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SUMMARY

Protein interactions form a network whose structure drives cellular function and whose 

organization informs biological inquiry. Using high-throughput affinity-purification mass 

spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The 

resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% 

previously undocumented. BioPlex accurately depicts known complexes, attaining 80-100% 

coverage for most CORUM complexes. The network readily subdivides into communities that 

correspond to complexes or clusters of functionally related proteins. More generally, network 

architecture reflects cellular localization, biological process, and molecular function, enabling 

functional characterization of thousands of proteins. Network structure also reveals associations 

among thousands of protein domains, suggesting a basis for examining structurally-related 

proteins. Finally, BioPlex, in combination with other approaches can be used to reveal interactions 

of biological or clinical significance. For example, mutations in the membrane protein VAPB 

implicated in familial Amyotrophic Lateral Sclerosis perturb a defined community of interactors.
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INTRODUCTION

A central goal in cell biology is to describe the molecular processes that drive cellular 

function. While these are genomically encoded, they are executed by the proteome. The 

proteome can be viewed as constellations of interacting protein modules organized into 

signal transduction networks, molecular machines, and organelles. However, our knowledge 

of proteome architecture is fragmentary, as is our conception of how protein 

interconnectivity is influenced by genetic and cellular variation.

Our understanding of mammalian proteome structure has emerged from 5 strategies. First, 

focused biochemical studies have revealed stable macromolecular complexes. Second, 

affinity purification of epitope-tagged proteins followed by mass spectrometry (AP-MS) has 

identified proteins associated with baits from many protein families, including 

deubiquitinating enzymes (Sowa et al., 2009), histone deacetylases (Joshi et al., 2013), and 

chaperones (Taipale et al., 2014). Third, complementary approaches involving either target-

specific antibodies for immunoprecipitation (IP)-MS or correlation profiling of soluble 

protein assemblies have identified many complexes (Havugimana et al., 2012; Malovannaya 

et al., 2011). Fourth, yeast two-hybrid (Y2H) analysis of ~14,000 human open reading 

frames (ORFs) has identified binary protein interactions (Rolland et al., 2014). Finally, 

several databases archive protein interactions from literature (Franceschini et al., 2013; 

Licata et al., 2012; Ruepp et al., 2009; Stark et al., 2011; Warde-Farley et al., 2010). While 

these repositories allow in silico interaction network construction, many literature 

interactions are context-dependent and the stringency of criteria used to identify interactions 

varies across studies. Thus, databases vary in content and quality.

Given this perspective, remaining challenges concern mapping globally the human protein 

interactions within a single cell type in a physiological context, and understanding how 

network architecture depends upon genetic and physiological variation. These challenges 

reflect 1) the myriad genes, isoforms, and modification states encoded by the human 

genome, 2) the low abundance of many proteins, which limits detection, 3) many transient 

interactions that complicate signaling network mapping, and 4) the prevalence of membrane 

proteins, which often require specialized methods for purification. While no single approach 

can address all challenges, several attributes of AP-MS will facilitate delivery of a “first-

pass” global human interactome. One advantage is its exquisite sensitivity. In addition, 

unlike binary methods, AP-MS determines components within multi-protein complexes. AP-

MS has previously mapped a substantial fraction of yeast (Gavin et al., 2002; Ho et al., 

2002; Krogan et al., 2006) and Drosophila (Guruharsha et al., 2011) interactions.

Here, we report AP-MS analysis of 2,594 baits to produce a human interaction map 

spanning 23,744 interactions among 7,668 proteins. While we detected many known 

interactions, validating the methodology, most have not been reported, reflecting targeting 

of many understudied proteins and highlighting AP-MS sensitivity. In addition, we 

identified 354 communities representing known and previously unidentified complexes. 

Moreover, integration of protein domain and localization information revealed enrichment 

of domains within sub-networks and highly correlated localization within complexes, while 
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suggesting biological roles for proteins of unknown function. Finally, we merge isobaric 

labeling with AP-MS to quantify how genetic variation alters interactions of VAPB variants 

associated with familial Amyotrophic Lateral Sclerosis (ALS), revealing mutation-specific 

loss and gain of interactions. Ultimately, BioPlex unveils both individual protein functions 

and global proteome organization.

RESULTS

Achieving Rapid and Reliable AP-MS

Globally applying AP-MS requires both high capacity and rigorous quality control. As 

depicted in Figure 1A and described in the Extended Experimental Procedures, we have 

initiated high-throughput lentiviral expression and AP-MS profiling of C-terminally FLAG-

HA-tagged baits from 13,000 protein-coding open reading frames within the sequence-

validated Human ORFEOME collection v. 8.1 (Yang et al., 2011). Using this system, single 

biological replicates of up to 600 baits have been expressed in HEK293T cells, immuno-

purified, and analyzed via mass spectrometry in technical duplicate each month. Baits have 

been processed in batches corresponding to 96-well plates within the ORFEOME, selected 

randomly from the library. Peptides and proteins were identified and filtered within each IP 

to a 1% FDR, with additional filters to control network FDR (Extended Experimental 
Procedures). Given the scale of this endeavor, a paramount concern is data integrity. In 

addition to clone validation and quality control during the wet-lab pipeline, automated 

evaluation of MS performance, comparison of LC-MS technical duplicates, automated 

validation of bait protein detection, and inclusion of positive (RAB11B) and negative (GFP) 

controls ensured consistent data quality (Figure S1A and Extended Experimental 
Procedures). While analysis of all protein-coding genes in the Human ORFEOME is 

ongoing, we focus here on the first 2594 AP-MS experiments (Table S1).

Global Protein Interaction Mapping via CompPASS-Plus

Our work employs CompPASS, which has identified high-confidence interacting proteins 

(HCIP's) for up to ~100 baits (Sowa et al., 2009). CompPASS quantifies enrichment of each 

protein in each IP, relative to other unrelated AP-MS datasets, based on abundance, 

detection frequency, and reproducibility. HCIP's are identified using the Normalized 

Weighted D-Score (NWD-Score) and Z-Score (Figure S2A).

To improve performance across thousands of AP-MS datasets, we developed CompPASS-

Plus, a Naïve Bayes classifier that recognizes HCIP's using several features (Figure S2A). 

In addition to CompPASS scores, features measure batch variations, overall spectral counts, 

unique peptide counts, and protein detection frequency. Shannon entropy quantifies a 

protein's consistency of detection across technical duplicate LC-MS analyses, which 

removes inconsistent protein identifications and minimizes LC carry-over artifacts (Figure 
S2B). Because CompPASS-Plus must distinguish HCIP's from background proteins and 

incorrect protein identifications, proteins are sorted into 3 classes (Figure S2C). Since the 

few (0.05%) incorrect protein identifications that survive filtering earn NWD- and Z-Scores 

that most closely resemble those of HCIP's, sorting incorrect protein identifications 

separately improves accuracy. To train CompPASS-Plus, incorrect protein identifications 
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were modeled using decoy proteins that survived peptide- and protein-level FDR filtering, 

while HCIP's were modeled using bait-prey pairs reported in STRING (Franceschini et al., 

2013) or GeneMania (Warde-Farley et al., 2010); all other bait-prey pairs modeled non-

specific background. To minimize over-fitting, each AP-MS experiment was scored using a 

classifier trained excluding data from its own IP and other IPs on the same plate (Figure 
S2D). CompPASS-Plus assigns each bait-prey pair in every AP-MS experiment three scores 

reflecting the probability that it corresponds to a wrong identification, a background protein, 

or an HCIP. Bait-prey pairs that receive an interaction score of at least 0.75 are considered 

HCIP's.

CompPASS-Plus effectively distinguishes interactions from background. When AP-MS data 

were aligned with high-confidence interactions from CORUM (Ruepp et al., 2009), high-

scoring bait-prey pairs were most frequently confirmed (Figure S2E). Similarly, over 87% 

of decoy proteins were classified as incorrect identifications (Figure S2F). When used to 

classify known true- and false-positive interactions across 30 biological replicate positive 

and negative control AP-MS experiments, CompPASS-Plus identified known interactions 

with high sensitivity and specificity (Figure S2G).

The utility of CompPASS-Plus to identify HCIPs from individual AP-MS experiments is 

depicted in Figure 1B-C. From 495 proteins detected with CDK1, only 16 remained after 

filtering, and all but 2 (ICK, PKMYT1) are known CDK1 associated proteins or substrates. 

Notably, all HCIP's for XRCC2 and EIF4E are known (Figure 1C): XRCC2 recovers the 

entire BCDX2 complex (Masson et al., 2001), while EIF4E binds the EIF4F complex, 

EIF4E-binding proteins 1 and 2, and its known interactor ANGEL1 (Gosselin et al., 2013). 

Similarly, 11 of 13 HCIPs for filamentous SEPT1 GTPase are either related SEPT proteins 

or known SEPT1 interactors. Other examples are highlighted in Figure S1B/C, comparing 

BioPlex with interactions reported by Y2H (Rolland et al., 2014) or in a previous AP-MS 

study of DUBs (Sowa et al., 2009).

An AP-MS Map of the Human Interactome

Although each AP-MS experiment identifies proteins associated with one bait, when all are 

combined, the interactions form a model of the interactome. This network, whose largest 

component is depicted in Figure 2A, includes 23,744 interactions connecting 7,668 gene 

products (Table S2). We call this network BioPlex (Biophysical interactions of ORFEOME-

derived complexes) and provide a graphical viewer (Figure S3). Of 2,594 baits, 319 were 

not found to interact with any other proteins in 293T cells under basal conditions as C-

terminally tagged proteins (Table S1). The median bait interacted with 6 other proteins, 

while the median gene product (including preys as well as baits) participated in 3 

interactions, suggesting that Bioplex underestimates interactions of proteins not yet targeted 

for AP-MS.

Although the median interaction count for each protein is low, significant variability is 

observed and the degree distribution is skewed by proteins with many interacting partners, 

reflecting coverage of proteins participating in large assemblies. When plotted in log-log 

space (Figure 2B), the fraction of proteins observed across the range of vertex degrees 
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follows a linear trend for degrees above 4 that is consistent with power law behavior typical 

of scale-free networks (Barabasi and Albert, 1999) and has been observed in protein 

interaction and metabolic networks (Vidal et al., 2011). In addition, fewer proteins than 

expected participate in very few (i.e. less than 5) interactions, as indicated by the deviation 

from power law behavior for low interaction counts. More than 98% of protein pairs connect 

to each other, most within 5 or fewer degrees of separation (Figure 2C).

To accurately model the interactome, BioPlex should sample proteins evenly across 

functional categories. Functional classification using PANTHER (Mi et al., 2012) in 

conjunction with all UniProt proteins (Magrane and Consortium, 2011) revealed a 

distribution of baits and preys that closely matched UniProt functional categories (Figure 
2D). Another consideration is the influence of the AP-MS system on the interaction 

network. Since baits have been expressed in HEK293T cells, we profiled the 293T 

proteome, identifying 10,326 proteins and assigning each to abundance percentiles (Figure 
S4A). HEK293T proteome functional classification mimicked UniProt and most closely 

resembled the distribution observed for preys (Figure 2D). We then mapped the 293T 

proteome onto BioPlex. As expected, 90% of preys were also detected in 293T cells via total 

proteome analysis (Figure S4B); the remaining 10% were only detected via AP-MS, 

suggesting that their abundance was below detection limits without enrichment. In contrast, 

only 60% of baits were detected in our 293T proteome (Figure S4B). This is not surprising 

since bait selection was unbiased and 293T cells only express a fraction of ORFEOME-

encoded proteins. Baits were drawn evenly from across native 293T expression levels. In 

contrast, preys were enriched in the upper third of the abundance range, with proteins in the 

bottom 25% under-represented (Figure S4C). Though bait levels vary across 2594 IP's, 

most were detected at moderate levels (Figure S4D). Furthermore, bait abundances and 

interaction counts were uncorrelated (Figure S4E). Although the extent of bait over-

expression is difficult to judge and varies across IP's, previous experimentation has shown 

that over-expression has little effect on identification of true interacting partners (Sowa et 

al., 2009). Overall, notwithstanding idiosyncrasies of the 293T expression system, the 

resulting network constitutes a representative cross-section of the proteome.

BioPlex Recapitulates Known Complexes and Reveals Thousands of New Interactions

To assess its accuracy and completeness, we superimposed BioPlex onto high-confidence 

CORUM complexes detected via low-throughput methods, attaining high overlap. When at 

least two constituent proteins were selected as baits, more than 25% of CORUM complexes 

were perfectly recapitulated by AP-MS (Figure 3A). Similarly, over 1/3 of complexes 

achieved at least 90% coverage, while 1/2 were 80% complete and nearly 3/4 attained at 

least 50% coverage. Proteins within a complex are often highly interconnected, as for the 

Arp 2/3 and NuA4/Tip60-HAT complexes and the Exosome. In contrast, RBBP7 belongs to 

a large complex assembled from two smaller complexes, each of which has been separately 

isolated by AP-MS: HDAC1/2-ING1-SIN3A-SAP30-SAP18-RBBP4 (Complex I) and 

ARID1A-ARID4B-SMARCD1-SMARCC1-SMARC2-SMARCB1-SMARCA4 (Complex 

II) (Kuzmichev et al., 2002). Our RBBP7 analysis identified all components of Complex I 

except SAP18, possibly reflecting its small size (153 amino acids), as well as a single 

component of Complex II (ARID4B). In contrast, SMARCD1 associated with 6 of 8 
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subunits of the Complex II SMARC/ARID sub-complex (Figure 3A). This may reflect 

relatively weaker interactions among the sub-assemblies. Likewise, the CDK Activating 

Kinase (CAK) complex CDK7-CCNH-MNAT1 is a multifunctional protein kinase that is 

involved in both CDK activation and in transcription-coupled repair through the TFIIH 

complex. While the core kinase complex and its interactions with 3 TFIIH complex 

components (ERCC2, ERCC3, and GTF2H1) were detected using CDK7, CCNH, and 

MNAT1 as baits, several TFIIH components were not detected (Figure 3A). This 

incomplete TFIIH complex identification with tagged CAK could reflect stringent washing 

or the relative abundance of CAK complexes versus TFIIH complexes. To understand why 

many TFIIH complex members were absent, we examined AP-MS data targeting GTF2H3 

that was acquired via our pipeline while this manuscript was in preparation. Encouragingly, 

we detected interactions with GTF2H1, GTF2H2, GTF2H4, and ERCC3, attaining nearly 

complete coverage of this complex (data not shown). Overlap with CORUM will continue to 

improve as the network grows to include analysis of most human proteins.

To enable more extensive comparison, we compiled all human physical interactions reported 

in CORUM, BioGRID (Stark et al., 2011), GeneMania, STRING, and MINT (Licata et al., 

2012). The latter 4 databases accept a variety of evidence in support of protein interactions, 

including high-throughput techniques, and thus contain many more interactions at 

correspondingly higher false-positive rates. Only physical interactions supported by direct 

experimental evidence were included; interactions due to co-expression, co-localization, 

text-mining, or predictions were excluded. Inter-database overlap was limited, with fewer 

than 25% of interactions reported by multiple databases (Figure 3B). Notwithstanding such 

narrow agreement, interactions seen in BioPlex were more frequently found in multiple 

databases (Figure 3B). This suggests that BioPlex preferentially overlaps with the most 

frequently reported interactions. While interactions found in all 5 databases were confirmed 

by AP-MS nearly 50% of the time and more than 35% of interactions reported by 4 

databases were confirmed, only 2% of interactions unique to just one database were 

observed (Figure 3C).

Approximately 84% of the 23,744 BioPlex interactions have not been reported (Figure 3D), 

reflecting sampling of many “pioneer” proteins and increased analytical depth afforded by 

new instrumentation. For further validation, we compared reported subcellular localizations 

of interacting protein pairs as an indirect measure of plausibility. While co-localization 

cannot guarantee physical association, interacting protein pairs must at least partially co-

localize. In contrast, false-positive interacting proteins would localize randomly with respect 

to each other. To assess co-localization, we mapped UniProt subcellular localizations onto 

BioPlex. The tendency for co-localized proteins to interact is measured by graph 

assortativity (Extended Experimental Procedures). Positive assortativities indicate 

preferential interactions among proteins in the same compartment, while values near zero 

imply random interactions.

As an indirect validation, we calculated assortativities for several databases and interaction 

datasets and compared each with BioPlex (Figure 3E). Because localizations of proteins in 

each dataset varied considerably, pairwise comparisons with BioPlex were performed 

focusing on interactions that connected proteins in both networks. Assortativities quantify 
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each network's tendency to connect these shared proteins according to subcellular 

localization. Pairwise analyses were also repeated with randomized subcellular localizations. 

While assortativities in each pairwise comparison varied due to differences in the extent of 

biological characterization and quality of subcellular localization information available for 

shared proteins, all networks exhibited non-random interactions. Proteins included in both 

CORUM and BioPlex were well-characterized and predominantly nuclear or cytoplasmic, 

attaining the highest coefficients. In contrast, comparisons that included higher proportions 

of less studied proteins exhibited reduced, though highly significant, preferences for 

connecting proteins with shared localization. Overall, BioPlex compared favorably with 

published interaction networks: in 5 of 7 cases, BioPlex showed a greater tendency to 

connect co-localized proteins; in the remaining 2 cases, differences were small and reflected 

in part interactions missing from BioPlex because neither protein has been targeted for AP-

MS. This analysis suggests that the BioPlex network is at minimum comparable in quality to 

previously published interaction data, a conclusion that extends to the many unreported 

interactions it contains.

BioPlex Community Structure Reveals the Interactome Functional Organization

While several BioPlex complexes have been highlighted by comparison with CORUM, 

complexes may also be revealed from network topology alone as clusters of highly 

interconnected proteins. Since no prior knowledge is required, community detection 

algorithms may associate new proteins with known complexes and identify unknown 

complexes. We have employed a two-stage strategy to map BioPlex community structure, 

using clique percolation (Palla et al., 2005) to identify 256 communities that were further 

subdivided via modularity-based clustering (Newman, 2004) into 354 communities and sub-

communities (Table S3).

Community size varied from 2 to 140 proteins, though most included fewer than 20 

members (Figure 4A). Most communities encompassed related proteins, as 84% were 

enriched for at least one GO term or Pfam domain (Figure S5A). Moreover, many 

communities match known complexes, forming a network that depicts interactome 

organization (Figure 4B). Subsets of this network have been enlarged (Figure 4C) to reveal 

underlying protein interactions.

The power of community detection to retrieve known complexes is exemplified by Figure 
4Ci. While the proteasome emerged as one large community following clique percolation, 

further modularity-based clustering subdivided the proteasome into 2 clusters corresponding 

largely to its catalytic particle (primarily PSMA and PSMB subunits) and regulatory particle 

(primarily PSMC, PSMD and UCHL5 subunits), as well as a CUL5-TCEB1-RAB40 

ubiquitin ligase complex which links with the proteasome via the alternative cap protein 

PSME3 and FAM192A. Chaperones that assist proteasome assembly (e.g. PSMG1/2, 

POMP) and other regulators (PAAF1 and FOXO7) also cluster with the proteasome, along 

with proteins (e.g. ZFAND2B, CCDC74B, C16orf70) that have no known proteasomal 

connections.

A unique feature of clique percolation is that it allows proteins to be shared among multiple 

communities. Such proteins often physically connect or coordinate distinct cellular 
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activities. Alternatively, specificity factors for enzymes involved in diverse regulatory 

processes may be shared with multiple communities. For example, the community in Figure 
4Ciii contains a cluster of protein phosphatase catalytic and regulatory subunits that 

connects to a highly interconnected RNA Polymerase cluster as well as a cluster of 

kinetochore components. Phosphorylation controls both RNA polymerase and kinetochore 

function and linkage to phosphatase components may reveal common regulatory factors and 

mechanisms for distinct target complexes. Further examples include CDK (Figure 4Cvi), 
vesicle function (Figure 4Cii), LIM domain and homeobox transcription factor (Figure 
4Cv), and cullin ring ubiquitin ligase/signalosome (Figure 4Civ) communities.

Many communities are united by shared traits that cause member proteins to preferentially 

associate (Table S3; Figure S5A). Some match known complexes, such as the Mediator 

(Clusters 11a and 11b) and 43S translation pre-initiation complexes (Clusters 25a and 25b). 

Indeed, 33 known Mediator subunits separated into 2 sub-complexes, and was devoid of 

non-Mediator Complex connections (Figure S5B). Similarly, Cluster 73 contains the FTS1-

HOOK1,2,3 protein complex accompanied by TNFSF13B, whose association was until now 

unknown. Such associations can reveal much about unknown proteins: the little-known 

protein C11orf74 associates with 5 members of the Intraciliary Transport Particle A (Cluster 

74). Not only do its neighbors share biological functions and domains, but all have been 

implicated in related ciliary disorders (cranioectodermal dysplasia 1-4, short-rib thoracic 

dysplasia 9). Finally, community structure can reflect functional subtleties. While Clusters 

6a, 6b, and 6c uniformly regulate histone acetylation, each comprises a different 

acetyltransferase complex and targets a distinct histone subset.

Protein Interactions Reveal Associations among Functional Domains

Many proteins may be decomposed into domains, or self-contained modules that have 

independently evolved to perform specific functions. Domains often recur in the proteome, 

performing related functions within many proteins. Although thousands of domains have 

been identified, the functions of many are unknown. Since many domains mediate 

interactions by binding complementary structures within other proteins, analyzing 

interactions of their parent proteins may provide functional insights. Such efforts would 

complement previous attempts to characterize known or predicted domain interactions 

(Boxem et al., 2008). We have mapped Pfam (Finn et al., 2014) domains to each protein in 

BioPlex and identified domain pairs whose parent proteins interact with unusual frequency 

(Figure 5A). While co-occurring domains do not necessarily interact directly and may 

instead relate indirectly through other protein features or shared function, these associations 

nevertheless can provide insights into each domain's unique biology.

Across BioPlex, 2,968 domain pairs associated at a 1% FDR (Table S4; Figure S6A,B). 

While many associations describe known relationships among familiar domains, most link 

domains with no known connections. As expected, proteins with Protein Kinase domains 

frequently interact with proteins bearing Cyclin N/C domains, reflecting cyclin-dependent 

kinases. In addition, synaptobrevin associates with SNARE and septin-containing proteins 

co-occur. Similarly, TRiC chaperones containing Cpn60 TCP1 domains associate with 

proteins containing WD40 domains whose folding they facilitate (Figure S6C) (Spiess et 
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al., 2004). Finally, as expected, SCAN-domain-containing proteins self-associate (Figure 
S6D), and frequently assort with KRAB and zf-C2H2 domains.

Among unreported domain associations are a subset that relate domains of unknown 

function with other Pfam domains, including 14-3-3, UBX, SCAN, and WD40 domains 

(Figure 5B). Proteins bearing domains of unknown function provide context for reported 

domain associations (Figures 5C-5H). For example, the DUF2045 domain-containing 

protein KIAA0930 is surrounded by 14-3-3 proteins (Figure 5C), raising the possibility that 

KIAA0930 and the DUF2045 domain may participate in intracellular signaling. Similarly, 

DUF1162 proteins VPS13A and VPS13C interact with proteins containing UBX domains 

(Figure 5D). Each domain of unknown function presented in Figures 5C-5H is 

unaccompanied within its parent proteins, ruling out influence of other domains.

BioPlex Aids Protein Subcellular Localization Prediction

Because proteins must exist in close proximity to physically interact, the interactome 

necessarily reflects the subcellular localizations of its proteins. Thus, we mapped subcellular 

localization data from UniProt onto BioPlex and calculated the enrichment of each 

subcellular compartment among each protein's first and second degree neighbors (Table 
S5). While enrichment could indicate that a protein associates with a compartment in 

multiple ways, the simplest interpretation is that a protein at least partially localizes to that 

compartment. Figure S7 displays predicted localizations for several proteins and complexes. 

Panel A depicts predicted localizations for proteasome subunits and the sub-network 

surrounding PSMA1 to illustrate its most likely localizations. As expected, essentially all 

proteasome subunits are found in both nucleus and cytoplasm; the only exception is PSME3, 

the alternative regulatory cap protein that clustered separately from the rest of the 

proteasome (Figure 4Ci). Indeed, previous experiments have demonstrated that unlike other 

proteasome subunits, PSME3 localizes specifically in the nucleus (Wojcik et al., 1998). 

Other panels depict localizations for CDK's and related proteins (B), Complex I of the 

mitochondrial Electron Transport Chain (C), and the nuclear Mediator Complex (D), which 

are all consistent with their known localization.

BioPlex Enables Characterization of Unknown Proteins

A motivation for unbiased mapping of the human interactome is to explore the biology of 

uncharacterized proteins. BioPlex contains interactions for 271 unstudied open reading 

frames (Figure 6A) that suggest functions and localizations of these proteins. As described, 

117 open reading frames were assigned to at least one subcellular location at a 1% FDR 

(Table S5; Figure 6B). Of 8 open reading frames predicted by AP-MS to localize to 

mitochondria, 6 are known or suspected mitochondrial proteins (UniProt and/or 

www.mitocarta.org) and 2 (C1orf220, C17orf39) have not been assigned any localization. 

For these 2 proteins among many others, their positions within the AP-MS interaction 

network provide insights into their primary subcellular localizations.

To highlight the information encoded by an uncharacterized protein's position in the AP-MS 

network, we provide several examples in Figure 6C. Inferences about each ORF's specific 

interactions, biological function and localization are summarized (Table S6). Three of these 
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proteins have been characterized, affording an opportunity to evaluate network predictions. 

In each case, agreement was excellent. C15orf29 was found to interact with proteins 

KATNA1 and KATNB1, which associate with the cytoskeleton and participate in 

microtubule severing. Recently, C15orf29 was renamed KATNBL1, and may govern 

KATNA1 activity. Similarly, C16orf57 has been renamed USB1 and identified as a nuclear 

protein that participates in RNA splicing and mRNA processing (Mroczek et al., 2012). 

Furthermore, C7orf30 is thought to act as a silencing factor for the mitochondrial ribosome 

(Fung et al., 2013). In contrast, little is known about C15orf17, C4orf19, and C7orf46. As 

these proteins show, BioPlex is a roadmap for exploring the uncharted expanses of the 

proteome and illuminating the dark corners of cell biology.

Functional validation of the VAPA/VAPB Interaction Sub-network

Perhaps the greatest value of BioPlex is the potential of its interactions to inspire hypothesis-

driven research into under-explored areas of biological inquiry. To demonstrate this 

application while further validating BioPlex, we examined a sub-network involving VAPB, 

previously found mutated in familial ALS, and the related protein VAPA.

VAPA and B are endoplasmic reticulum (ER)-localized transmembrane proteins that anchor 

proteins implicated in lipid dynamics, primarily lipid transfer proteins (Lev et al., 2008). 

Lipid-transfer proteins, such as oxysterol-binding proteins (OSBP's) and other VAPA/B 

associated proteins, contain FFAT motifs that interact with the cytoplasmic MSP domain of 

VAPA/B (Kaiser et al., 2005). VAPB and several interacting partners were found in 

BioPlex, and VAPA was analyzed using the high-throughput pipeline during manuscript 

preparation, yielding a highly interconnected network (Figure 7A). As expected, VAPA and 

VAPB associated with several OSBPs (Mesmin et al., 2013a), and other proteins linked with 

membrane traffic or signaling, several of which were seen reciprocally.

To validate the interactions found in 293T cells and to understand how patient mutations in 

VAPB affect individual associations, we stably expressed VAPB and its mutants (VAPBT46I 

and VAPBP56S) in SH-SY5Y cells and performed quantitative AP-MS using Tandem Mass 

Tagging (TMT) (see EXTENDED EXPERIMENTAL PROCEDURES and Figure 7B). 

Biological triplicate AP-MS complexes from all 3 variants were subjected to 9-plex TMT 

with reporter ion quantification by LC-MS3-based mass spectrometry. Many interactors 

identified in 293T cells also associated with wild-type VAPB in SH-SY5Y cells (Figure 

7C). Normalized reporter ion intensities revealed proteins that displayed altered VAPB 

association with specific mutants (Figure 7C), including increased association of the 

VAPBP56S mutant with FAM82A2 (also called PTPIP51) as recently reported (Stoica et al., 

2014). Moreover, while previous studies indicated that FAF1 associated equivalently with 

VAPBWT and VAPBP56S in vitro (Baron et al., 2014), our in vivo results indicate that FAF1 

associates more weakly with VAPBT46I and VAPBP56S relative to VAPBWT, consistent 

with interaction via the FFAT motif (Figure 7C).

To further validate enhanced association with LSG1 and reduced association of OSBP with 

VAPBP56S (Figure 7C) we examined localization of EGFP-LSG1 and OSBP-EGFP with or 

without expression of VAPBWT or VAPBP56S in HeLa cells. Importantly, VAPBP56S is 

known to intrinsically aggregate. In cells not expressing exogenous VAP proteins, EGFP-
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LSG1 displayed reticular ER localization, and therefore binding to VAP, when expressed at 

low level, and a predominant cytosolic diffuse distribution at high expression as seen 

previously with OSBP (Mesmin et al., 2013b) (Figure 7D). This cytosolic distribution likely 

reflects VAP binding site saturation in the ER membrane. Accordingly, VAPBWT over-

expression strongly increased the association of EGFP-LSG1 and OSBP with the ER 

(Figure 7E,G). In contrast, expression of aggregation-prone VAPBP56S led to recruitment of 

EGFP-LSG1, but not of OSBP, into the aggregates (Figure 7F,H). Additionally, a pool of 

LSG1, but not of OSBP, co-localized with the small VAPBP56S pool that remained diffusely 

distributed throughout the ER (Figure 7G,H). These observations confirm that the P56S 

mutation within the MSP domain of VAPB reduced FFAT motif-dependent interactions, 

while enhancing interactions with LSG1, which does not contain an FFAT motif. These data 

demonstrate the potential for BioPlex to inform and enhance focused study of individual 

proteins.

DISCUSSION

High-Throughput AP-MS Complements other Global Interaction Mapping Approaches

To date, most near global studies of human protein interactions have relied upon Y2H, 

which is amenable to automation and measures binary, and often direct, interactions. 

However, as emphasized through BioPlex community analysis, many interactions involve 

large protein assemblies whose detection is facilitated by AP-MS, and may not be detectable 

as binary complexes due to complex structural interactions. An example is the Mediator 

Complex. AP-MS using 5 subunits (MED7, MED19, CDK8, CDK19, and CCNC) identified 

nearly all Mediator subunits, with each bait capturing 23 - 37 subunits (Figure S5B, Table 
S2). In contrast, analysis of baits CCNC, MED4, MED18, MED20, MED25, MED28, and 

MED30 with a Y2H library containing 16 Mediator subunits yielded 24 partners, only one 

of which was a known Mediator subunit (Rolland et al., 2014). This reflects that Mediator 

architecture involves co-assembly of multiple subunits rather than modular assembly most 

easily captured via Y2H. The ability of AP-MS to pinpoint primary and secondary 

interactions, while simultaneously recognizing independent complexes with shared 

components, is the cornerstone of our large-scale network construction.

Network structures for multi-functional and dynamic protein associations will emerge as a 

larger fraction of the proteome is sampled as baits. Surprisingly, 86% of BioPlex 

interactions have not been reported. This reflects: 1) interrogation of many poorly studied 

proteins; 2) AP-MS sensitivity, enabling detection of low abundance proteins; 3) co-

associated protein identification as complex members. These factors are exemplified by the 

SH2-SH3 domain containing protein NCK2. We identified 46 HCIPs for NCK2 (Table S2), 

31 of which are reported in STRING or GENEMANIA databases as proteins that interact 

with NCK2 or NCK2-associated proteins. Of 15 NCK2 associated proteins found in 

BioPlex, but not in STRING or GENEMANIA, C3orf10 and SHB are known to interact 

with other NCK2 associated proteins and SEMA6A, KIAA1522, PEAK1, and SH3PXD2B 

contain proline-rich sequences of the type known to associate with SH2 domains or other 

adaptor elements. Thus, AP-MS provides a complementary approach to binary interaction 

measurements for understanding interactome connectivity.
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Experimental Challenges of Global Interaction Mapping via AP-MS

Although AP-MS has proven reliable for interaction mapping, technical factors have 

important implications for BioPlex: 1) Some proteins require an intact C-terminus for proper 

complex assembly and may not provide reliable interacting partners when C-terminally 

tagged. Conceivably, some of the 322 baits that produced no interacting partners are affected 

by C-terminal tagging. 2) Some baits may be toxic upon expression in HEK293T cells. 

Since >93% of bait-expressing cell lines have survived to harvest, only a small fraction of 

baits targeted thus far are toxic. 3) 28% of proteins encoded by ORFEOME 8.1 do not 

represent the longest open reading frame in GenBank, which could affect BioPlex in 

unpredictable ways. 4) While bait expression levels vary, there was no correlation between 

bait abundance and HCIP count (Figure S4D, E) (Sowa et al., 2009). In addition, protein 

associations generally confirm known bait localizations (Figure S7; Table S5). Together, 

these findings suggest that lentiviral expression has not unduly biased our network. 5) Up to 

1/3 of the genome encodes membrane proteins. Previous studies have suggested that 

extraction conditions can substantially affect membrane protein complex recovery (Babu et 

al., 2012). For several well-studied membrane proteins, our pipeline captured largely intact 

membrane protein complexes, including components of Complex I of the electron transport 

chain (Figure S7C) and the VAPB complex (Figure 7A). However, for unstudied trans-

membrane proteins, further studies will be required to determine whether extraction 

conditions allow retrieval of intact complexes.

An additional consideration is that BioPlex incorporates only one biological replicate for 

each bait. While technical replicate LC-MS analyses address some sources of experimental 

error and many quality control measures have been implemented, variability in expression 

and affinity purification remain. Such effects would be best addressed with biological 

replicates, though our project scope has rendered this impractical. Nevertheless, as our 

network has grown to include AP-MS experiments targeting much of the human proteome, 

complexes have been purified multiple times as each subunit is targeted via AP-MS. These 

distinct affinity purifications tend to reinforce each other (e.g. Figure 3A, Figure 4C, 

Figure 7A). In such cases, the confidence of our final network is higher than a single IP of 

an individual bait would be.

BioPlex Accurately Models the Human Interactome

Notwithstanding challenges, BioPlex appears to accurately model the human interactome. 

The accuracy of CompPASS-Plus is highlighted by its performance on known true- and 

false-positives (Figure S2F,G). Furthermore, the reliability of the resulting interaction 

network is most apparent from interactions of well-studied baits (Figure 1B,C) and from the 

extensive overlap observed with CORUM (Figures S2E and 3A). Additionally, subcellular 

co-localization analysis suggests that AP-MS interactions achieve accuracies equal or higher 

than previous studies and databases (Figure 3E).

Further evidence of BioPlex quality emerges from overall network architecture. When 

subdivided into communities (Figures 4 and S5), 85% reflect functional or structural 

properties of their constituent proteins and many correspond to known complexes, including 

Mediator and Histone Acetyltransferase Complexes (Figure S5B) as well as RNA Pol II, the 
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Signalsome, and CNOT and COMM complexes (Figure 4C), among others (Table S3). 

Network structure largely distinguishes proteasome core and regulatory subunits (Figure 
4C). More generally, patterns of domain association (Figures S6 and 5; Table S4) and 

subcellular localization (Figure S7; Table S5) match expectations. Many previously 

unreported interactions involve understudied proteins whose properties may be revealed by 

overlaying GO classification, Pfam domains, and sub-cellular localization (Figure 6B,C; 
Tables S5 and S6). By modeling the interactome in its entirety, BioPlex amounts to more 

than the sum of its several thousand constituent AP-MS experiments.

While BioPlex is drawn from a single cell type, interactions may differ in distinct cell 

lineages and in response to specific stimuli. Thus, the network is best viewed as a 

framework that can be used for hypothesis generation and for design and interpretation of 

targeted studies that address dynamic and genetic underpinnings of individual networks, as 

illustrated through our quantitative analysis of the VAPB complex (Figure 7C).

Conclusions

Utilizing the human ORFEOME, we have assembled the largest AP-MS network of human 

interactions. Resulting from AP-MS analysis of more than 10% of human proteins, BioPlex 

spans over 1/3 of the human proteome and includes nearly 24,000 interactions, most of 

which have not been described. Viewed individually or in aggregate, these interactions are a 

valuable resource for both focused and systems-level biological research. The network will 

also establish a foundation for future efforts to expand interactome coverage and to explore 

network dynamics and the effect of disease mutations on network architecture.

EXPERIMENTAL PROCEDURES

An overview of experimental procedures is provided below. See Extended Experimental 
Procedures for details.

Protein Expression and Purification

The sequence-validated Human ORFEOME v. 8.1 (Yang et al., 2011) was used to construct 

a lentiviral library containing 13,000 ORFs bearing C-terminal FLAG-HA epitopes. 

Following sequence verification and virus production, HEK293T cells were infected and 

expanded under puromycin selection. Upon harvest, cell lysates were clarified and baits 

captured with anti-HA agarose prior to washing and elution with HA peptide. Clones will be 

distributed through the Dana Farber/Harvard Cancer Center DNA Resource Core (http://

dnaseq.med.harvard.edu/).

Mass Spectrometry

After purification, proteins were precipitated with 10% TCA, and digested with trypsin prior 

to technical duplicate analyses on ThermoFisher Q-Exactive mass spectrometers. Using 

Sequest (Eng et al., 1994), spectra were searched against human protein sequences from 

Uniprot (Magrane and Consortium, 2011) and common contaminants. The target-decoy 

method (Elias and Gygi, 2007) was used to filter each LC-MS dataset to a preliminary 1% 
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protein FDR. Additional filtering controlled the network FDR (Extended Experimental 
Procedures).

Identification of Interacting Proteins and Network Assembly

An extension of CompPASS (Sowa et al., 2009) called CompPASS-Plus was developed to 

distinguish interactors from non-specific background and false-positive identifications. 

Interactions were pooled across AP-MS experiments to assemble BioPlex (Extended 
Experimental Procedures).

Data Accessibility

BioPlex interactions were deposited into BioGRID in September 2014 and are available for 

download and browsing at gygi.med.harvard.edu/projects/bioplex. All 5,200 RAW files are 

also available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. High-Throughput Interaction Mapping via AP-MS
(A) AP-MS platform: 1) A lentiviral library of 13,000 FLAG-HA-tagged ORFs was 

constructed from the Human ORFEOME; 2) 293T cells were infected and expanded under 

puromycin selection; 3) Baits and preys were immuno-purified; 4) tryptic digests were 

analyzed in technical duplicate by LC-MS; 5) Proteins were identified and specific 

interactors found; 6) Interactions were assembled to model the human interactome. Up to 

600 AP-MS experiments may be completed per month.

(B) CompPASS-Plus extracts 16 interactors for bait CDK1 from a background of nearly 500 

proteins.

(C) Interaction maps for baits XRCC2, EIF4E, and SEPT1 (red). Nearly all interactions have 

been previously described. Interactors were identified from backgrounds of 487, 778, and 

749 proteins, respectively.
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Figure 2. BioPlex Network Properties
(A) BioPlex. The largest component is depicted.

(B) Vertex degree distribution of all proteins in BioPlex. The dashed line represents the best 

fit power law (see Extended Experimental Procedures).

(C) Histogram depicting the number of degrees separating all protein pairs.

(D) Functional classifications of baits and preys assigned by PANTHER and compared 

against the functional distributions of our HEK293T proteome and the entire human UniProt 

proteome.
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Figure 3. Evaluation of AP-MS Protein Interactions
(A) AP-MS interactions superimposed onto CORUM complexes. The pie chart depicts the 

fraction of complexes achieving the indicated coverage in BioPlex. Only complexes 

containing two or more baits were considered. Five representative CORUM complexes: 

baits are colored blue, while preys are red and proteins not observed by AP-MS are gray. 

Interactions among CORUM complex members are gray while interactions confirmed by 

AP-MS are red.

(B) Physical protein interactions reported in BioGrid, CORUM, GeneMania, STRING, and 

MINT were merged. Left: overlap among databases. Right: overlap among databases for 

interactions confirmed by AP-MS.

(C) Fraction of database interactions confirmed by AP-MS as a function of the number of 

supporting database reports. The composite interaction database was filtered to include only 

interactions connecting one of 2594 baits with proteins observed as baits or preys in the 

interaction network.

(D) 86% of AP-MS interactions have not been reported in the databases listed above.

(E) Pairwise comparisons of BioPlex with published interaction networks were performed, 

using graph assortativity to quantify preferential interaction in cases of shared localization 

among proteins detected in both networks. Literature datasets included BioGRID, CORUM, 
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GeneMania, STRING, and MINT, as well as interactions recently reported via yeast-two-

hybrid (Rolland et al., 2014) and LC-MS correlation profiling (Havugimana et al., 2012). 

Each analysis was repeated with randomized localizations as a control.
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Figure 4. Community Analysis of the AP-MS Interactome
(A) BioPlex communities: 256 initial communities were identified via 3-clique percolation 

and sub-divided via modularity-based clustering, resulting in 354 communities.

(B) Network of communities. Gray circles represent 354 BioPlex communities; circle size is 

proportional to the number of member proteins. Gray edges connect communities that share 

a common protein or were initially classified as a single community and were sub-divided 

via modularity-based clustering. Labeled boxes highlight communities expanded in part C.

(C) Each box depicts communities highlighted in part B at resolution sufficient to observe 

individual interactions. Proteins are grouped by community membership; communities that 

initially clustered together and subsequently split are rendered in similar hues; proteins 

shared among clusters are red. Interactions that span multiple communities are gray while 

interactions among members of a community share the color of that cluster.
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Figure 5. Detection of Associations Including Domains of Unknown Function
(A) After mapping Pfam domains onto BioPlex, the numbers of proteins containing each 

domain were tallied. Numbers of interactions that linked one domain with another were also 

determined. Contingency tables were then populated relating observation of one domain 

with the other, and Fisher's Exact Test determined the likelihood of a non-random 

association between the two domains. This process was repeated for all domain pairs and p-

values were adjusted for multiple hypothesis testing (Benjamini and Hochberg, 1995).

(B) Heat map depicting significant domain associations involving domains of unknown 

function (highlighted in red). Blue boxes label domain pairs that associate at a 1% FDR. 

Labels indicate domain associations highlighted in C-H.

(C-H) Interaction networks corresponding to associated domain pairs. Blue vertices match 

proteins that contain the indicated domains of unknown function, while red vertices indicate 

proteins containing the associated domain; gray nodes match neither domain. P-values were 

determined by Fisher's Exact Test with multiple testing correction. Schematics depicting the 

domain structure of each central protein are displayed below each network.
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Figure 6. BioPlex Topology Aids Unknown Protein Characterization
(A) Network maps displaying interacting partners (gray) for 271 proteins assigned generic 

names based on chromosome and open reading frame position (red). Most are 

uncharacterized.

(B) Expected subcellular localizations for 117 of 271 uncharacterized ORFs, based on 

localization enrichment among the protein's primary and secondary neighbors.

(C) Networks surrounding 6 uncharacterized proteins and listing enriched GO terms, Pfam 

domains, and subcellular localizations. P-values were determined by Fisher's Exact Test 

with multiple testing correction. Red nodes: open reading frames; green nodes: neighboring 

proteins that match the enriched term highlighted with green text.
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Figure 7. Quantitative Interaction Proteomics of the VAPB Network Reveals Differential 
Interactions for VAPB Variants Associated with ALS
(A) BioPlex interaction network for VAPA, VAPB and associated proteins. Dotted red lines: 

interactions reported by BioGRID; solid black lines: BioPlex interactions.

(B,C) Overview of our TMT approach for examining how ALS-associated mutations in 

VAPB affect interaction partners. VAPB and its variants were stably expressed in SH-SY5Y 

cells as FLAG-HA-tagged fusion proteins and subjected to AP-MS. Triplicate purifications 

were digested with trypsin prior to reaction with isobaric tag reagents. TMT reporter ion 

intensities were extracted from MS3 spectra and combined to determine changes in 

association of individual proteins with VAPB (panel B). Relative intensities for VAPB and 

VAPB mutant interacting proteins are shown in panel C. Error bars represent mean +/− 

standard error. Numbers of peptides quantified for each protein are listed in parentheses.

(D) Confocal image of HeLa cells expressing EGFP-LSG1 alone. When expressed at low/

moderate level (cell with the single white asterisk) LSG1 localizes in a reticular 

compartment reminiscent of the ER (high magnification in the inset printed at higher 

contrast). When expressed at very high level (cell with two black asterisks) a diffuse 
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cytosolic distribution prevails possibly due to saturation of ER binding sites. Scale bar: 10 

μm.

(E,F) Fluorescence images of HeLa cells co-expressing EGFP-LSG1 with mCherry-tagged 

VAPB variants. (E) Upon co-expression of wild type VAPB, LSG1 is recruited to the ER. 

(F) VAPBP56S forms aggregates and only weakly localizes to the ER. Even in these cells 

LSG1 colocalizes with VAPB, although preferentially with the small pool of VAPBP56S 

which retains a reticular (ER) distribution.

(G,H) Fluorescence images of HeLa cells coexpressing EGFP-OSBP with mCherry-tagged 

VAPB variants. (G) When co-expressed with VAPBWT, OSBP is recruited to the ER. (H) 

OSBP has a diffuse cytosolic distribution when coexpressed with VAPBP56S, which lacks a 

functional FFAT binding site.
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