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Abstract

Recent research findings correlate an increased risk for dieases such as diabetes, macular 

degeneration and cardiovascular disease (CVD) with diets that rapidly raise the blood sugar levels; 

these diets are known as high glycemic index (GI) diets which include white breads, sodas and 

sweet deserts. Lower glycemia diets are usually rich in fruits, non-starchy vegetables and whole 

grain products. The goal of our study was to compare and contrast the effects of a low vs. high 

glycemic diet using the biochemical composition and microstructure of the heart. The improved 

spatial resolution and signal-to-noise for SR-FTIR obtained through the coupling of the bright 

synchrotron infrared photon source to an infrared spectral microscope enabled the molecular-level 

observation of diet-related changes within unfixed fresh frozen histologic sections of mouse 

cardiac tissue. High and low glycemic index (GI) diets were started at the age of five-months and 

continued for one year, with the diets only differing in their starch distribution (high GI diet = 

100% amylopectin versus low GI diet = 30% amylopectin/70% amylose). Serial cryosections of 

cardiac tissue for SR-FTIR imaging alternated with adjacent hematoxylin and eosin (H&E) stained 

sections allowed not only fine-scale chemical analyses of glycogen and glycolipid accumulation 

along a vein as well as protein glycation hotspots co-localizing with collagen cold spots but also 

the tracking of morphological differences occurring in tandem with these chemical changes. As a 

result of the bright synchrotron infrared photon source coupling, we were able to provide 

significant molecular evidence for a positive correlation between protein glycation and collagen 

degradation in our mouse model. Our results bring a new insight not only to the effects of long-
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term GI dietary practices of the public but also to the molecular and chemical foundation behind 

the cardiovascular disease pathogenesis commonly seen in diabetic patients.
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1. Introduction

Spectral imaging using infrared radiation emitted from a thermal emission light source has 

emerged as a routine chemical imaging tool permitting the identification of the fingerprint-

like mid-infrared spectra of macromolecules in histologic tissue samples both from animal 

models and humans [14,18,70]. Spectral features such as peak frequency, shape, and 

intensity are directly related to the spatial distribution of the intrinsic chemical compounds. 

For example, FTIR spectral microscopy is routinely used to assess the relative abundance of 

phosphate, carbonate and collagen in mineralized tissues, providing a valuable measure of 

mineral quantity and quality [7,9]. FTIR spectral microscopy has been applied to study diet-

induced atherosclerotic lesions in the descending thoracic segment of rabbit aorta [55] as 

well as drug- and disease-associated effects on the cellular composition such as the lipid- 

and carbohydrate-to-protein ratio in tissues [39,44–46]. In these studies, the spectral features 

of the compounds of interest were readily resolved, and the compound distribution was 

evaluated by means of univariate analysis. In situations where the spectral features of 

targeted compounds overlap, either supervised or unsupervised multivariate data analysis 

was applied to extract semi-quantitative information on tissue components and their relative 

abundance [5,57,73].

Evaluation of large volumes of data reveals that improvements in spatial resolution and the 

intensity of the signal arriving at the detector could significantly improve the FTIR 

spectromicroscopy performance. Here spatial resolution determines the measurement area 

within the biological sample and therefore the length scale of the heterogeneity that can be 

studied. One limiting parameter is the intensity of the signals. It has been shown that both 

spatial resolution and signal-to-noise can be dramatically improved by replacing the thermal 

emission source in the conventional FTIR spectromicroscope with a bright synchrotron 

infrared source [17,34]. In 1998, synchrotron FTIR was first applied to map the distribution 

of macromolecules in a single human cell [36], and shortly afterwards to characterize human 

lung epithelial cells during the cell cycle and the early stage of apoptosis [32]. This was 

followed by a growing trend of diagnosis of tissues for biomedical applications which 

includes identifying the structures of misfolded protein aggregates in the brain tissue of 

Alzheimer’s disease patients [43] detecting the evolution of Huntington’s disease [6], 

characterizing the neuropathology of multiple sclerosis [30], infectious prions in scrapie-

infected tissues [15,40] analyzing bone and cartilage disease [22,61], identifying the effect 

of high-fat diet on the severity of atherosclerosis, and to evaluate the progression of 

atheromatous plaques in mice [33]. More recently synchrotron infrared spectromicroscopy 

has been applied to the detection of metabolites in Purkinje neurons [25] as well as to track 
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the changing biochemistry and protein phosphorylation of nerve cells as they differentiated 

[10].

In this study, synchrotron infrared spectromicroscopy was used to investigate the 

biochemical composition of cardiovascular tissues from older adult mice fed with a high 

glycemic index (GI) diet for one year. The glycemic index compares the two-hour area 

under the blood glucose curve due to consuming a food containing 50 grams of digestible 

carbohydrate to the two-hour area under the blood glucose curve due to consuming 50 grams 

of a standard carbohydrate (i.e. glucose, white bread). Low GI food has a GI value of 55 or 

less and high GI is 70 and above. Glucose has a GI of 100 [37]. Foods with a high GI induce 

a larger increase in blood glucose levels than foods with a low GI. Under normal 

physiological conditions, glucose reacts with proteins, lipids and nucleic acids through non-

enzymatic glycation and oxidation to form a heterogeneous group of glycated molecules 

called advanced glycation endproducts (AGEs), with highly reactive dicarbonyl glyoxal 

compounds as intermediate products [8,12,29].

Glycated protein, lipid end-products and AGEs cross-link intracellular and extracellular 

matrix proteins, altering tissue function and biochemical and mechanical properties 

[29,68,71] as well as the controversial induction of collagenolysis [67]. AGEs also interact 

with a specific receptor present on all cells, known as RAGE (receptor for AGE). RAGEs 

are relevant to the development and progression of cardiovascular disease associated with 

the pathologic activation of a variety of cells including monocytes derived macrophages, 

endothelial cells, and smooth muscle cells. The interactions of AGEs with RAGE result in 

the induction of oxidative stress and pro-inflammatory responses, increase oxidative stress, 

and the activation of protein kinase C that alters the growth factor expression [3]. Increased 

levels of AGEs have been observed in serum of patients with chronic hyperglycemia due to 

diabetes mellitus (DM) (see references in [13,71,72]). The enhanced formation and 

accumulation of AGEs are believed to have a key role in the pathogenesis of cardiovascular 

disease, the leading cause of early death among people with DM. Approximately 65% of 

people with diabetes eventually die from diabetic heart disease, and diabetic adults are also 

two to four times more likely to have heart disease or suffer a stroke than the age adjusted 

normal population in the United States [54].

Similar to patients with chronic hyperglycemia due to DM, epidemiologic data indicate that 

people who consume high GI diets have a significantly increased risk for cardiovascular 

disease [49,51]. However, our understanding of the connection between a high GI diet and 

the accumulation of advanced protein and lipid modification products is far from complete; 

their roles in the transformation of collagen and the disruption of the stability of the 

cardiovascular tissues are unclear and controversial. In vitro methods of investigation used 

to date often rely on AGE-specific immunochemical tests (i.e. AGE-ELISA), but such 

assays cannot directly illustrate the spatial distributions of AGEs, collagen and lipids within 

a single tissue section. Immunohistochemical staining can also be used to identify the spatial 

distribution of AGEs [11,12,62,72], yet they lack the spatial information of other supporting 

biochemical processes, biomolecules and microstructures.
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A number of investigators have demonstrated that tissue structure and function can be 

progressively modified by AGEs through the fluorescent pentosidine cross-links between 

the arginine and lysine residues in collagen as well as the nonfluorescent N*-

(carboxymethyl)lysine that initiates an AGE receptor mediated effect [20,21,23,27–

29,65,66]. In the study reported here, we have used synchrotron infrared spectromicroscopy, 

together with fluorescence microscopy to examine in situ the connection between AGEs, 

long-lived proteins such as collagen, and lipid peroxidation. In parallel, we also performed 

hematoxylin–eosin (H&E) analysis of adjacent tissues in serially sectioned heart tissues to 

correlate the chemical information with the histopathologic information.

2. Materials and methods

2.1. Ethical considerations

This study was carried out and approved under the Jean Mayer United States Department of 

Agriculture Human Nutrition Research Center on Aging at Tufts University Institutional 

Animal Care and Use Committee protocols, in accordance with the Animal Welfare Act 

provisions and the ARVO Statement for the Use of Animals in Ophthalmic and Vision 

Research and with all other animal welfare guidelines, such as the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals.

2.2. Animals

Cardiac tissues from a C57BL/6 nontransgenic mouse model, fed a high or low GI diet were 

used for our current work. Five-month-old male C57BL/6 mice (approximates middle aged) 

were obtained from Charles River Laboratories (Wilmington, MA). The mice were divided 

into 2 groups. Mice in group 1 were fed a high glycemic index (GI) diet (100% amylopectin 

starch) and mice in group 2 were fed low GI diet (30% amylopectin/70% amylose starch) for 

12 months. The mice were pair-fed to ensure equal consumption between diet groups. Diets 

were isocaloric and of identical macronutrient distribution (65% carbohydrate, 21% protein, 

14% fat). The only difference between the high and low GI diets was the distribution of 

starch (100% amylopectin in the high GI diet, and 30% amylopectin/70% amylose in the 

low GI diet). All of the diets used in this study were formulated by Bio-Serv (Frenchtown, 

NJ). National Starch (Bridgewater, NJ, now Ingredion) generously donated Amioca starch 

(100% amylopectin) for incorporation into the high GI diet, and Hylon VII starch (30% 

amylopectin/70% amylose) for incorporation into the low GI diet. At 17 months of age, the 

mice were fasted 6 hours prior to being euthanized with carbon dioxide. Tissues were then 

harvested and frozen immediately in liquid nitrogen and stored long term at −80°C.

2.3. Tissue preparation

Each frozen sample was serially cryosectioned at a thickness of 5-micrometers free of 

freezing media on the cut surface using liquid nitrogen-isopentane cryogens at the Vogel 

Lab at Stanford University. The odd numbered sections were mounted on a silicon slide for 

infrared spectromicroscopic analysis. Even numbered sections were mounted on a glass 

slide and stained with hematoxylin and eosin (H&E) for light microscopic analysis. H&E 

has traditionally been used to highlight the morphology and microstructure (i.e. normal 

histology and histopathology) of the tissue sections. It was not possible to correlate SR-
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FTIR imaging and H&E staining on the same slide because the H&E preparation procedure 

alters the infrared absorption characteristics of a tissue section.

2.4. H&E staining of thin sections for light microscopy

The even-numbered thin tissue sections (from 2.2) were taken straight from the cryotome 

and briefly set to dry on warm glass slides before being placed in hematoxylin for 5 min, 

rinsed, placed in eosin for a minute, dehydrated with graded strengths of alcohol, cleared in 

xylene, and finally cover-slipped using a permanent mounting medium. The stained sections 

were examined using a standard light microscope.

2.5. Synchrotron infrared spectral microscopy measurements

In situ measurements of the non-stained odd-numbered tissue sections were performed in 

biological triplicate using a Nicolet Continuum infrared microscope with a mercury 

cadmium telluride (MCT) single element detector (Thermo Fisher Scientific Inc.). The 

detector was connected to a Nicolet 6700 FTIR spectrometer coupled with a synchrotron 

light source at the infrared beamline 5.4 (Advanced Light Source, Lawrence Berkeley 

National Laboratory; see http://infrared.als.lbl.gov/). The unfixed 5 μm thick cryosections of 

the tissues from mice fed with different GI diets were placed under a 32X objective with a 

numerical aperture (NA) of 0.65. The tissues were sampled by dividing the whole area into 

10 μm pixels and then raster scanned, collecting full SR-FTIR spectra at each position. All 

spectra were recorded over the mid-infrared region in transmission mode, and each spectrum 

represents an average of 8 scans with a spectral resolution of 4 cm−1 (Thermo Fisher 

Scientific Inc.). The resulting data cubes, which consisted of position-associated FTIR 

spectra, were saved in ENVI format and imported in “R” environment using hyperSpec 

(http://hyperspec.r-forge.r-project.org).

2.6. Synchrotron infrared spectral data analysis

The hyperSpec package in “R” environment was used for spectral processing such as 

baseline correction and detection of void areas in the tissue, for calculating the derivatives, 

and for peak intensity analysis (Figs 2 and 3). The void areas in the samples were identified 

by cluster analysis and masked during the SR-FTIR analysis. The peak intensity analysis, 

which integrates infrared absorbance of an individual peak of interest, relates the absorbance 

intensity at a given frequency ν to the relative concentration of a particular chemical 

component and the thickness of the sample through the Beer–Lambert Law. In this study, 

the thickness of sample section was near constant. The integrated area of the amide I and 

amide II (1700–1480 cm−1) absorption bands that arise mostly from the combined 

vibrational modes of the C=O and O=C–N bonds of proteins (see Table 1) were mapped 

across the tissue section, creating an intensity image of proteins. Similarly, the integrated 

areas of the absorption band centered at ~1025 cm−1, arising mainly from the vibrational 

modes of –CH2OH groups, and the absorption band centered at ~1050 cm−1, arising mostly 

with the C–O stretching coupled with the C–O bending of the C–OH groups in 

carbohydrates, were mapped across the tissue section to create an intensity image of 

carbohydrates. The value of the lipids (2800–3000 cm−1), is mostly due to the symmetric 

and asymmetric stretching modes of methylene (CH2) and methyl (CH3) groups. In addition, 
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the relative abundance expressed in terms of the ratio of carbohydrates to proteins signals 

were used to highlight sugar rich areas, where glycated proteins and precursors of AGEs 

(PAGEs) were likely present. Collagen I and III, the most abundant collagen subtypes in the 

heart, was evaluated using the ν(C–O) band centered at ~1204 cm−1 [48]. The linear 

combination of the ν(C= O)ester bands at 1730 and 1745 cm −1 was used for lipid esters 

content [19].

2.7. Fluorescence microscopy analysis

To detect tissue structure that had been progressively modified by AGEs through the 

fluorescent pentosidine cross-links between the arginine and lysine residues in collagen, the 

tissue samples were also imaged by Fluorescence Illuminator equipped with the Nicolet 

Continuum microscope. This illuminator features a high-pressure mercury burner with a 12 

V, 100-watt halogen bulb, and Interchangeable wide-band fluorescence cubes, which 

provide different excitation wavelengths: WU (330–385 nm excitation/>420 nm emission), 

BV (400–440 nm excitation/>475 nm emission), EN (450–490 nm excitation/500–550 nm 

emission), WB (450–480 nm excitation/>515 nm emission), WG (510–550 nm excitation/

>590 nm emission).

3. Results

A total of over 15,000 SR-FTIR spectra of ventricular myocardial tissue sections from both 

mouse groups were acquired over the mid-infrared (4000–650 cm−1) region. Their average 

absorption and second derivative spectra were analyzed in the 2800–3050 cm−1 lipid region, 

the 1800–1480 cm−1 protein amides and lipid ester region, and the 1480–900 cm−1 

biomolecule fingerprint region (Fig. 1). The key spectral bands are labeled and their 

assignments are given in Table 1. In the 1800–900 cm−1 region, the High GI ventricular 

myocardium has a mean and a secondary spectrum similar to those of the low GI ventricular 

myocardium, except for a slight increase in the absorption intensity of the lipid ester, the 

protein amide I and the carbohydrate bands. However, the absorption intensities of the bands 

in the 2800–3050 cm−1 region that originate from the stretching vibrations of the fatty acids 

of all cellular lipids are distinctly stronger for mice in high GI diet, indicating that the 

relative lipid content in the tissues has increased compared to that for mice in low GI diet.

3.1. Global cardiac tissue composition: High versus low GI diet

The relative abundance of proteins, lipids, carbohydrates, collagens and cholesterols were 

estimated by using the Beer–Lambert Law, and expressed in terms of integrated infrared 

absorbance (in absorbance units, a.u.) of the main functional groups of the key 

macromolecules as given in Table 1. According to Beer–Lambert Law, the absorbance of 

spectral bands is proportional to the corresponding concentrations of chemical components. 

However, the actual optical path length of the sample may vary slightly as a result of 

variation of refractive index, therefore the values should be considered as an approximation. 

The estimated changes in their absorbance intensities are given in Table 2, which includes 

the integrated absorbance intensities of the amide I and II peptide bands (1700–1480 cm−1), 

the ν (CH) lipid bands (2800–3000 cm−1), the carbohydrate bands (1100–1000 cm−1), the ν 

(C–O) collagen band centered at 1204 cm−1 and the ν(C=O)ester lipid ester bands. As shown 
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in Table 2, the observed changes in proteins, lipids, carbohydrates, and lipid esters are 

statistically significant with diet. There is an overall 15% increase in the fatty acids/lipids 

content in the high GI diet groups, from 2.23 a.u. to 3.03 a.u. Similar increases in the lipid 

content was reported in the myocardium and vessels from patients with DM [60,69]. We 

observed little change in the collagen content with diet. The significance of the difference in 

fatty acids/lipids content with diet was confirmed by the ANOVA test on the complete 

dataset, with a p-value less than 3×10−8 (Tukey Multiple Comparison of Means). This 

suggested that a high GI diet could give rise to a higher lipid content within the cardiac 

tissues.

3.2. SR-FTIR imaging of biochemical changes

Although the mean SR-FTIR absorbance intensities (Table 2) show that a high GI diet 

induces various degrees of compositional changes in mouse cardiac tissues there are marked 

regional heterogeneities, as indicated in the SR-FTIR spectroscopic maps of cardiac tissue 

from mice fed high (Fig. 2) or low GI (Fig. 3) diets. Here, each chemical image (Figs 2(b)–

(f) and 3(b)–(f)) represents the integrated absorbance of a specific molecular band of the IR 

spectrum for each pixel. Figures 2(b) and 3(b), which were derived from the integrated 

absorbance of the ν(CH)lipid bands (2800–3000 cm −1) reveal the morphology and textures 

of myocardial tissue samples. A comparison of Figs 2(b) versus 3(b) shows that for mice fed 

high GI diets, there was almost a two-fold increase in the lipid absorbance in areas that 

correspond to capillaries and veins. Images derived from the sugar groups of carbohydrates 

(Figs 2(d)–3(d)), the ν(C–O) collagen bands (Figs 2(e)–3(e)), and the ν(C=O) lipid ester 

bands (Figs 2(f)–3(f)) show an elevated accumulation of carbohydrates, collagen and 

aggregates of lipid ester (presumably cholesteryl esters) in segments of the lipid-rich areas 

within perivenuous/venous tissues. The co-localization of the observed high intensities of 

the sugar groups of carbohydrates, C–O groups of collagen, and the C=O groups of lipid 

esters may reflect the enhanced deposition of glycated collagens and lipids [38,59], a marker 

of the presence of AGEs [24] and indicators of pathogenesis of arterial and myocardial 

stiffening of aging and diabetes [2]. The infrared spectra of glycation and AGE products 

exhibit strong absorption features from the ν(C–O; C–C)sugar moieties vibrations and the ν(C–

O–C)sugar moieties + phospholipids in the 950–1180 cm−1 region [59,63]. The elevated ratio of 

the absorbance from the sugar moieties and phospholipids to the protein amide II shows the 

presence of AGEs. However, we cannot rule out the possibility that the co-located 

aggregates of lipid esters may also reflect the accumulation of the macrophage-derived foam 

cells [33,55].

For mice fed high GI diet, the lipid/protein ratio appeared to be uniformly higher relative to 

mice on a low GI diet (Figs 2(g) versus 3(g)). This was due to an increase in lipid content 

(Figs 2(b), 3(b)) and not a decrease in the protein content (Figs 2(c), 3(c)). Similarly, images 

of the CH2/CH3 ratio show significantly higher values (Figs 2(h) versus 3(h)). This increase 

in the CH2/CH3 ratio is consistent with the reported increase in the asymmetric and 

symmetric vibrations of CH2 and a decrease in the vibration of CH3 methylene groups of the 

fatty acids in cellular membranes of chronic hyperglycemic or diabetic heart tissues [69]. 

These increases in lipid/protein and the CH2/CH3 ratio suggest that a high GI diet disturbs 

lipid metabolism in ventricular myocardium, similar to those reported for DM [31,35,52,69].
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3.3. AGEs hotspots

A spectroscopic mapping of the carbohydrate/protein ratio over a larger area of the same 

cardiac tissue (Fig. 4(a)) revealed glycation hot spots in some veins and capillaries (Fig. 4(a) 

versus insert 1). Within these microscopic hotspots the values of the carbohydrate/protein 

ratio often reached between 0.7 and 1.0, reflecting the high accumulations of protein–

carbohydrate conjugates. These glycation hot spots, as marked in Fig. 4(a), typically ranged 

from several to tens microns in size (inserts 4(i)–(iv)). The fluorescence image (excitation at 

330–385 nm/emission at >420 nm) of the same sample section demonstrates the presence of 

the fluorescent AGE-related pentosidine or pentosidine-like cross-links between the arginine 

and lysine residues (Fig. 4(b), inserts (i) and (ii)), and the nonfluorescence N*-

(carboxymethyl)lysine-like AGE (Fig. 4(b), inserts 4(iii) and (iv)) [20,21,23,27–29,65,66].

Comparison of the SR-FTIR spectra of all AGE hotspots with the mean SR-FTIR spectra 

shows little significant changes in the position of protein amide I band (~1648 cm−1), a 

measure of the protein secondary structure as defined by patterns of hydrogen bonds 

between the peptides. This implies a surprising conservation of the protein structure in spite 

of glycation. Meanwhile, the increase in absorption intensity in the amide I and amide II 

bands may reflect discrete conformational changes in tertiary structure of proteins at the 

AGE hotspots. The most changes were observed in the 1200–900 cm−1 region (for example, 

insets in Fig. 4). Here the absorbance bands arise from composite modes of vibrations of the 

sugar ring overlapping with stretching vibrations of the side group (C–OH) and with the (C–

O–C) glycosidic bond vibration of the sugar moieties of glycated proteins [38,59] including 

proteoglycan [56]. A deeper analysis reveals almost all AGE hotspots’ absorption bands in 

this 1200–900 cm−1 region were dominated by the glucose configuration (Fig. 4, inserts (i)–

(iv)): ~1160 cm−1 from the (C–O–C) glycosidic bond, ~1105 cm−1 and ~1079 cm−1 from 

the (COH) group vibrations on the equatorial and the axial position, and the lowest 

frequency maximum intensity at ~1030 cm−1. Along with spectral features indicating 

protein-sugar aggregates it is possible to identify infrared signals that can be related to 

oxidative stress processes. An increase in the intensity of ester carbonyl groups (R–O–C=O) 

at ~1735 cm−1 [41,50], often co-localized with fluorescence hotspots, could be due to 

accumulation of lipid peroxidation products such as malondialdehyde, lipid aldehyde, and 

alkyl radicals, which are known to be present in pathologies such as diabetes [4]. The 

observed increase in the olefinic band (=CH) at ~3012 cm−1 in Fig. 4 (insert (i)) implies the 

presence of double bonds is associated with the release of lipid peroxidation products such 

as malondialdehyde, lipid aldehyde, and alkyl radicals into the extra- or intracellular site of 

the cell [64]. These released products could cause apoptosis or necrotic cell death [26].

3.4. Histopathological assessment of cardiac tissues

Histological characteristics of the even-numbered cardiac tissue sections were evaluated for 

mice fed high (Fig. 5(A)) and low (Fig. 5(B)) GI diets. Hematoxylin, a basic dye, stains the 

nuclear material to yield a deep blue-purple color. The heart is rich in blood vessels as well 

as cardiac muscle and collagen. Eosin, an acidic dye, counterstains cytoplasmic materials 

including connective tissue and collagen to yield a bright pink color. The eosin demonstrates 

the normally well-defined cross-striations of the car-diomyocyte I- and H bands which 

correspond to overlapping regions of actin thin filaments and thick myosin fibers within 
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each sarcomere. Various hues were present in the sample, including yellow and brown due 

to intrinsic pigments. Hydrophobic structures such as Golgi membranes or lipids remain 

clear. H&E stained sections from mice fed with high GI diets typically showed cell 

enlargement or cardiac hypertrophy with the loss of definition of cardiomyocyte cross-

striation pattern. This increase in cell size in the absence of cell division (cardiac 

hypertrophy) and the loss of normal actin and myosin microstructure could be an indicator 

of ventricular dysfunction due to a high GI diet. It is known that with chronically high levels 

of glucose there is significant increased risk of congestive heart failure [1,53]. 

Cardiomyocyte hypertrophy coupled to disorganization of actin and myosin filaments we 

have observed in the current model appears to be consistent with previous clinical studies 

which demonstrated that hearts suffering from glycemia-related cardiac impairments have 

altered wall thickness and abnormal ventricular volumes [16,47].

4. Discussion

The growing obesity, and diabetes epidemics make it imperative to develop new means to 

diagnose and treat these and associated diseases including macular degeneration and CVD. 

Considerable literature indicates the dangers of diets that are high in rapidly digested 

starches, with respect to risk for these diseases. These are also called high glycemic index 

(GI) diets. These include white breads, sodas, and sweet deserts. Lower glycemia diets are 

usually rich in fruits, non-starchy vegetables, and whole grain products.

In this study, we compared and contrasted through a well-characterized amylopectin-based 

dietary mouse model, the effects of a high GI diet to those of a low GI diet on the 

biochemical composition and microstructure of the heart. The improved spatial resolution 

and signal-to-noise for SR-FTIR spectromicroscopy enabled us to obtain a molecular-level 

observation of diet-related changes within unfixed fresh frozen histologic sections of mouse 

cardiac tissue. Serial cryosections of cardiac tissue for the combined SR-FTIR and 

fluorescence imaging alternated with adjacent hematoxylin and eosin (H&E) stained 

sections allowed not only fine-scale chemical analyses of glycogen and glycolipid 

accumulation along a vein as well as protein and lipid glycation hotspots co-localizing with 

elevated collagen but also the tracking of morphological differences occurring in tandem 

with these chemical changes. As a result of the bright synchrotron infrared photon source 

coupling, we were able to provide significant molecular evidence for elucidating and 

supporting a positive correlation between protein and lipid glycation (AGEs) and collagen 

accumulation in our mouse model.

We have provided direct molecular evidence that support the notion that consumption of 

high GI diets can increase the risk cardiovascular disease [49,51] through the observed 

presence of both the fluorescent pentosidine or pentosidine-like cross-linkings between the 

arginine and lysine residues in collagen, and the nonfluorescence N•-(carboxymethyl)lysine-

like AGEs. Similar to chronic hyperglycemia or high blood sugar from diabetes mellitus, our 

SR-FTIR and fluorescence imaging analyses show that chronic high GI diet enhances the 

production of AGEs and increases the risk for cardiovascular disease in our mouse model. 

Our results support the epidemiologic data indicating that people who consume low 
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glycemic index (GI) diets have lower blood sugar [58] and are at reduced risk for the onset 

and progression of age-related cardiovascular disease [42].
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Fig. 1. 
Average SR-FTIR absorption spectra of ventricular myocardium sections from mice fed 

high GI or low GI diets. Absorption and staked second derivative (A) in the 1800–1480 

cm−1 protein amides and lipid ester region, and the 1480–900 cm−1 biomolecule fingerprint 

region, and (B) in the 2800–3100 cm−1 lipid region. See Table 1 and text for band 

assignments of major absorption frequencies (in wavenumbers). (Colors are visible in the 

online version of the article; http://dx.doi.org/10.3233/BSI-130057.)
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Fig. 2. 
Bright field image and SR-FTIR heatmaps of a typical thin section of heart tissue from high 

GI-fed. (a) Optical image of cardiac tissue sections before the SR-FITR measurements. The 

SR-FTIR heatmaps are the spatial distribution of the integrated absorbance of (b) ν(C–

H)lipids and (c) amide I and II bands in the range of 2800–3000 cm −1 and 1700–1480 cm−1 

respectively. (d) Integrated absorbance of sugar moieties of carbohydrates, (e) ν(C–

O)collagens and (f) ν(C=O)ester in the range of 1100–900 cm−1, at ~1204 cm−1, and in the 

range of 1760–1700 cm−1 respectively. (g) The spatial distribution of the ratio of the 

integrated absorbance of ν(C–H)lipids to protein amide I and II bands, of ν(CH2) to ν(CH3) 

of the fatty acids (h), and of the sugar moieties of carbohydrates to protein amide I and II 

bands (i). The elevated ratio of the carbohydrate bands to protein amide II reveal the 

presence of advanced glycation endproducts (AGEs). Note: All SR-FTIR heatmaps are 

pseudo-color images with the intensity in linear scale ((b)–(f)) or in log scale ((g)–(i)). 

(Colors are visible in the online version of the article; http://dx.doi.org/10.3233/

BSI-130057.)
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Fig. 3. 
Bright field image and SR-FTIR heatmaps of a typical thin section of heart tissue from low 

GI-fed mice. ((a)–(i)) Same legend as Fig. 2. (Colors are visible in the online version of the 

article; http://dx.doi.org/10.3233/BSI-130057.)
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Fig. 4. 
Comparative analysis of SR-FTIR and auto-fluorescence images shows different types of 

advanced glycation endproducts (AGEs) hotspots in cardiac tissue sections from high GI-fed 

mice. (A) The spatial distribution of the values of the ratio of carbohydrate band to protein 

ratio (in a logarithmic scale from −3 to 0.0), (B) the fluorescence images (excitation 450–

490 nm, emission 500–550 nm) of the same region. White squares mark areas of 

fluorescence AGE hotspots (as elevated values of the ratio of carbohydrate to proteins and 

as bright spots in the fluorescence images), red squares mark areas of non-fluorescence AGE 

hotspots. Insets: heatmaps of Integrated absorbance of sugar moieties of carbohydrates (in 

linear scale from 0 to 12 a.u.). Below the heatmap insets are the corresponding SR-FTIR 

spectra of each “hotspot” in red (fingerprint region and lipid region) compared to the 

average spectrum of the HGI tissue (in black). (The colors are visible in the online version 

of the article; http://dx.doi.org/10.3233/BSI-130057.)
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Fig. 5. 
Histological assessment of differently oriented cardiac tissue sections of mice fed high ((a)–

(c)) or low ((d)–(f)) GI diets. Representative images of H&E staining (all magnifications: 

40×, each image is 225 × 180 μm2). Typical views (a:d = longitudinal, b:e = oblique, c:f = 

transverse cross sections) of cardiac tissues from C57BL/6 mice fed high GI (top) and low 

GI (bottom) diets, showing layered sheets of cardiac muscle cells (spindle-shaped and pink 

with blued stained multiple nucleoli within the center of each myocyte), separated by 

“interstitial tissue voids” (clear) between cardiac muscle cell fibers. Nuclear material was 

stained with hematoxylin (deep blue-purple color) and cytoplasmic material including 

connective tissue and collagen was stained with eosin (a bright pink color). (The colors are 

visible in the online version of the article; http://dx.doi.org/10.3233/BSI-130057.)
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Table 1

Main infrared absorbance band integrals of proteins, lipids and carbohydrates

# Primary contributing biomolecules Wavenumber (cm−1) Band assignments

1 Unsaturated lipids ~3010 ν(=C–H)

2 Saturated lipids ~2965 νas(C–H) of methyl group (CH3)

~2925 νas(C–H) of methylene group (CH2)

~2875 νs(C–H) of methyl group (CH3)

~2845 νs(C–H) of methylene group (CH2)

3 Lipid esters ~1735 ν (C=O) of esters

4 Amino acid side chains, nucleic acids ~1715–1690 ν (C=O) of carbonic acids

5 Proteins ~1695–1610 amide I (predominantly ν (C=O) coupled with ν (C–N), 
δ(N–H))

~1550 amide II (ν (C–N) coupled with δ(N–H))

~1310–1240 amide III

6 Nucleic acids, phosphorylated proteins, 
phospholipids

~1250–1220 νas(P=O) of phosphodiesters (PO2
−)

7 Collagen ~1210–1200 ν (C–O) band centered at ~1204 cm−1

8 Carbohydrates, nucleic acids, phospholipids and 
proteins

~1130–900 ν (C–O–C), ν (C–O), ν (C–C), ν (C–O–P), ν (P–O–P)

9 Nucleic acids, phosphorylated proteins, 
phospholipids

~1080 νs(P=O) of phosphodiesters (PO2
−)

Notes: Adapted from [19]. ν– stretching, s – symmetric, as – asymmetric.
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Table 2

Infrared absorbance band integrals of macromolecules proteins, lipids and carbohydrates within the heart 

tissue of mice fed with a high GI versus a low GI diet

High GI diet (mean ± s.d.)* Low GI diet (mean ± s.d.)* %

Proteins 24.350 ± 3.108 21.022 ± 2.867 +7

Lipids 3.030 ± 0.534 2.232 ± 0.411 +15

Carbohydrates 1.724 ± 0.354 1.392 ± 0.179 +11

Collagen 0.201 ± 0.046 0.185 ± 0.037 +4

Lipid esters 0.314 ± 0.056 0.252 ± 0.035 +11

*
Both the mean and standard deviation values are expressed in absorbance units (a.u.). The mean values are the average of the integral absorbance 

value for 7839 spectra from high GI diet mice and 7092 spectra from low GI diet mice. The high GI/-low GI diet Tukey test p-values are 3 × 10−8.
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