a minimum length of 40 bp (26). Resulting contigs were binned into
population genomes based on differential coverage, tetranucleotide fre-
quency, and single-copy gene analysis with the software MaxBin, version
2.0, using default parameters (27). Population genome bins were then
annotated using MetaPathways, version 2.0, as described below, and tax-
onomic summaries for each bin were generated using PhyloSift, version
1.0.1, based on phylogenetic analysis of 37 core gene families (28).

Metagenome annotation and pathway analysis. Annotation of ORFs
and metabolic pathway inference were performed using MetaPathways,
version 2.0 (29, 30). Briefly, open reading frames (ORFs) were predicted
from both filtered sequences and contigs using Prodigal (Prokaryotic Dy-
namic Programming Genefinding Algorithm) version 2.0, using a mini-
mum nucleotide length of 60 and queried against the Kyoto Encyclopedia
of Genes and Genomes (KEGG, accessed 2013), SEED subsystems (ac-
cessed January 2014), Clusters of Orthologous Groups (COG), RefSeq
(version 62), and MetaCyc (version 18.0) protein databases using the
optimized LAST algorithm (E value, E�6) for functional annotation (29).
Taxonomic annotation of predicted ORFs was accomplished using ME-
GAN, version 5 (31). Nucleotide sequences were also queried against the
SILVA 111 database to identify SSU rRNA genes. Environmental Path-
way/Genome Databases (ePGDBs) were constructed from annotated
ORFs using Pathway Tools (32) and MetaCyc, a highly curated database of
2,151 pathways and 14,084 reactions representing all domains of life (33).
Pathway inference was based on a set of rules used by the Pathway Tools
prediction algorithm “Pathologic” (32), including the presence of all “key
reactions,” and on a reaction coverage of at least 50% for a particular
pathway. All pathways were then manually curated to verify predictions
made by Pathologic.

TABLE 1 Well information

Well
no. Well IDa Latitudeb Longitudeb

Industrial
partnerc Coal formation Coal rank

Collection
method

Date
collected

1 13-5-61-6W5 54.2521 �114.87 Nexen Upper Mannville Volatile bituminous A or B Cuttings April 2009
2 8-5-60-5W5 54.1575 �114.705 Trident Upper Mannville Volatile bituminous A or B Cuttings June 2009
3 14-11-62-07W5 54.3549 �114.942 Trident Upper Mannville Volatile bituminous A or B Cuttings November

2010
4 102-6-4-35-27W4 51.973 �113.8068 Quicksilver Scollard (Ardley)/Horseshoe

Canyon
Subbituminous/high-volatile

bituminous C
Cuttings July 2009

5 8-30-28-24W4 51.4204 �113.3608 Encana Horseshoe Canyon High-volatile bituminous C Cores December
2008

6 5-29-28-24W4 51.4204 �113.3524 Encana Horseshoe Canyon High-volatile bituminous C Cores December
2008

7 102/7-29-28-24W4 51.4213 �113.3442 Encana Horseshoe Canyon High-volatile bituminous C Cores December
2008

8 100/03-12-018-15W4 50.5011 �111.943 ARC Belly River Subbituminous Cuttings October
2010

9 100/03-36-018-15W4 50.5594 �111.943 ARC Belly River Subbituminous Cuttings October
2010

10 100/03-28-060-05W5 54.2131 �114.6917 Trident Upper Mannville Volatile bituminous A or B Produced
water

May 2009

a The well identification (ID) is defined by the Alberta Township Survey legal land description. For example, 13-5-61-6W5 refers to quarter section 13, township 5, range 61, west of
the 5th meridian.
b Decimal degrees.
c Nexen, a subsidiary of CNOCC, Ltd.; Trident, Trident Exploration Corp.; Quicksilver, Quicksilver Resources Canada, Inc.; Encana, Encana Corporation; ARC, ARC
Resources, Ltd.
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Genome comparisons. Comparison of the binned population ge-
nome with isolate genomes was accomplished using the protein BLAST
(BLASTP) search. Isolate genome sequences were downloaded from the
National Center for Biotechnology Information (NCBI) website (www
.ncbi.nlm.nih.gov), and ORFs for all genomes were predicted using Prod-
igal, version 2.0 (34). Predicted ORFs between the population and isolate
genomes were compared using BLASTP, and the percent amino acid sim-
ilarity between best reciprocal BLASTP hits was plotted to identify regions
of low similarity. Low-amino-acid similarity regions that were flanked by
mobile genetic element (MGE) signatures (e.g., transposases or inte-
grases) and had variable taxonomic annotations were considered putative
genomic islands. ORFs were queried against NCBI’s RefSeq or nonredun-
dant (nr) database using BLASTP for annotation. Genome-wide average
nucleotide identity (gANI) and the alignment fraction (AF) between ge-
nomes were calculated using the Microbial Species Identifier (MiSI)
method (35).

Sequence data accession numbers. Amplicon sequences from this
study can be accessed through the NCBI’s Sequence Read Achieve (SRA)
(http://www.ncbi.nlm.nih.gov/sra) under accession numbers SRR573852
to SRR573862 and SRR573863 to SRR573891. Metagenome sequences for
sample CT-W2-VB-1047 can be accessed through the SRA under acces-
sion number SRR573886.

RESULTS
Site description. Samples were recovered from 10 wells penetrat-
ing distinct geological formations in the Alberta Basin (Fig. 1).
Wells were characterized by different coal ranks, including subbi-
tuminous, high-volatile bituminous, and volatile bituminous
coals (Fig. 1; Table 1). Moreover, samples from individual wells
were collected at multiple depths associated with different physi-
cochemical conditions, including temperature, pressure, and sa-
linity gradients. A summary of the geological features for each well
is presented in Table S1 in the supplemental material. As indus-
trial partners were ultimately responsible for sample collection,
either coal cores or cuttings were provided from each well for
downstream analysis (Fig. 1; see also Table S1). Drilling fluids and
production waters associated with cores and cuttings, respectfully,
were also collected for a subset of samples and used for down-
stream analysis, as indicated in Table S1.

Microbial community structure. Pyrotag sequencing yielded
a total of 763,488 SSU rRNA gene sequences recovered from 8
core, 12 cutting, 4 production water, and 12 core-associated dril-
ling fluid samples. These sequences were clustered with a 97%
similarity cutoff into 25,941 operational taxonomic units (OTUs)
after singleton removal. Resulting OTUs encompassed 16 differ-
ent phyla affiliated with 292 families spanning all three domains of
life. Table S1 in the supplemental material summarizes the total
number of SSU rRNA gene sequences recovered from each sam-
ple. Abundant OTUs were defined as having a frequency of �1%
in at least one sample, intermediate OTUs as having a frequency
between 1% and 0.1% in at least one sample, and rare OTUs as
having a frequency of �0.1% in all samples (36). With the excep-
tion of OTUs collected from subbituminous coal samples and
volatile bituminous coal production waters, rarefaction curves
generated from individual samples approached an asymptote, in-
dicating that the total OTU richness was nearly sampled (see Fig.
S1 in the supplemental material). Consequently, less-abundant
OTUs recovered from subbituminous coals may be underrepre-
sented in the data set. Taxonomic diversity of microbial commu-
nities was also investigated by calculating richness (Chao1) and
diversity (Simpson and Shannon) indices across each coal sample
(see Table S2 in the supplemental material). Chao1 richness esti-

mates indicated that drilling fluid samples from high-volatile bi-
tuminous coals contained more unique OTUs than cores recov-
ered from the same coal rank, a result potentially influenced by
microorganisms inhabiting the drilling fluid waters used. Simp-
son and Shannon indices revealed that the taxonomic diversity of
microbial communities from across the various coalbed ecosys-
tems was lower on average than that from other natural and engi-
neered ecosystems (e.g., soils, aquatic, and activated sludge) (37,
38). Moreover, microbial communities recovered from deep coal-
beds (�1,000 m) were less diverse than those from more shallow
ones (see Table S2 in the supplemental material). To determine
similarities in community structure between samples at the OTU
level, nonmetric multidimensional scaling (NMDS) with Bray-
Curtis dissimilarity was used (see Fig. S2 in the supplemental ma-
terial). While several environmental conditions may have influ-
enced community structure, sampling method, coal rank, and
depth appeared to have the strongest impact, based on observed
clustering patterns (Fig. 2; see also Fig. S2).

Community composition. To further examine clustering pat-
terns, the taxonomic affiliations of OTUs recovered from across
the Alberta Basin were compared. Although many phyla were de-
tected in all coalbed samples, most notably, the Gammaproteobac-
teria and Spirochaetes, the relative abundance of individual phyla
varied considerably with sampling method and coal rank (Fig. 2).
This was consistent with observed NMDS clustering patterns (see
Fig. S2 in the supplemental material). Cores and associated dril-
ling fluids collected from the high-volatile bituminous coals dis-
played more similar abundance patterns than cuttings and pro-
duction waters collected from the subbituminous and volatile
bituminous coals (Fig. 2). Abundant taxa (SSU rRNA gene fre-
quency of �1%) recovered from the high-volatile bituminous
coals were affiliated with the phyla Proteobacteria (37.4%), Firmi-
cutes (16.3%), Spirochaetes (11.0%), Actinobacteria (8.0%), cya-
nobacteria (7.5%), Fungi (3.2%), Euryarchaeota (2.6%), and
Metazoa (1.3%). Dominant proteobacterial classes were affiliated
with Gammaproteobacteria (28.0%), Alphaproteobacteria (5.0%),
and Betaproteobacteria (3.6%), whereas dominant Euryarchaeota
were affiliated with methanogenic Methanomicrobia (2.2%) (Fig.
2). Abundant taxa (SSU rRNA gene frequency of �1%) recovered
from associated drilling fluid samples were affiliated with similar
phyla, including Proteobacteria (66.3%), Spirochaetes (15.6%),
Bacteroidetes (5.2%), Firmicutes (4.7%), cyanobacteria (2.8%),
and Actinobacteria (1.5%) (Fig. 2). Indeed, similar bacterial and
archaeal phyla have previously been detected in coalbeds from the
Illinois Basin (8) and the Waikato coalfields in New Zealand (9),
with the exception of cyanobacteria. The presence of some plant
and metazoan reads found in coal cores may represent sample
contamination rather than intrinsic populations (Fig. 2). It is also
possible that reagent or laboratory contamination may have bi-
ased the sequencing results (39), albeit our results remain consis-
tent with those of other studies conducted in separate laboratories
and with different DNA extraction procedures (40).

Microbial communities associated with cuttings collected
from the subbituminous and volatile bituminous coals displayed
further quantitative differences. Abundant taxa recovered from
the subbituminous coals were affiliated with the phyla Proteobac-
teria (82.1%), Spirochaetes (11.19%), and Firmicutes (5.33%).
Dominant proteobacterial classes included Betaproteobacteria
(48.1%), Gammaproteobacteria (26.6%), Alphaproteobacteria
(3.0%), and Deltaproteobacteria (2.1%). Abundant taxa recovered
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from the volatile bituminous coals were affiliated with the phyla
Firmicutes (27.0%) and Spirochaetes (1.2%), as well as with the
proteobacterial classes Gammaproteobacteria (24.6%) and Delta-
proteobacteria (12.3%). Observed differences between subbitumi-
nous and volatile bituminous coal microbial communities also
appeared to stratify by depth. For example, deep volatile bitumi-
nous coal communities (�1,000 m) harbored considerably more
Firmicutes and Fusobacteria (wells W1, W2, and W3), whereas
shallower subbituminous coal communities harbored more Beta-
proteobacteria (wells W4, W8, and W9) (Fig. 2). Interestingly,
deep coal samples also harbored significant amounts of the fami-
lies Oceanospirillaceae and Alteromonadaceae (Fig. 2; see also the
supplemental material), which encompass several halophilic rep-
resentatives. As changes in depth directly correlated with varia-
tions in physicochemical conditions, including pressure, temper-
ature, and salinity (see Table S1 in the supplemental material),
these factors, in addition to sampling method and coal rank, likely
shaped microbial community structure as well.

Indicator analysis. To identify OTUs diagnostic of the differ-
ent microbial community structures observed across the Alberta
Basin, indicator analysis was performed. Here, indicator groups
were defined based on samples with similar taxonomic composi-
tions using hierarchical cluster analysis (Fig. 2). Consistent with
NMDS, coal rank and sampling method appeared to be the dom-
inant features stratifying indicator groups (Fig. 2). OTUs were

considered indicators of a predefined group if their relative fre-
quency in that group was �50% compared to that of other groups.
The distributions of indicator values and P values for all 25,941
OTUs are shown in Fig. S3A in the supplemental material. Based
on an indicator value of �0.5 and a P value of �0.05, 1,810 sig-
nificant indictor OTUs were identified. The distribution of indi-
cator OTUs among abundant, intermediate, and rare classes was
63, 441, and 1,306, respectively (see Fig. S3B).

The taxonomic composition of each indicator group is shown
in Fig. 2. Abundant indicator OTUs from the high-volatile bitu-
minous coals (group 2) were affiliated with the genera Staphylo-
coccus and Propionibacterium (Fig. 2). High-volatile bituminous
coals also harbored populations of methanogenic archaea affili-
ated with the genus Methanosarcina. Abundant indicator OTUs
from associated drilling fluids (group 8) were affiliated with the
genus Synechococcus and uncultured members of the families Co-
mamonadaceae and Burkholderiaceae (Fig. 2). As drilling fluid wa-
ters were not sterilized prior to use, these indicators may have
originated from ex situ surface water sources. Abundant indicator
OTUs from the subbituminous coals (group 3) were affiliated
with the genera Thauera, Simplicispira, and Acidovorax. This was
consistent with the large presence of Betaproteobacteria recovered
from the shallower subbituminous coals (Fig. 2). Abundant pop-
ulations of the genera Acinetobacter, Streptococcus, Planomicro-
bium, and Methanosarcina were also detected (Fig. 2). In contrast,
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abundant indicators from the volatile bituminous coals were af-
filiated with the genera Marinobacterium and Propionigenium
(group 11), as well as with acetogenic Pelobacter and an uncul-
tured member of the Rhodobacteraceae family (group 12). These
volatile bituminous coals represented the deepest wells sampled.
Group 12 also contained abundant OTUs affiliated with aceto-
genic Acetobacterium, while associated production waters har-
bored methanogenic archaea affiliated with acetoclastic Methano-
sarcina. Indeed, the high abundance of potential acetogenic and
methanogenic microbes agrees with previous reports implicating
these taxa in syntrophic coal-to-methane transformations (41),
where uncultured Rhodobacteraceae members identified here may
play important roles in initial aromatic hydrocarbon degradation,
as previously reported for representative isolates (42, 43).

Metagenome sequencing and binning. Information on mi-
crobial communities inhabiting deep coal seams (�1,000 m)
across the Alberta Basin is scant. In particular, very little informa-
tion exists on specific metabolic pathways and adaptive strategies
required for survival in deep coal seams, often characterized by
high pressures, salinities, and temperatures (see Table S1 in the
supplemental material). This is especially true for initial aromatic
hydrocarbon degradation, which is often predicted to be the rate-
limiting step in biogenic CBM production (3). As many identified
well sites for enhanced CBM recovery across the Alberta Basin
penetrate into deep coal seams and were observed to contain taxa
previously implicated in coal-to-methane transformations based
on SSU rRNA amplicon sequencing results, metagenomic se-
quencing was employed to obtain further insight into microbial
community function. Here, environmental DNA was extracted
from a volatile bituminous coal sample from the Mannville Group
(CT-W2-VB-1047) (group 12) and sequenced on the 454 pyrose-
quencing platform. A total of 439,418 quality-filtered reads were
assembled into contigs using Newbler, resulting in 6,495 contigs
with an average length of 412 bp and a maximum length of
276,644 bp.

The taxonomic distribution of predicted open reading frames
(ORFs) identified on contigs displayed quantitative differences com-
pared to the results obtained by SSU rRNA gene amplicon sequenc-
ing (Fig. 3). Specifically, considerable differences were observed
among bacteria affiliated with the families Eubacteriaceae, Rhodo-
bacteraceae, Burkholderiaceae, Desulfuromonadaceae, Oceanospi-
rillaceae, and Pseudomonadaceae. It is possible that the lack of
agreement in community structure between sequencing methods
reflects the limited number of reference genomes available in se-
quence databases (44). Such biases appear in our SSU rRNA gene
data set, as many SSU rRNA gene sequences were affiliated with
uncultured bacteria at the family level (16% on average). Addi-
tional caveats associated with pyrotag analysis may have influ-
enced our results; these include differences in rrn operon copy
number between taxa and PCR priming biases (45, 46). Nonethe-
less, both approaches identified a high abundance of uncultured
bacteria affiliated with the Rhodobacteraceae family: 41.8% based
on metagenomic methods and 26.5% based on pyrotags (Fig. 3).

To further examine the functional content of the CT-W2-VB-
1047 metagenome, assembled reads were binned into population
genomes based on tetranucleotide frequency, differential cover-
age, and single-copy gene analysis using MaxBin (27). This re-
sulted in one near-complete population genome (bin 1) and one
partial population genome (bin 2) with greatest similarity to
Celeribacter baekdonensis (Rhodobacteraceae) and Acetobacterium

dehalogenans (Eubacteriaceae) (see Table S3 in the supplemental
material), respectively, reinforcing ORF taxonomy results (Fig. 3).
Single-copy gene analysis revealed that the Celeribacter sp. bin
contained 106 of 107 marker genes (99%), whereas the Acetobac-
terium sp. bin contained only 67 of 107 (63%) (see Table S3).
Genome contamination (i.e., the presence of misplaced contigs)
of the Celeribacter sp. and Acetobacterium sp. bins was estimated to
be 8% and 33%, respectively, based on the presence of multiple
single-copy genes (see Table S3). Only the Celeribacter sp. bin was
used for further analysis because of its high estimated complete-
ness and low contamination. This population genome encom-
passed 513 contigs (N50 � 41,884 bp) and had the highest repre-
sentation in the CT-W2-VB-1047 metagenome (Fig. 3; see also
Table S3). Given the high coverage of bin 1 sequences in the CT-
W2-VB-1047 metagenome and interest in functions relevant to
CBM in the deep coal seems, subsequent efforts focused on ana-
lyzing metabolic potential and genomic variation within Celerib-
acter sp. populations inhabiting the deep coalbed milieu.

Coalbed Celeribacter sp. metabolic potential. To identify core
functions encoded by the C. baekdonensis population genome,
predicted ORFs were first annotated using the MetaPathways
pipeline. A large proportion of annotated ORFs in the Celeribacter
sp. population genome were affiliated with transport systems, in
particular, cation/multidrug efflux pumps and ABC transporters
for sugars, amino acids, and spermidine/putrescine. C4-dicar-
boxylate tripartite ATP-independent periplasmic (TRAP) trans-
port systems and other chemotaxis proteins were also abundant
(see File S1 in the supplemental material). Annotated ORFs were
subsequently used by Pathway Tools to generate a Celeribacter sp.
pathway/genome database (PGDB). This PGDB contained 467
pathways involved in biosynthesis, degradation, energy genera-
tion, and other cellular functions (see File S2 in the supplemental
material). Central carbon metabolic pathways encoded both au-
totrophic and heterotrophic growth modes. Pathways for inor-
ganic carbon fixation included the Calvin-Benson-Bassham
(CBB) cycle (via ribulose 1,5-bisphosphate carboxylase/oxygen-
ase [RubisCO]); pathways for growth on organic carbon included
the Embden-Meyerhof-Parnas (glycolysis) pathway, pentose
phosphate pathway, gluconeogenesis, and tricarboxylic acid
(TCA) cycle. Other noteworthy organic carbon metabolic path-
ways were fatty acid beta-oxidation, the glyoxylate cycle, and aci-
dogenic fermentation (see File S2). These pathways would enable
coalbed Celeribacter sp. populations to utilize both long-chain and
short-chain fatty acids (e.g., acetate) to satisfy cellular carbon re-
quirements (47), as well as to generate energy anaerobically
through substrate-level phosphorylation.

Dominant catabolic pathways encoded in the Celeribacter sp.
population genome were associated with carbohydrate, carboxy-
late, and aromatic compound degradation (see File S2B in the
supplemental material). The high abundance of ABC-type sugar
and C4-dicarboxylate TRAP transporters together with encoded
central carbon pathways (see Files S1 and S2) would enable coal-
bed Celeribacter sp. to utilize both organic sugars (glucose, xylose,
and sucrose) and organic acids (acetate, succinate, and fumarate)
as carbon and energy sources. These substrates could be respired
under aerobic conditions, whereas sugar compounds (e.g., glu-
cose) could be fermented to methanogenic substrates (e.g., ace-
tate) under anaerobic conditions. Pathways for glycogen biosyn-
thesis and degradation were also identified in the population
genome (see File S2), which would allow Celeribacter sp. to accu-
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mulate carbon and energy reserves necessary for coping with pe-
riods of nutrient starvation.

The population genome also encoded enzymes for degrading a
wide range of aromatic compounds, including ferulate, vanillate,
biphenyl, benzoate, salicylate, and phenylacetate (Fig. 4). These
substrates would serve as carbon and energy sources for Celerib-
acter sp., which are transformed to TCA cycle intermediates
through the intermediary aromatic compounds protocatechuate,
catechol, and gentisate and through the carboxylic acid interme-

diates 3-oxoadipate and 2-oxopentenoate (Fig. 4). Such aromatic
compounds are expected to be available in coalbed environments
as they are common by-products of coal and lignin degradation
(48). Unexpectedly, all aromatic degradation pathways were aer-
obic, requiring mono- and dioxygenases that incorporate oxygen
atoms into their substrates (49). This is inconsistent with conven-
tional ideas on microbial decomposition of coal and aromatic
hydrocarbons, where anaerobic conversion pathways are believed
to be prevalent (3, 50). Nonetheless, recent metagenomic investi-
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gations also observed high proportions of genes involved in aero-
bic metabolism of aromatic compounds across multiple coalbed
environments (14).

Reactions that utilize inorganic substrates for energy metabo-
lism were also encoded in the Celeribacter sp. population genome.
Annotation of the Celeribacter sp. population genome revealed a
putative pathway for carbon monoxide (CO) oxidation to CO2 via
CO dehydrogenase (CODH) cox genes. Sequence analysis of the
recovered coxL gene encoding the large catalytic subunit indicated
that Celeribacter sp. contains the putative form II CODH (51, 52).
Consistent with aromatic degradation pathways, these enzymes
were also aerobic and may allow Celeribacter sp. to use CO as a
supplementary energy and carbon source (together with the CBB
cycle) (52).

Comparative genomics with closely related bacteria. To
identify pathways potentially unique to coalbed Celeribacter sp.
populations, PGDBs were subsequently generated for four closely
related Rhodobacteraceae genomes isolated from activated sludge,

saline soil, marine, and deep-sea sediment environments: Para-
coccus sp. N5 (53), Salipiger mucosus (54), Celeribacter baek-
donensis B30 (55), and Celeribacter indicus P73T (56, 57). Ge-
nomes were selected based on their high homology with and
taxonomic relatedness to bin 1 ORFs. Although most central car-
bon and energy generation pathways described above were con-
served across all genomes, some variation in aromatic-com-
pound-degrading pathways was observed (Fig. 5). For example,
the coalbed Celeribacter sp. population genome (bin 1) was the
only genome that encoded oxygenase enzymes for phenylacetate
and benzoate degradation. Other aromatic degradation pathways
encoded by coalbed Celeribacter sp. that had variable presence
across other isolates included anthranilate, ferulate, phthalate, sa-
licylate, and vanillate degradation (Fig. 5). Significant variation
was also observed in genome-wide average nucleotide identity
(gANI) between the three Celeribacter genomes, which ranged
from approximately 76 to 80% over an alignment fraction (AF) of
0.5 to 0.6 (see File S3 in the supplemental material).
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It has been shown that C. indicus P73T is capable of degrading
a wide range of polycyclic aromatic hydrocarbons (PAHs), such as
fluoranthene (56, 57). However, no homologs for the dioxyge-
nases predicted to be involved in C. indicus P73T PAH metabolism
were identified in the coalbed Celeribacter sp. genome, similar to
findings for C. baekdonensis B30 (57). While this suggests that
coalbed Celeribacter sp. may not be capable of PAH degradation,
experimental evidence is still needed to confirm this prediction.
Moreover, this indicates that other community members are
likely responsible or specialized in the degradation and activation
of PAH.

Habitat-specific gene pools. In an attempt to understand local
selection pressures driving genomic differentiation events in the
deep coalbed milieu, fine-scale differences between the Celeribac-
ter sp. population genome and the closely related isolate genomes
stated above were examined. Large variations in genome content
and architecture were hypothesized to originate from adaptive
habitat-specific gene pools, based on previous observations in ma-
rine ecosystems (58, 59). Bin 1 contigs were compared to isolate
genomes using the protein Basic Local Alignment Search Tool
(BLASTP) (21), and the homology between best reciprocal hits
was plotted to identify regions of low similarity (Fig. 6; see also File
S3 in the supplemental material). This resulted in the identifica-
tion of 224 ORFs unique to the Celeribacter sp. population ge-
nome. Indeed, many of these ORFs formed discrete clusters, often
located on putative genomic islands, suggesting that they encode
functions acquired via lateral gene transfer (59). Annotation of the
ORFs in these clusters revealed putative genes for nitrogen and
carbohydrate catabolism, as well as genes encoding aromatic com-
pound degradation proteins (Fig. 6; see also File S3). Moreover,
the presence of several spermidine/putrescine ABC transporters
and TonB-dependent siderophore receptors was identified within
variable genomic regions, in agreement with the high abundance
of ORFs encoding these proteins in the Celeribacter sp. population
genome. Two prophages were also found in regions of low
genomic similarity (see File S3). Interestingly, one prophage car-
ried ORFs encoding genes involved in benzoate degradation, con-

sistent with the unique potential of the Celeribacter sp. population
genome to utilize these substrates (Fig. 5).

DISCUSSION
Patterns of endemism and syntrophy. Microbial communities
recovered from across the Alberta Basin displayed patterns of en-
demism, wherein different microbial consortia were unique to
defined geographical regions that exhibited variation in coal rank
and physicochemical condition correlating with depth. This result
was consistent with reports from other coalbed ecosystems that
also observed significant diversity between microbial communi-
ties spanning different coal formations (8, 9, 11, 60, 61). Indeed,
differences in coal rank are expected to influence CBM production
as low-maturity coals (e.g., subbituminous coals) are less recalci-
trant and more biodegradable than higher-maturity coals (e.g.,
volatile bituminous coals) due to changes in carbon and oxygen
content (8). It should be noted that considerable differences in
microbial CBM production have been observed from incubations
with identical low-rank coals (62, 63), suggesting that local well
conditions also contribute to biogenic CBM production potential.
Such conditions could include the availability and type of metha-
nogenic substrates (62), the hydrogeological regime of basin wa-
ters (4, 64), and coal basin permeability (65).

Despite the large variation in microbial community structure
observed across the Alberta Basin, all indicator groups contained
unique consortia with a potential to transform coal into methane.
For example, specific OTUs previously implicated in aromatic
compound degradation, fermentation, and methanogenesis, re-
spectively, affiliated with Thauera (66), Streptococcus, and Metha-
nosarcina were found in the subbituminous coals indicator group,
whereas OTUs with similar functional potentials affiliated with
uncultured Rhodobacteraceae, Pelobacter, and Methanosarcina
were detected in the volatile bituminous coals indicator group.
While this suggests that local selection pressures may determine
niche partitioning across various taxonomic affiliations, thermo-
dynamic constraints promote recurring patterns of syntrophic in-
teractions that drive CBM production through metabolic cooper-
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ation (67). The extent to which cooperative interactions change
over time or succeed one another during the coal conversion pro-
cess remains to be determined. Recent anaerobic-digester studies
suggest that syntrophic populations of fermenting bacteria and
methanogenic archaea remain stable and resilient for a particular
function, in contrast to nonsyntrophic community members,
both over time and under perturbation (68). However, other
studies monitoring similar syntrophic populations involved in
anaerobic conversion of municipal solid waste to methane have
reported successive interactions, where hydrolysis of larger
polymeric substances occurs initially, followed by acidification
and finally methanogenesis (69, 70). We posit that similar suc-
cessional patterns transpire in the coalbed milieu, albeit over
longer times scales, governed by a given coal formation’s de-
composition state.

Aromatic compound degradation in a deep coalbed. Pub-
lished metagenomic sequence information from coalbed ecosys-
tems is conspicuously underrepresented in public databases. Se-
quence information from the San Juan Basin in New Mexico
focused on different stages of CBM production can be gleaned
from a patent application filed in 2011 (G. V. Toledo, T. H. Rich-
ardson, U. Singl, E. J. Mathur, and J. C. Venter, U.S. patent appli-
cation US20100047793). More recently, Strachan and colleagues
used coalbed-derived fosmid libraries to study lignin-transform-
ing activities from Rockyford Standard (CO182) and Basal
(CO183) coal zones in the Alberta Basin (71). In the current study,
we produced a metagenome from a volatile bituminous coal sam-
ple dominated by Rhodobacteraceae sequences that could be as-
sembled and binned into a nearly complete population genome
related to Celeribacter sp. (bin 1). Metabolic pathways inferred
from the Celeribacter sp. population genome identified routes for
both autotrophic and heterotrophic growth, as well as chemo-
lithotrophy via CO oxidation, reflective of a mixotrophic lifestyle.
The genome also encoded pathways for acidogenic fermentation,
which would allow coalbed Celeribacter sp. populations to survive
under both aerobic and anaerobic conditions. Importantly, the
products of such fermentation reactions (i.e., acetate, H2, and
CO2) could serve as primary substrates for methanogens, thereby
supporting biogenic CBM production. This versatile energy me-
tabolism would be advantageous for life close to fluctuating oxic-
anoxic interfaces that experience variable nutrient availabilities
(72). Such dynamic conditions may be occurring in the Mannville
Group coal seam due to mixing of fluids from lower, more saline,
aquifers that may carry dissolved oxygen (64).

The Celeribacter sp. population genomic potential to degrade
and utilize a diverse range of aromatic compounds, including ben-
zoate, salicylate, and vanillate, is relevant to CBM production.
Indeed, benzoate, salicylate, and vanillate are all by-products of
coal and lignin degradation (73, 74), and their utilization likely
results in the production of key organic intermediates that can
serve as substrates for fermenting bacteria and methanogens (75).
Interestingly, encoded pathways for aromatic degradation em-
ployed enzymes exhibiting high sequence similarity to aerobic ho-
mologs, such as different mono- and dioxygenases. Similar obser-
vations have been made across diverse hydrocarbon resource
environments (14), where it has been suggested that aerobic en-
zyme activity is supported via slow diffusion of oxygen from the
solid coal matrix or recharge from oxygen-bearing meteoric wa-
ters flowing from fractured coal seams (64). Strictly speaking, aer-
obic degradation of aromatic compounds is at odds with biogenic

CBM production because primary fermentation of the resulting
organic compounds to methanogenic substrates and smaller or-
ganics is not thought to occur under aerobic conditions. However,
based on inferred pathways that would allow coalbed Celeribacter
sp. to accumulate glycogen and ferment, we hypothesize that ex-
posure of Celeribacter sp. to oxic-anoxic cycling may promote the
biodegradation of coal to methane. Here, during recharge of coal-
beds with oxygen, Celeribacter sp. would degrade aromatic com-
pounds for biomass synthesis and glycogen storage. During sub-
sequent periods of anoxia, accumulated glycogen would be
fermented by Celeribacter sp. for carbon and energy requirements
via acidogenic fermentation pathways, resulting in excreted by-
products that support methanogenesis. Similar physiological ad-
aptations have been observed in other bacteria that experience
periodic oxygen cycling, such as organisms responsible for bio-
logical phosphorus removal in activated sludge ecosystems
(76). Indeed, the high abundance of anaerobic bacteria, such as
Acetobacterium- and Pelobacter-related organisms, in both the
amplicon and metagenomic sequencing data sets is consistent
with the production of Celeribacter sp. fermentation by-prod-
ucts, where Acetobacterium and Pelobacter may facilitate aceto-
genic and secondary fermentation processes that also drive
methanogenesis. Nonetheless, future experiments are needed
to decipher specific interactions between these organisms and
Celeribacter sp. that result in the degradation of coal to methane.

Genomic differentiation between Celeribacter sp. Compara-
tive analysis of the Celeribacter sp. population genome with culti-
vated reference genomes from activated sludge, saline soil, and
marine environments revealed potentially adaptive habitat-spe-
cific traits. Our results showed that variable regions within the
Celeribacter sp. population genome harbored genes involved in
aromatic compound degradation, consistent with the high avail-
ability of these substrates in the coalbed milieu. A recent study
identified numerous gene clusters sourced from coalbeds that
acted on lignin-derived aromatic polymers that were associated
with MGEs, raising the possibility that coal and lignin transforma-
tion is a highly specialized process (71). Interestingly, one MGE
encoded a prophage containing enzymes for benzoate degrada-
tion. It is possible that this virus-encoded benzoic acid dioxyge-
nase would allow infecting phage to reprogram the host carbon
metabolism (77, 78); however, such events require further char-
acterization in coalbed environments.

The presence of nitrogen and carbohydrate catabolism genes
within Celeribacter sp. variable genomic regions may also reflect
adaptive metabolic strategies. The ability to rapidly assimilate and
degrade carbohydrates or organic acids that periodically become
available in the coalbed environment may be preferentially used
by Celeribacter sp., as has been shown for other Proteobacteria
(79–81). While such compounds are not expected to be abundant
in deep coalbeds, they may become available via biomass decay
(82). Moreover, scavenged carbohydrate or organic acid com-
pounds could also provide fermentation substrates for Celeribac-
ter sp. under anaerobic conditions, thereby stimulating biogenic
methane production. Genes involved in nitrogen acquisition
identified within Celeribacter sp. variable regions included ABC-
type transporters for polyamines and nitrate. These systems are
known to play important roles in nitrogen scavenging (83) and
may be key adaptive functions for survival in deep coalbeds man-
ifesting limited nitrogen resources.

Concluding remarks. In summary, our results show that mi-
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crobial community structure displayed patterns of endemism and
habitat selection across coalbed formations within the Alberta Ba-
sin, consistent with observations for other geographical locations
(8, 9, 11, 60, 61). While some phylum-level taxonomic patterns
were observed, the relative abundance of specific taxonomic
groups was localized to discrete wells likely shaped by habitat-
specific environmental conditions, such as coal rank and depth-
dependent physicochemical conditions. This was reinforced by
the Celeribacter sp. population genome recovered using metag-
enomic sequencing, where encoded metabolic pathways for the
utilization of numerous aromatic compounds and the production
of fermentation by-products may support specialization within
the biodegradation of coal to methane. Genomic comparisons
between coalbed Celeribacter sp. and closely related species dis-
played a continuum of differentiation, likely reflective of habitat-
specific selection pressures (58, 84). These findings implicate ni-
trogen availability and the ability to utilize diverse organic
substrates as potential drivers of selection in deep coalbeds, which
should be considered in the development of biostimulation strat-
egies to enhance microbial CBM production in nonproductive or
declining wells.
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