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Abstract

Therapeutics based on transcription factors have the potential to revolutionize medicine but have 

had limited clinical success due to delivery problems1–4. The delivery of transcription factors is 

challenging because it requires developing a delivery vehicle that can complex transcription 

factors, target cells, and stimulate endosomal disruption, with minimal toxicity5,6. In this report we 

present a novel multifunctional oligonucleotide, termed DARTs (DNA Assembled Recombinant 

Transcription factors), which can deliver transcription factors with high efficiency in vivo. DARTs 

are composed of an oligonucleotide that contains a transcription factor binding sequence and 

hydrophobic membrane disruptive chains that are masked by acid cleavable galactose residues. 

DARTs have a unique molecular architecture, which allows them to bind transcription factors, 

trigger endocytosis in hepatocytes, and stimulate endosomal disruption. The DARTs target 

hepatocytes as a result of the galactose residues and can disrupt endosomes efficiently with 

minimal toxicity, because unmasking of their hydrophobic domains selectively occurs in the acidic 

environment of the endosome. We show here that DARTs can deliver the transcription factor 

Nuclear erythroid 2-related factor 2 (Nrf2) to the liver, catalyze the transcription of Nrf2 

downstream genes, and rescue mice from acetaminophen induced liver injury.

The delivery of transcription factors is a central challenge in medicine. Transcription factors 

control every major physiological process within a cell, ranging from cell fate determination 

to inflammation resolution2,3,7, and have the ability to correct the fundamental causes of a 

wide range of diseases. For example, the transcription factor Nrf2 transcribes genes that 

resolve states of chronic oxidative stress and inflammation, and can protect against 

numerous incurable inflammatory diseases, such as atherosclerosis, Alzheimer’s, and drug 

induced liver failure4,8,9. Therapeutics based on transcription factors, such as Nrf2, have 

tremendous therapeutic potential, but have been challenging to develop as therapeutics 

because of delivery problems4,10,11, and there is a great need for new transcription factor 

delivery vehicles9,12.
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In this report we present a transcription factor delivery vehicle, termed DARTs, which can 

deliver Nrf2 to the liver and rescue mice from acute liver failure. The chemical structure of 

the DARTs and the mechanism by which they are designed to deliver transcription factors 

are shown in Figure 1. DARTs are composed of an oligonucleotide that contains an Nrf2 

binding sequence and hydrophobic C32 alkyl chains that are “masked” by acid cleavable 

galactose residues, which are conjugated via acetal linkages13. The DARTs are able to 

complex Nrf2 because they contain an Nrf2 promoter sequence, which binds Nrf2 with high 

affinity, and can also target hepatocytes because they have galactose conjugated to their 3′ 

ends. In addition, the unique molecular architecture of the DARTs allows them to be pH 

sensitive membrane disruptive agents, and disrupt endosomes efficiently with minimal 

toxicity. The DARTs are designed to have minimal toxicity while they are circulating in the 

blood, because at pH 7.4, their hydrophobic domains are unable to interact with cell 

membranes due to the adjacent galactose groups. However, after endocytosis, the galactose 

groups of the DARTs are cleaved as a result of hydrolysis, and this activates the 

hydrophobic domains and allows them to disrupt the endosomal membrane.

The DARTs are designed to address several key challenges associated with delivering 

transcription factors in vivo. For example, transcription factors can be delivered via the 

DARTs by simply mixing them together. In contrast traditional protein delivery strategies 

require chemical modification of the protein or exposure to organic solvents, both of which 

frequently cause protein denaturation or the generation of antigenicity14. DARTs are well-

defined molecules that can also be synthesized on a large scale, and avoid the 

characterization and manufacturing problems associated with self-assembled systems. In 

addition, DARTs are able to disrupt endosomes without using cationic peptides or polymers 

and thus overcome the toxicity problems associated with traditional endosomal disruptive 

strategies15. Finally, the DART delivery strategy is modular, and a variety of transcription 

factors can potentially be delivered via the DART strategy by simply changing their 

oligonucleotide sequence and targeting moieties.

The pH sensitive hydrolysis of the acetal linkage in the DARTs is a critical feature of their 

molecular design. The DARTs need to be stable at pH 7.4 to allow for circulation in the 

blood with low toxicity, but hydrolyze rapidly at pH 5.0 and trigger endosomal disruption, 

before extensive degradation in the lysosome occurs. The hydrolysis kinetics of the DARTs 

was measured at pH 5.0 and pH 7.4, via gel electrophoresis (see Supplementary Information 

S3 for details). Figure 2a demonstrates that DARTs undergo pH sensitive hydrolysis with an 

estimated half-life of 41 minutes at pH 5.0, but have an estimated half-life of 12 hours at pH 

7.4. Intravenously injected galactose containing molecules are internalized by the liver 

within 1 hour16, and the pH 7.4 hydrolysis kinetics of the DARTs should be suitable for 

delivering transcription factors to the liver. In addition, the rapid hydrolysis of the DARTs at 

pH 5.0, suggests that they will trigger endosomal escape before extensive degradation of 

Nrf2 in the lysosomes occurs.

The acid catalyzed hydrolysis of the DARTs is designed to trigger endosomal disruption via 

unmasking of their hydrophobic domains. We therefore investigated if DARTs could disrupt 

liposomes in a pH sensitive manner using a calcein leakage assay (see Supplementary 

Information S4 for details). DARTs were incubated with calcein containing liposomes at 
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either pH 5.0 or 7.4 for 30 minutes, at concentrations between 10 – 30 μg/mL, and the 

disruption of liposomes was measured via the increase in calcein fluorescence. Figure 2b 

demonstrates that DARTs have pH sensitive membrane disruptive properties, and can 

disrupt lipid bilayers in an efficient manner. For example, calcein containing liposomes 

incubated with DARTs at a 20 μg/mL (1 μM) concentration at pH 5.0 released 

approximately 40% of their encapsulated calcein in 30 minutes, whereas liposomes 

incubated at pH 7.4 released only 10% of their encapsulated calcein. DARTs have a 

membrane disruptive capacity similar to commonly used endosomal disruptive polymers, 

such as co-polymers of diethylaminoethyl methacrylate and butyl methacrylate, which also 

require μg/mL concentrations to disrupt membranes, and this suggests that the DARTs will 

be able to enhance the cytoplasmic delivery of transcription factors17.

The DARTs are designed to complex Nrf2 because they contain the antioxidant responsive 

element (ARE) sequence, which is a DNA sequence found in the promoter region of Nrf2 

dependent genes. We performed experiments to determine if the DARTs could complex 

Nrf2. The binding of the DARTs with Nrf2 was determined via a competitive ELISA 

between DARTs and ARE DNA for binding to Nrf2. The results of this experiment are 

shown in the supporting information Figure S5 (see Supplementary Information S6 for 

details), and demonstrate that the DARTs bind Nrf2 with an affinity similar to unmodified 

ARE DNA. In addition, we performed experiments to determine if the DARTs could bind 

Nrf2 in serum. Alexa555-Nrf2 was complexed with the DARTs in 10% serum, and binding 

to the DARTs was analyzed by gel electrophoresis (see Supplementary Information S8 for 

details). Figure 2c demonstrates that Nrf2 can complex the DARTs in 10% serum, addition 

of Nrf2 to DARTs generated a high molecular weight band that was significantly larger than 

the free DARTs.

We performed fluorescent microscopy experiments to determine if DARTs could enhance 

the endosomal release of Nrf2. HepG2 cells were treated with DART-Alexa555-Nrf2 

complexes and the intracellular localization of Nrf2 was investigated via confocal 

microscopy, using Lysotracker green to mark endosomes and lysosomes (see Supplementary 

Information S9.1 for details). Figure 2d demonstrates that DARTs can dramatically alter the 

intracellular distribution of Nrf2, and causes a significant fraction of the delivered Nrf2 to 

localize in compartments distinct from lysosomes. In contrast, free Nrf2 is mostly found on 

the cell membrane or in lysosomes.

DARTs contain a tetravalent galactose group for hepatocyte targeting. We performed 

experiments to determine if the DARTs were efficiently internalized by hepatocytes. 

DARTs containing Cy3 were incubated with Hepa-1C1C7 and their uptake was compared 

against Cy3-labeled DNA via flow cytometry (see Supplementary Information S9 for 

details). Figure 3a demonstrates that the DARTs dramatically enhance the uptake of DNA, 

causing an 8 fold increase in mean red fluorescence versus free DNA. Based on these results 

we further performed in vivo biodistribution and pharmacokinetic experiments with Nrf2 

complexed with DARTs, to determine if the DARTs could enhance the accumulation of 

Nrf2 in the liver (see Supplementary Information S11.1 for details). Figure 3b demonstrates 

that the DARTs can increase the delivery of Nrf2 to the liver, causing an approximately 1.4 

fold increase in liver delivery compared to free Nrf2, suggesting that the galactose targeting 
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via the DARTs increases the delivery of Nrf2 to the liver. An increase in serum half-life was 

also observed with DART-Nrf2, which had a 1.3 fold increase in serum half-life over free 

Nrf2 (104 mins versus 83 mins) (see Supplementary Information S11.2 for details). The 1.3 

fold increase in serum half-life is consistent with the modest increase in molecular weight of 

Nrf2 caused by complexation with the DARTs. The molecular weight of the DART is 

approximately 20 kD and the DART-Nrf2 complex should therefore have a molecular 

weight that is only 35 % greater than free Nrf2. In addition, no evidence of systemic toxicity 

was observed in mice injected with Nrf2 complexed with the DARTs, as determined by 

blood TNF-α levels (Fig. S9).

DARTs are designed to deliver Nrf2 to hepatocytes, induce the expression of antioxidant 

genes, and protect hepatocytes from inflammatory diseases associated with oxidative 

stress18,19. We investigated if DARTs could deliver Nrf2 to HepG2 cells and upregulate the 

transcription of anti-oxidant genes that are regulated by Nrf2, in particular, Heme 

oxygenase-1 (HO-1), NAD(P)H dehydrogenase (quinone) (NQO1), and Glutamate-cysteine 

ligase catalytic subunit (GCLC) 4,20. We selected these three genes for analysis because of 

their central role in protecting against oxidative stress, and because they are signatures of 

Nrf2 activity. For example, HO-1 increases carbon monoxide production and is therapeutic 

against a wide variety of inflammatory diseases21. In addition, NQO1 up-regulates quinone 

anti-oxidant production and GCLC increases the production of glutathione, both of which 

protect against oxidative stress by remodeling metabolic and cell signaling pathways 4,22.

Nrf2 was bound to DARTs at a 1:1 molar ratio (DART-Nrf2) and was incubated with 

HepG2 cells at a 0.6 μM concentration overnight and then analyzed for gene expression via 

reverse transcription PCR (RT-PCR). As a control, HepG2 cells were treated with free Nrf2. 

Figure 4a demonstrates that DARTs can deliver functional Nrf2 into hepatocytes and induce 

the expression of Nrf2 target genes. For example, HepG2 cells treated with DART-Nrf2 had 

a significant increase in HO-1 expression in comparison to cells treated with Nrf2 or control 

cells. Similarly, DART-Nrf2 was able to increase the transcription of NQO1 and GCLC, 

whereas free Nrf2 had no effect on these genes.

We also investigated if the transcription of Nrf2 downstream genes by DART delivered Nrf2 

could protect hepatocytes from oxidative stress. HepG2 cells were pretreated with a 200 μM 

concentration of hydrogen peroxide for 4 hours, to induce oxidative stress, and then treated 

with either free Nrf2 or DART-Nrf2 (0.6 μM) for 14 hours. Cellular oxidative stress was 

measured with CM-H2DCFDA using flow cytometry (see Supplementary Information S9.3 

for details). Figure 4b demonstrates that DART delivered Nrf2 can protect hepatocytes from 

hydrogen peroxide induced oxidative stress. Cells treated with hydrogen peroxide had a 2.5 

fold increase in CM-H2DCFDA oxidation, whereas this was reduced down to levels 

comparable to the control with DART-Nrf2. In contrast, Nrf2 by itself had a minimal effect 

on cellular oxidative stress levels. Thus, DARTs are able to deliver functional Nrf2, induce 

the transcription of antioxidant genes, and protect cells against oxidative stress.

Nrf2 delivered by DARTs has great potential for treating liver associated inflammatory 

diseases, such as acute liver failure and liver fibrosis, which collectively effect millions of 

people each year4,10,11. We investigated if Nrf2 delivered by DARTs could protect mice 
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against acetaminophen (APAP) induced liver injury. APAP induced liver injury was 

selected as an initial disease model for the DARTs because of the great need for new 

therapeutics against this disease23,24 and the well-established role of Nrf2 in protecting 

against APAP induced liver injury. APAP induced toxicity in mice was induced via the i.p. 

injection of APAP (500mg/kg), and 1 hour afterwards an intravenous injection of either free 

Nrf2 or DART-Nrf2 was given. Liver toxicity was determined 24 hours later by measuring 

ALT levels in the serum and also via histology. Additionally, liver tissue was isolated from 

these mice and analyzed by western blotting to determine if Nrf2 delivered by the DARTs 

could induce the expression of Nrf2 downstream genes (see Supplementary Information S11 

for details).

Figures 5a–c demonstrate that DARTs can enhance the delivery of Nrf2 in vivo, induce the 

transcription of Nrf2 downstream genes, and protect mice from APAP induced liver injury. 

For example, Figure 5a demonstrates that mice receiving DART-Nrf2 and APAP had a four-

fold decrease in ALT levels in comparison to mice that received APAP only, or mice that 

received APAP and free Nrf2. A similar therapeutic benefit was observed in the histology 

sections of the mice that received DART-Nrf2 and APAP, which had a histological profile 

similar to healthy mice, in contrast mice receiving free Nrf2 and APAP had significant signs 

of toxicity (Fig. 5b). Importantly, DART-Nrf2 was able to have a therapeutic effect on 

APAP treated mice, even though it was given an hour after APAP administration, suggesting 

that it can be effective in a clinical scenario where patients present hours after drug intake. 

In addition, we investigated if Nrf2 complexed with DARTs could stimulate the 

transcription of Nrf2 downstream genes in vivo, via western blotting for the Nrf2 

downstream genes HO1 and NQO1. Figure 5c demonstrates that Nrf2 delivered by the 

DARTs can increase the expression of HO1 and NQO1 in the liver, and suggests that the 

therapeutic effects of DART delivered Nrf2 are due to the enhanced transcription of Nrf2 

downstream genes.

We performed additional experiments to determine if the endosomal disruptive or galactose 

targeting groups of the DARTs were essential for Nrf2 delivery in vivo. To determine the 

importance of the endosomal disruptive unit, we synthesized galactose conjugated DNA and 

investigated its ability to deliver Nrf2 and rescue mice from APAP induced liver injury. 

Figure 5a demonstrates that galactose conjugated DNA is unable to deliver Nrf2 in vivo, 

demonstrating that the endosomal disruptive unit of the DARTs is critical for efficacy. In 

addition, we performed experiments to determine if the galactose targeting groups of the 

DARTs were critical for Nrf2 delivery. DARTs containing glucose residues instead of 

galactose were synthesized and their ability to rescue mice from APAP induced liver injury 

was investigated. Figure 5a demonstrates that glucose containing DARTs were inefficient at 

delivering Nrf2, but were more effective at delivering Nrf2 than galactose conjugated DNA. 

Thus the galactose targeting plays a role in enhancing Nrf2 delivery in vivo, but is perhaps 

not as important as the endosomal disruption unit.

In this report we present a multifunctional oligonucleotide, termed DARTs, which can 

deliver transcription factors in vivo. The DART delivery strategy has numerous potential 

applications given the central role of transcription factors in liver biology. In addition, it 

should be possible to deliver transcription factors to cell types outside of the liver by using 
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targeting groups other than galactose. Finally, the DART delivery strategy demonstrates that 

DNA based scaffolds can be used to deliver DNA binding proteins and provides a platform 

for the development of DNA origami-based delivery vehicles.

Materials and Methods

Synthesis of the DARTs

The synthesis of the DARTs is shown in detail in the supporting information and is 

described in Figures S1 and S2.

In vitro delivery of Nrf2 with DARTs

HepG2 cells were cultured in DMEM media containing 10% FBS and antibiotics (Pen 

Strep). Cells with a passage number less than 15 were used for experiments. HepG2 and 

Hepa-1C1C7 cells were seeded at 40% confluency the day before experiments. Nrf2 and 

DARTs were mixed at equal molar ratios and incubated for 15 min in binding buffer before 

the addition to cells. For all in vitro studies, 0.6 μM of Nrf2 or 0.6 μM of Nrf2 complexed 

with 0.6 μM of DARTs were used.

Reverse transcription PCR (RT-PCR) analysis of HepG2 cells treated with Nrf2 delivered by 
DARTs

HepG2 cells were treated with either free Nrf2 or DART-Nrf2 in culture media for 24 h and 

the RNA was extracted from the cells using the RNeasy® Mini Kit with additional DNase I 

digestion (Qiagen, Hilden, Germany), according to the manufacturer’s protocol. RNA purity 

and concentration were determined by measuring the optical density using an ND-1000 

Spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE, USA). Purified 

mRNAs were normalized by total mRNA concentration, and Qiagen one-step RT-PCR was 

conducted with primers for HO1, NQO1, GCLC, and GAPDH, which were purchased from 

Origene. Amplified DNAs were visualized with a ChemiDoc XRS system, after gel 

electrophoresis in a 1% agarose gel and staining with SYBR safe.

Intracellular localization of Nrf2 delivered by DARTs

The intracellular localization of Nrf2 delivered by the DARTs was observed by confocal 

microscopy (Swept Field Confocal microscope-Prairie Technology). Nrf2 was labeled with 

Alexa555 to visualize its intracellular localization. 500 μg of Nrf2 (500 μg/mL) was reacted 

with 9 times molar excess of Alexa555-NHS-ester (Life Technologies) at 4°C overnight in 

0.1 M phosphate buffer (pH 8.5). A PD-10 column was used to remove unreacted Alexa555. 

The concentration of Nrf2 and conjugated Alexa555 were measured with Nanodrop 2000 

(Thermo). Alexa555-Nrf2 and DART were mixed at equal molar ratios and incubated for 15 

min. HepG2 cells in 35 cm culture dishes were treated with 0.6 μM of Alexa555-Nrf2 

prepared with or without DARTs for 30 min. After PBS wash, cells were incubated for 

additional 4 hr in culture medium. 100nM of Lysotracker Green DND-26 (Life 

Technologies) was added to the cells to visualize endosomes and lysosomes. HepG2 cells 

were washed with PBS and images were taken using confocal microscopy.
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Intracellular uptake analysis of Cy3-DART in HepG2 cells

3′-azide functionalized oligonucleotides containing the Nrf2 consensus sequence and Cy3, 

(forward strand 5′-/Cy3/GTC ACA GTG ACT CAG CAG AAT CTG TTT T-N3-3′) and 

(reverse strand 5′-CAG ATT CTG CTG AGT CAC TGT GAC TTT TT-N3-3′) were 

purchased from IDT. Cy3 labeled DARTs were synthesized following procedures described 

in the Supplementary Information (see Supplementary Information S2.2 for details). HepG2 

cells were treated with 0.6 μM of either Cy3-DNA or Cy3-DARTs in OptiMEM medium 

with 1% FBS for 24hr. HepG2 cells were washed 3 times with PBS and analyzed with flow 

cytometry (Guava easyCyte™).

Treatment of acetaminophen (APAP) induced liver injury in mice with DART-Nrf2

After overnight fasting, mice were administered an intraperitoneal injection of APAP (500 

mg/kg) dissolved in PBS (5% DMSO). One group of mice received free Nrf2 at the dose of 

25 μg per mouse (1.25 mg/kg of Nrf2), and the other groups of mice were administered 

DARTs, DART-Nrf2, glucose-DART-Nrf2, and Gal-DNA-Nrf2 in 100 μL of PBS by tail-

vein injection. 24 h after the injection of APAP, the mice were euthanized by CO2 

asphyxiation. The blood was collected by cardiac puncture and the livers were isolated. 

APAP-induced liver injury was determined by measuring the alanine aminotransferase 

(ALT) activity in the serum using a commercial ALT assay kit (Biovision). Liver samples 

were used for RNA isolation and histology to assess the liver damage. For histological 

analysis livers sections were stained by Hematoxylin and eosin, observed under light 

microscopy (Zeiss AxioCam ERc 5s), and the necrosis was compared between the groups of 

control, Nrf2 and DART-Nrf2 treated mice. Western blotting was performed with the liver 

samples to analyze the expression of HO1, NQO1, and GAPDH, using standard procedures. 

Transfer of proteins from liver homogenates to the nitrocellulose membrane (Bio-rad) was 

performed at 65V for 60 min. Primary antibodies (1:500) were incubated overnight at 4C 

and the secondary antibody, bovine anti-rabbit-HRP, (1:2000) was incubated for 2 hr at RT. 

Images were taken using a ChemiDoc XRS system (Bio-Rad Laboratories). HO1 antibody 

(sc-10789), NQO1 antibody (sc-25591), and bovine anti-rabbit IgG-HRP (sc-2370) were 

purchased from Santa Cruz Biotech.

Detailed experimental procedures regarding the DART synthesis, characterization, and in 

vitro and in vivo testing are described in the Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DARTs are multifunctional oligonucleotides that can deliver the transcription factor 
Nrf2 in vivo
DARTs are composed of an oligonucleotide that contains an Nrf2 promoter sequence and 

hydrophobic membrane disruptive domains that are masked by acid cleavable galactose 

residues. DARTs complex Nrf2 and deliver Nrf2 to the liver via galactose mediated 

endocytosis. After endocytosis, DARTs stimulate endosomal disruption and the release of 

Nrf2 into the cytoplasm, due to acid catalyzed unmasking of their hydrophobic domains.
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Figure 2. The DARTs are acid sensitive endosomal disruptive agents and their hydrolysis is pH 
sensitive
a, The hydrolysis of the DARTs is acid catalyzed. DART hydrolysis was conducted at pH 5 

and pH 7.4 PBS, ± S.E, n=5.

b, DARTs disrupt calcein containing liposomes in a pH-dependent manner. Liposome 

disruption by the DARTs was assessed by calcein leakage, mean ± S.E, n=5. **, p < 0.01.

c, Nrf2 binds the DARTs in 10% serum. An electrophoretic mobility shift assay on Nrf2-

DART complexes demonstrates that the migration of the DARTs is shifted after 

complexation with Nrf2 in serum.

d, DARTs alter the intracellular delivery of Nrf2 and enhance lysosomal release. Alexa555 

labeled Nrf2 (red color) was complexed with the DARTs and incubated with HepG2 cells. 

Endosomes were counterstained with Lysotracker green (green color). Nrf2 complexed with 

the DARTs have a substantially different intracellular distribution than free Nrf2, with a 
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large fraction existing outside of the lysosome, whereas free Nrf2 is predominantly on the 

cell membrane or in lysosomes. (Scale bar: 5 μm).
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Figure 3. The DARTs can target hepatocytes and enhance the delivery of Nrf2 to the liver
a, Hepa-1C1C7 cells were treated with Cy3-DNA or Cy3-DART for 4 hours and uptake was 

measured via flow cytometry. Cy3 labeled DARTs have enhanced uptake in Hepa-1C1C7 

cells and have 8 times higher mean red fluorescence than free DNA.

b, DARTs enhance the liver delivery of Nrf2. Nrf2 labeled with IRDye 800CW-NHS-ester 

was complexed with the DARTs, and injected into mice. The biodistribution of Nrf2 was 

quantified via fluorescence 4 hours after Nrf2 injection. DARTs enhance the liver delivery 

of Nrf2 by a factor of 1.4. mean ± S.E, n=6. *, p < 0.05.
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Figure 4. DARTs are able to deliver Nrf2 to hepatocytes, up-regulate Nrf2 downstream genes, 
and can protect hepatocytes against reactive oxygen species (ROS)
a, Nrf2 delivered by DARTs enhances the expression of HO1, NQO1, and GCLC. RT-PCR 

of HepG2 cells treated with DART-Nrf2 complexes up-regulate HO1, NQO1, and GCLC. 

Free Nrf2 had no effect on HO1, NQO1, and GCLC gene expression.

b, Nrf2 delivered by DARTs reduces ROS levels in HepG2 cells stressed with hydrogen 

peroxide. ROS levels in hydrogen peroxide stressed cells were not significantly reduced by 

free Nrf2, whereas DART-Nrf2 decreased ROS production down to levels comparable to 

control cells, mean ± S.E, n=9. **, p < 0.01, ns = statistically not significant.
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Figure 5. The DARTs can deliver Nrf2 to the liver, up-regulate Nrf2 downstream genes, and 
rescue mice from acetaminophen induced liver injury
a, Nrf2 delivered by DARTs rescue mice from acetaminophen (APAP) induced liver injury. 

DART-Nrf2 complexes reduce serum alanine transaminase (ALT) levels in APAP treated 

mice by a factor of 4. Free Nrf2 had no effect. Nrf2 complexed with either Glu-DARTs or 

Gal-DNA, and free DARTs, did not cause a statistically significant reduction in ALT levels. 

mean ± S.E, n=10. p < 0.01, ns = statistically not significant to APAP.

b, Nrf2 delivered by DARTs reduces liver damage in APAP treated mice. Histological 

sections of livers from APAP treated mice had significant inflammation. In contrast, 

histological sections of livers from APAP mice treated with DART-Nrf2 had reduced liver 

damage and resembled the histological sections of healthy mice. Free Nrf2 was unable to 

suppress liver damage. (Scale bar: 40 μm).

c, Nrf2 delivered by DARTs enhances the expression of the proteins HO1 and NQO1 in the 

liver. APAP treated mice were given either DART-Nrf2 or free Nrf2, and their livers were 

harvested and western blot analysis was conducted for the proteins HO1, NQO1, and 

GAPDH. Mice treated with DART-Nrf2 complexes have increased HO1 and NQO1 

expression in comparison to free Nrf2 or APAP treated mice. Control = no treatment, APAP 

= APAP only, Nrf2 = APAP+Nrf2, DART = APAP+DART-Nrf2.
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