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Predictive language models, commonly designed within the field of natural language 

processing, can assist individuals with severe speech and language disabilities to 

communicate more effectively with their text entry systems, either by speeding access to an 

intended message or by reducing the effort required to select that message. For example, 

word completion systems use predictive language models to identify likely words that begin 

with already entered letters so that they can be presented to the user and selected with a 

single keystroke, instead of requiring each remaining letter in the word to be individually 

typed. Whether or not such word completion systems result in true speedups in text entry 

depends on many factors, including interface design, quality of the predictive model, and the 

text entry speed of the individual. Even so, word completion is a ubiquitous feature of 

speech-generating devices (SGD) and general mobile technologies, and is favorably used by 

many people with and without disabilities.

Words are not the only linguistic units that can be predicted within an SGD. Utterance-based 

systems (Alm, Arnott, & Newell, 1992; Todman, Alm, Higginbotham, & File, 2008) attempt 

to predict whole utterances that are contextually appropriate, which can be particularly 

useful for beginnings and ends of conversations, or during small talk. For pre-literate SGD 

users, symbols representing concepts (Gatti, Matteucci, & Sbattella, 2004) or sounds (Trinh, 

Waller, Vertanen, Kristensson, & Hanson, 2012) can be predicted to allow for 

communication. Finally, individuals using a single switch for keyboard emulation (e.g., 

through eye blink or other switches when direct selection is difficult or impossible) can 

benefit from predictions regarding which stimuli to present or highlight for selection. 

Sometimes this is achieved via linear scanning, by presenting one symbol at a time, perhaps 

in order of decreasing likelihood, and sometimes this is achieved by highlighting sets of 

symbols in a spelling grid according to predictive models. Recently, a new method, called 

Huffman scanning, was introduced that highlights portions of the grid in an optimal way 

given a predictive model and a Huffman code (Roark, de Villiers, Gibbons, & Fried-Oken, 

2010; Roark, Beckley, Gibbons, & Fried-Oken, 2013). Huffman scanning has been shown to 
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require far fewer keystrokes than widely used row/column scanning, and to result in faster 

text entry and strong user preferences relative to row/column scanning. The above cited 

papers, however, present results from simulation and participants without disabilities, as 

well as results with relatively fast calibrated scan rates, leaving open the question of whether 

the approach would be found to be useable by individuals with severe motor impairments 

that make up the target users of such technology. In this paper, we present some trials to 

examine the importance of scan rate on overall typing speed for a copy task; and we present 

a case study of the use of this scanning technique alongside linear scanning and row/column 

scanning for a user with functional locked-in syndrome. We find statistically significant text 

entry speedups over row/column scanning using Huffman scanning with a contextual 

language model. These results provide a preliminary indication of the utility of these 

methods for individuals using scanning for keyboard emulation.

Alternative Text Entry

Literate adults who cannot use standard keyboards for text entry because of physical 

impairments have a number of alternative text entry methods that permit typing, known as 

keyboard emulation. A single binary switch is a commonly used interface for alternative text 

entry, and may be realized with a button press at any consistent and reliable anatomical site, 

eye-blink or even event related potentials (ERP) such as the P300 detected in EEG signals 

(Lesher, Moulton, & Higginbotham, 1998). Typing speed is a challenge in such interfaces, 

yet critically important for usability. A common alternative text entry approach that uses a 

binary switch is row/column scanning on a matrix of characters, symbols or images (often 

referred to as a spelling grid). With the fixed spelling grid that appears in Figure 1, the user 

selects a target symbol by simply indicating yes when the desired row is highlighted, and 

then indicating yes when the desired cell is highlighted in the columns.

Of the ways in which AAC typing interfaces differ, perhaps most relevant to the current 

paper is whether the symbol positions are fixed or can move dynamically, because dynamic 

layouts can facilitate integration of richer language models. For example, if character 

probabilities are re-calculated after each typed character, then the characters in the grid 

could be re-arranged so that the most likely are placed in the upper left-hand corner for row/

column scanning. Early research into optimizing spelling grids resulted in the Tufts 

Interactive Communicator (TIC) (Crochetiere, Foulds, & Sterne, 1974; Foulds, Baletsa, & 

Crochetiere, 1975) and the Anticipatory TIC (ANTIC) (Baletsa, 1977). In contrast to the 

roughly alphabetic grid shown in Figure 1, the TIC organized the letters in frequency order, 

so that frequently accessed symbols occurred in the upper left-hand corner of the grid, where 

less scanning is required to access them. Most currently manufactured AAC devices that 

present row/column scanning options rely on such an optimized letter configuration for 

fixed spelling grids. In 1987, Heckathorne and his research team described a device called 

PACA (Portable Anticipatory Communication Aid) that attempted to reorganize the grid 

based on probabilities given the previously typed letter, but it was never brought to market 

(Heckathorne, Voda, & Leibowitz, 1987). Clearly the cognitive load of processing a 

different grid arrangement after every character would slow down typing more than the 

speedup due to the improved binary coding (Baletsa, Foulds, & Crochetiere, 1976; Lesher et 

al., 1998). The GazeTalk system (Hansen, Johansen, Hansen, Itoh, & Mashino, 2003) is an 
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eye gaze system with a dynamically changing 7.62 cm × 10.16 cm grid. In the typical 

configuration of that system, parts of the grid are fixed, but some cells contain likely word 

completions or the most likely single character continuations, both based on language model 

predictions. Hansen et al. (2003) report that users produced more words per minute with a 

static keyboard than with the predictive grid interface, illustrating the impact of the 

cognitive overhead that goes along the visual scanning required by dynamic grid 

reorganization.

Interfaces that require extensive visual scanning or motor control, or which rely upon 

complex gestures to speed typing, can make the interface difficult if not impossible for many 

people who use AAC. Venkatagiri (1999) compared different keyboards and letter 

presentations and found time and keystroke requirements varied as a function of the layouts 

and access methods. In this paper we will make use of a static grid, or a single letter linear 

scanning interface, yet scan in a way that allows for the use of contextual language model 

probabilities when constructing the binary access code for each symbol.

Binary Codes for Typing Interfaces

For any given scanning method, the use of a binary switch to select from among a set of 

options (letter, symbols, or images) amounts to the assignment of binary codes to each 

symbol. There are many ways to assign a binary code to symbols, such as extended ASCII 

codes, which assign 8 bit codes to symbols, such as the letter “m”, which has the ASCII 

code 01101101. Scanning methods also amount to assigning such binary codes to symbols, 

different from the ASCII codes above in that they typically are of varying length, with some 

symbol codes being very short and others longer. The binary switch for scanning is used to 

indicate the zeros and ones of the code, which results in the symbol being typed. For 

example, the standard row/column scanning algorithm works by scanning each row until a 

selection is made, then scanning each column until a selection is made, and returning the 

symbol at the selected row and column. For such an access method, the binary code for a 

symbol could be written as a 0 for every row from the top that does not contain the target 

symbol, followed by a 1 (for the row that contains it); then a zero for every column from the 

left that does not contain the target symbol, followed by a 1 (for the column that contains it). 

Not activating the switch indicates a zero bit; activating the switch indicates a one bit, and in 

such a way the binary code is input. Using this scanning method with the spelling grid in 

Figure 1, the binary code for the letter “j” is 01000001; the letter “m” is 001001. Note that 

this binary code for “m” is 6 bits long, shorter than its 8-bit ASCII code.

Ordering the symbols in the grid so that the most frequently accessed symbols are in the 

upper left-hand corner of the grid (as in TIC) results in shorter binary codes for those 

frequent symbols, hence less scanning required for typical symbol access. The overall 

frequency of letters, however, does not take into account what has just been typed, but rather 

assigns its codes identically in all contexts. Whether a particular character is likely or not 

depends to a great extent on the previous character and in fact the whole of the message up 

to that point. In this paper we examine alternative fixed-grid scanning methods that do take 

into account such context in the statistical language models used to establish binary codes 

for keyboard emulation.
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Language Modeling for Typing Interfaces

Statistical language models are common components of AAC systems. Most commonly, 

language models are used for word completion or word prediction, as mentioned earlier for 

the GazeTalk system. There has been extensive research on methods for integrating word 

completion or prediction models into AAC system in such a way that they achieve keystroke 

reductions (Darragh, Witten, & James, 1990; Li & Hirst, 2005; Trost, Matiasek, & Baroni, 

2005; Trnka, Yarrington, McCoy, & Pennington, 2007; Trnka, Yarrington, McCaw, McCoy, 

& Pennington, 2007; Wandmacher & Antoine, 2007). These keystroke reductions are 

achieved when a single keystroke suffices to select the rest of a word, rather than requiring 

keystrokes to select each of the remaining characters of the word. Monitoring a separate 

region of the interface that contains suggested completions involves some additional 

cognitive load (much as with dynamic grid reorganization), hence in some instances the 

actual realized typing speedup can be far less than the keystroke savings might lead one to 

expect (Anson et al., 2004), and in many cases a net slowdown in text entry can occur 

(Koester & Levine, 1994a; 1994b). Even so, there is some evidence that, under certain 

conditions, word completion and prediction speed typing (Trnka et al., 2007), and AAC 

keyboard emulation software commonly includes such components.

Word completion is one way to use language modeling to speed text entry, though word 

completion is a method to augment an existing text entry system, rather than a stand-alone 

system. A fully functional text entry system must be open vocabulary in the same way as 

standard text entry modalities, such as the QWERTY keyboard: any word that the user 

wants to type should be able to be produced by the keyboard emulation. Word completion 

and prediction systems make those predictions over a vocabulary of possible words, and if 

the target words falls outside of that vocabulary (i.e., the word is out-of-vocabulary) then it 

will not show up as a word completion/prediction option, leaving the user to type the entire 

target. This is particularly important for typing items that fall outside of typical lexicons, 

such as proper names, acronyms, abbreviations, or any departures from standard 

orthography, such as informal text genre found in social media. The language model in the 

text entry system must be able to repair spelling and word errors by including some editing 

symbols such as a delete key. In other words, it is important to design language models to 

speed up a core open-vocabulary typing function by predicting single ASCII and control 

characters, rather than just multiple character strings. The predictive model must assign a 

probability over the set of possible next symbols, given what has already been typed. This 

task is actually very similar to the influential Shannon game (Shannon, 1950), where a given 

text was guessed one character at a time by people as the means for establishing the 

statistical characteristics of the language.

Beyond word completion, language models have been used to make letter selection easier. 

For example, Dasher (Ward, Blackwell, & MacKay, 2002) uses language models to make 

the interface region allocated to a character larger, thus facilitating hitting the target letter 

with a gesture. These gestures involve moving eye gaze or a mouse cursor over the physical 

region allocated to the symbol. As symbols are typed, newly predicted symbols gain 

probability and their regions grow dynamically across the interface in a way that makes it 

appear that the point of focus is moving from left-to-right through the set of possible 
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messages. In order to type efficiently with the interface, Dasher requires sufficient motor 

control and visual attention to continuously move the cursor. For expert users, it can be very 

effective, but it can be very challenging for individuals with motor and/or cognitive 

impairments to use.

Most current AAC devices include both letter and word prediction options. Within the NLP 

research literature, the Sibyl/Sibylle interface (Schadle, 2004; Wandmacher, Antoine, Poirer, 

& Departe, 2008), similar to our brain-computer interface for spelling, known as RSVP 

Keyboard™ 1 (Oken et al., 2014; Orhan et al., 2012), involves a letter prediction component 

with a linear scan of the letters in probability order (based on a 5-gram character language 

model) instead of row/column scanning. User feedback indicated that row/column scanning 

was more tiring than a linear scan in their system (Wandmacher et al., 2008).

In prior work (Roark et al., 2010; Roark et al., 2013), we demonstrated that Huffman 

scanning requires far fewer keystrokes than widely used row/column scanning, and results in 

faster text entry and strong user preferences relative to row/column scanning. However, our 

previous results were derived from either user simulations or study participants without 

disabilities, and were achieved with relatively fast calibrated scan rates. It is not yet known 

whether Huffman scanning is viable or preferred by individuals with severe motor 

impairments who are the target users of such technology. Obtaining results from people who 

rely on the assistive technology is critical if we are to understand what systems are viable, 

important and preferred. If we do not obtain patient centered outcomes or conduct trials for 

practical use, then development efforts may become obsolete quickly, and our goals may not 

meet the needs of the very individuals we are addressing. As each assistive technology 

research paradigm must include trials with users, in this paper we present results from users 

with and without disabilities.

We will describe three experiments that attempt to determine how to leverage contextually 

sensitive language models in fixed-grid scanning beyond word completion and prediction; 

and to quantify the degree to which language models can make the diverse scanning 

interfaces competitive in terms of typing speed. Before doing so, however, we will first 

explicitly review our terminology, hopefully to avoid any confusion when describing 

methods and results.

Terminology

This paper is presenting work at the intersection of several disciplines: AAC, computational 

linguistics, and human-computer interaction. As a result, what may seem to be the most 

natural term for a concept will vary across readers. Further complicating this is the 

occasional lack of field-internal consensus on the appropriate term. To aid interdisciplinary 

understanding, and avoid misinterpretation of our methods or results, we present 

terminology and how it relates to prior usage.

1The RSVP Keyboard™ is a P300 brain-computer interface spelling system that is being developed at Oregon Health & Science 
University under an NIH grant (5R01DC009834) to Dr. Fried-Oken, principal investigator.
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Symbols, words and strings

We use the terms symbol and character interchangeably to describe the smallest items being 

typed. Typically these are letters, but can include editing or formatting symbols such as 

backspace, delete or whitespace. A word is a whitespace delimited string of symbols. An n-

gram is a string of symbols of length n (e.g., “abcd” is a 4-gram of letters).

Bits, switches, scan steps

In direct selection systems, the symbol is the smallest unit that can be selected, and typing 

performance is often measured in terms of keystrokes (i.e., the number of select gestures 

required to enter the message). In scanning systems, multiple user actions are generally 

required to type a single symbol, and these actions can be referred to in various ways. 

Lesher et al. (1998) refer to base actions as switches, and these include switch activations 

(also called keypress or switch hit) or timeout (absence of switch hit). Recently, Mackenzie 

(2012) referred to switches in the Lesher et al. (1998) sense as scan steps, and advocated 

scan steps per character as a measure of scanning efficiency. Taking the perspective of 

binary codes as we have done in this paper, each of these switches or scan steps corresponds 

to a bit, hence bits-per-character is an equivalent measure to switches-per-character or scan-

steps per-character. Given the focus on binary coding in this approach, we will discuss bits-

per- character when presenting results.

Optimal bits per character, errors and long codes

The ideal user would activate the switch always and only when required to type their target 

character. At each position in a test sequence, we can calculate the number of bits required 

to type the character if there are no errors. We report this as optimal bits per character, and 

this is the sort of measure reported in scanning simulation, such as Lesher et al. (1998) and 

MacKenzie (2012). Real users, however, make errors, and these errors can either result in 

the wrong symbol being typed, or in scanning past the target symbol but correctly typing it 

when the system reaches it again. We term this error as a long code, since the binary code 

that is used to select the symbol is longer than the optimal code for that symbol. A long code 

can result from either a timing error (failure to activate switch) or selection error (erroneous 

switch activation). For example, in row/column scanning, the target row may be missed or 

the wrong row selected, but this does not necessarily result in the wrong symbol being 

typed. We report both error rate (percentage of typed symbols that were incorrect) and long 

code rate (percentage of correctly typed symbols that had a longer than optimal code).

Scan rate, dwell time, auto scan, step scan

We designed our scanning interfaces so that one of the user actions is to refrain from 

activating the switch and allow a timeout to trigger. Dwell time refers to the duration of the 

time interval during which the system waits for switch activation. A short dwell time 

produces a faster the rate of scanning, since the user has less to activate the switch before the 

system records a timeout and moves on. In auto scanning, a timeout indicates that no 

selection has been made; in step scanning, a timeout indicates selection.
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Methods

Participants

Participants were 16 literate adults without disabilities and one man with severe speech and 

physical impairments secondary to brainstem stroke. The participants without disabilities 

were students and faculty at the Oregon Health & Science University with reportedly intact 

cognitive, motor, sensory and language skills. They were not familiar with our keyboard 

emulation interface prior to participation in the study. GB, the participant with locked-in 

syndrome, is a 36-year-old male, who had a brainstem stroke at the age of 20 and has been 

functionally locked-in ever since. He retains some slight head movement and has adequate 

visual scanning. He uses the Words+ Freedom 2000TM2 speech generating device with EZ 

Keys software ™ in row/column scanning mode and a SpecsTM3 switch placed on the 

AbleNet Universal Arm Mounting SystemTM4 by his right temple for some of his email 

communication. For the majority of his expressive language, however, Greg depends on co-

construction with a partner-dependent alphabet auditory scan and a familiar communication 

partner.

GB became quadriplegic after he completed U.S. military service. At the time, he was 

enrolled in community college and worked as a landscaper. He currently lives with his 

mother and sister, and relies on the assistance of three paid caregivers during daytime hours 

for all activities. GB has been an active member of the RSVP Keyboard research team since 

2006. He attends monthly team meetings at Oregon Health & Science University, where he 

provides input and suggestions for all research and development issues that arise. He has 

published his thoughts about BCI for AAC in Speak Up, the publication of the United States 

Society for Augmentative and Alternative Communication (Bieker, Noethe, & Fried-Oken, 

2011). GB attended the 2013 International Brain-Computer Interface (BCI) Meeting in 

Monterey, CA where he presented a workshop on AAC for BCI (Huggins et al., 2014) and 

participated in the BCI Users’ Forum in front of 350 conference participants (Peters et al., 

2014). Of note, all presentations were prepared using partner-assisted auditory scanning. He 

finds technology to be too slow, fatiguing, and missing the engagement and personal 

attention that defines verbal communication and interaction for him.

GB was first introduced to AAC for writing with the Apple IIe computer6, Discover: KENX 

interface7, and Co:Writer software8 by Don Johnston, Inc. Over time, he switched to a 

Words+ Freedom 2000™2 system, with which he uses stored phrases and generates new 

messages with one switch row/column scanning. He is constantly looking for alternatives. 

He completed a number of trials with eye gaze systems. He found that the eye gaze devices 

created a physical barrier between him and his communication partners and he prefers to 

look at the people he is interacting with. GB relies on assistive technology for short written 

text only. Due to his dependence on others for system set up and maintenance, and the time 

6Apple IIe computer is the third model Apple II series of personal computers produced by Apple Computer of Cupertino, CA, USA.
7Discover: KENX is a keyboard interface designed to access a computer using a choice of methods other than a standard keyboard 
that was manufactured by Don Johnston Inc. of Volo, IL, USA, and is a trademark of Madentec Limited, of Edmonton, Alberta, 
Canada.
8Co:Writer is word prediction software manufactured by Don Johnston Inc. of Volo, IL, USA.
2The Words+ Freedom 2000TM speech generating device and EZ KeysTM software were manufactured and sold by Words+, Inc. of 
Lancaster, CA, USA.
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demands to start using AAC, he reports that does not like to use AAC for spontaneous 

conversation. He states that there is a place for AAC, but he prefers to use partner-assisted 

auditory scans for speaking with others or preparing long text. Even though he has a 

portable laptop and wheelchair mount, he finds the AAC system intrusive and difficult to 

take with him. Placement of the switch and switch mount is a constant barrier to device use, 

and it must be readjusted multiple times during each use. He enjoys the participation of his 

caregivers and verbal engagement during the message formulation process, and finds that it 

is much quicker to ask his familiar caregiver to predict word and phrase completions then to 

rely on the AAC system. GB uses his row/column scanning device for short emails only. 

Message production rates are slow; he is about 60% accurate with initial scanning selections 

and must delete or retype letters often. By nature, he reports that he is not a big talker and 

relies on short messages rather than long stories. He enjoys humor and sports, often 

connecting with others in short emails about teams or jokes. He is constantly looking for a 

better switch option, and is currently investigating a laser switch. GB is a BCI evaluator, and 

tests all system upgrades and treatment protocols that are developed for our new assistive 

technology. Since the technology is not yet reliable for home use without significant 

technical support, he does not rely on BCI for composing personal text. GB is very aware of 

the speed challenges associated with any AAC device. He states that he often fatigues when 

using AAC technology, and the attention demands for accuracy are high. At this time he is 

willing to trade the independence of AAC technology for a faster, more personal system that 

involves one-on-one interaction and constant engagement with a communication partner.

Materials

Corpora and character-based language modeling—Character n-gram models were 

used for this experiment. We follow Roark et al. (2013) in using Witten-Bell smoothed n-

gram language models, and refer the reader to that paper for more extensive presentation of 

these methods. Briefly, each character’s probability is conditioned on the previous seven 

characters, and the probabilities are regularized using widely known methods so that even 

unobserved sequences receive some probability. Models are trained on newswire text from 

the New York Times portion of the English Gigaword corpus (LDC2007T07) and individual 

words taken from the CMU Pronouncing Dictionary (www.speech.cs.cmu.edu/cgi-bin/

cmudict), which were appended to the newswire corpus to give better word coverage. The 

resulting corpus was preprocessed for the current evaluation, as detailed in Roark et al. 

(2010) and Roark et al. (2013). The pre-processing was carried out so as to yield text that 

was actually typed – as opposed to, say, pasted signatures, bylines, tabular data, 

automatically generated text, etc. – hence of some utility for modeling the kind of language 

that would be produced in English typing applications. Further, the pre-processing reduced 

text duplication in the corpus.

Binary codes—The language models described above give us the means to assign a 

probability to each symbol in the symbol set, given what has been typed up to that point. 

The symbol set is then sorted in decreasing probability order and a binary coding tree is built 

over the symbol set, so that the binary code assigned to each symbol differs depending on 

the context, i.e., what has been typed up to that point. Huffman and linear scanning 
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approaches make use of these binary coding trees, and we refer the reader to Roark et al. 

(2013) for technical details on this approach.

Stimuli

All participants were presented with the text entry phrase set from MacKenzie & Soukoreff 

(2003) to evaluate typing performance. Of the 500 phrases in that set, 20 were randomly set 

aside for testing, and the other 480 were available as stimuli during training and calibration 

phases. Of the 20 evaluation strings, five were used in this study: I can see the rings on 

Saturn, Watch out for low flying objects, Neither a borrower nor a lender be, An offer you 

cannot refuse, and The facts get in the way.

Scanning paradigms—The interface developed for this study presented phrase copy 

tasks to measure typing performance under six scanning paradigms. The scanning paradigms 

were: (1–2) row/column scanning, both auto scan (switch activation for character selection) 

and step scan (absence of switch activation for character selection); (3–4) Huffman scanning 

using either a unigram language model (no context) or an 8-gram language model to derive 

the Huffman codes; and (5–6) scanning with a linear scanning code, either on the six-by-six 

grid like the other scanning approaches, or using RSVP (Rapid Serial Visual Presentation) 

paradigm, where only one symbol at a time is flashed on the screen. For each paradigm, 

participants saw a target phrase with instructions to type the phrase exactly as displayed. 

Any incorrect symbols were deleted by selecting the backspace symbol followed by 

selection of the correct symbol. The same optimized letter matrix is used in all grid scanning 

conditions, based on letter frequency.

Row/column scanning—The typing interface for row/column scanning is shown in 

Figure 2(a). The target string to be copied is presented to the participant at the top of the 

window, and immediately below this is the buffer showing what has already been typed. 

Whitespace between words (represented here by the underscore character, shown in the 

grid’s upper right-hand corner) also must be typed correctly by the participant. When an 

incorrect character is selected, the error is shown in red with a backspace symbol 

immediately following – as shown in Figure 2(b) – to assist users in recognizing that an 

error has been made and must be corrected.

For row/column scanning, the cursor returns to the top row after passing the bottom row 

without a selection. Once a row has been selected, the cursor wraps around the letters three 

times. If no cell is selected, then scanning continues from the following row. This provides a 

recovery mechanism if an error in row selection is made.

Huffman scanning—When configured for Huffman scanning (Roark et al., 2010; Roark 

et al., 2013), the grid remains the same but the highlighting differs, as shown in Figure 3. In 

this mode, a Huffman code divides the symbols into two sets (0 and 1). Highlighting of a 

cell indicates that the symbol is in Set 1. Because the division into two sets occurs in order 

to reduce the number of selections required to reach the desired symbol, the highlighted cells 

cannot generally be contiguous. It is the relaxation of requiring highlighting to be 

contiguous that allows the use of the language model to determine the code. Non-contiguous 
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highlighting in scanning is rare, but has been discussed (Demasco, 1994). As far as we 

know, however, this is the first time non-contiguous highlighting has been used for dynamic, 

contextually-sensitive coding. Huffman coding has been applied previously to a scanning 

paradigm (Baljko & Tam, 2006), though with a unigram model (i.e., no context) in a way 

that ensured contiguity of highlighted regions.

To understand how Huffman scanning works, we provide the following example, which 

calculates the probability of letter selection from all possible letters (Huffman, 1952). 

Suppose the partial phrase “His name is Tom Rob” has been typed, and we are using 

Huffman scanning to type the next letter. The current intended name might continue with an 

i (e.g., Robinson), an e (Roberts), a b (Robbins), and so on. Or perhaps the previously typed 

b was an error, hence the current target is the delete symbol. For the sake of illustration, 

suppose that the probabilities for the most likely symbols are as follows: prob(i) = 0.3; 

prob(e) = 0.3; prob(b) = 0.2; and prob(delete) = 0.1. The rest of the letters share the 

remaining 0.1 of probability, summing properly to 1.

The symbols are divided into two sets, so that each set has as close to half of the probability 

mass as is possible. (Recall that a set’s probability is the sum of the probabilities of its 

members.) Note that, given the probabilities above, the letters i and e cannot end up in the 

same set, since together they have total probability 0.6, which would lead to the other set 

having probability 0.4, less than the optimal 0.5. If, instead, we put i and b in one set, and 

everything else in the other set, both sets will have the desired probability of 0.5. The 

smaller set (i and b) is then highlighted and the system observes whether there is switch 

activation or not within the specified dwell time. Note that the letter e, which is tied for the 

highest probability, is not highlighted. Highlighting of a cell in the grid does not indicate 

that a cell is particularly likely or not; rather it simply indicates whether, after dividing the 

symbols up, it is in the highlighted set.

In this novel Huffman scanning approach, the highlighted set of symbols is selected by 

switch activation. If a selected set is just a single character, that character is typed. If there is 

more than one symbol in the selected set, then the binary code is recalculated for the next 

presentation of highlighting. This is done in such a way that, until a symbol is typed, no 

symbol is ruled out. If the switch is activated, so that the highlighted set (i and b) is selected, 

there is some small probability (0.1) that the selection was unintended (i.e., the target 

symbol is in the other set). Based on this, we recalculate all the symbol probabilities, and the 

new probability of letter i works out to be just over 0.5, so it will be placed in its own set for 

the next step of the scanning. Scanning continues like this until a single character is selected. 

After every scan step, the Huffman or linear scanning codes are recalculated, taking into 

account the probability of an error, in such a way that non-selected letters retain some 

probability of being selected in the system. In other words, even if the wrong character is 

selected, thus reducing the probability of the target symbol, subsequent correct selections 

will gradually increase the probability of the target symbol, eventually leading to it being 

typed. The recovery procedure with Huffman scanning does not resemble the recovery loop 

used for row column scanning. We refer the reader to Roark et al. (2010) and Roark et al. 

(2013) for further technical discussion on how these codes are recalculated taking into 

account an error rate parameter.
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Linear scanning—By highlighting a single cell at a time, in descending probability order, 

linear scanning occurs on the grids shown in Figures 2 and 3. Alternatively, linear scanning 

occurs with an RSVP interface, shown in Figure 4, which presents single characters serially.

Procedure

There are three stages to the experimental paradigm: training a participant to understand the 

different scanning tasks, calibrating the scanning rate for each task, and completing the 

experimental scanning tasks. Participants completed phrase copy tasks with the 

aforementioned six different scanning paradigms. Participants without disabilities engaged 

in all six scanning paradigms; GB participated in four of these conditions. Participants were 

seated at a table in front of a laptop that presented our keyboard emulation software. The 

participants without disabilities selected targeted symbols by using their dominant hand to 

hit a Jelly Bean Switch™5 on the tabletop; GB used his chin to depress a Specs switch 

attached to the Universal Switch Mounting System on his wheelchair.

Training—Participants were presented with a short demonstration of the interface by an 

author, which involved typing a short string (“a dog”) using row/column auto scan, row/

column step scan, and Huffman scanning. The demonstration included target selection, 

typing the wrong symbol, deleting a symbol, typing a space, and scanning past the target 

symbol. Following this simple demonstration, the participants were presented graphically 

with overall instructions for the task. A self-paced instruction module explained details 

about the task to be completed. For each of the typing conditions, condition-specific 

instructions were presented. These instructions explain how keyboard emulation functions 

for each condition and reiterate important overall task instructions. The scan rate for each 

condition, specifying how long to wait for a button press before advancing, was set for each 

individual during the training/calibration session.

Individual scan rate calibrations—Each participant’s scan rate must be calibrated 

before the experimental task is presented. We will briefly review the calibration procedure 

here and refer the reader to Roark et al. (2013) for full details. Because the Huffman and 

linear scanning approaches require the individual to react to what is presented on the screen, 

the scan rate is constrained by reaction time. In contrast, row/column scanning allows for 

anticipation and planning, since the current configuration of the highlighting determines the 

subsequent configuration of the highlighting. One might expect, then, that faster scan rates 

would be more suited to row/scanning than compared to the other approaches being 

investigated. Auto scan and step scan, however, are substantially different in terms of the 

control required to advance scanning versus selection, hence, one might expect these scan 

rates to also differ. Calibration was thus conducted for three scenarios: row/column step 

scan, row/column auto scan, and Huffman scanning with a unigram language model. This 

latter rate was then used for all non-row/column scanning conditions, all of which are 

constrained by reaction time.

5The Jelly Bean SwitchTM is manufactured and sold by AbleNet, Inc. of Roseville, MN, USA.
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Calibration is run in two phases. The first phase begins with a relatively slow scan rate and 

speeds up by 200ms after each correctly typed target string until it reaches a scan rate at 

which the participant is unable to successfully type the target. The second phase for each 

condition (held after a period during which other methods are used) begins with a scan rate 

500ms slower than the fastest scan rate at which the participant failed in the prior phase, 

then speeds up by 100ms after each successful target. After reaching a scan rate that is too 

fast for the participant to successfully type the target, the scan rate decreases by 50ms until 

the subject can successfully type the target, and this final scan rate is taken as the final 

calibrated rate for that individual.

Experimental testing—Participants typed the same five phrases from the test set in six 

distinct conditions, the ordering of which was randomized for each participant. There were 

two row/column scanning conditions, auto and step scan; two Huffman scanning conditions, 

with codes derived from either the unigram language model or the 8-gram language model; 

and two linear scanning conditions, either scanning on the 6-by-6 spelling grid or RSVP 

single letter presentation. Both linear scanning conditions used codes derived from the 8-

gram language model. Identical instructions to those given during the calibration phase were 

provided in each condition, and a practice phase preceded the typing of phrases from the test 

set. Once the participant met the error rate criterion performance (10% error rate or lower) 

for that condition, he or she advanced from practice phase and was given the test phrases to 

type.

Results

Experiment 1: Calibrated Scanning by Participants Without Disabilities

The 16 native English speakers without disabilities calibrated the scan rate for each scanning 

paradigm at the start of the experimental session, and results are presented in Table 1. The 

raw results presented for this experiment are also reported in Roark et al. (2013), though we 

provide a statistical analysis of the results and subsequent discussion here for the first time.

This is a copy task where participants are instructed to correct all errors and copy the 

presented test string exactly. To avoid scenarios where the participant was unable to correct 

all errors and successfully complete typing a particular stimulus (due, perhaps, to the 

participant not recognizing that an error has been made or being unable recover from a rapid 

sequence of many errors) a trial was interrupted if the total number of errors on the stimulus 

reaches a threshold. After interruption, the participant was prompted to type the same target 

phrase again, starting from the beginning. The total time and number of keystrokes both 

before and after interruption were counted when calculating performance. For the current 

experiment, the threshold was set to 20 errors, and just two participants reached this 

threshold, for one phrase each in a row/column scanning condition (see Table 2).

Table 2 (first presented in Roark et al., 2013) reports typing speed and related measures 

(means and standard deviations) for the participants. Typing speed is presented as characters 

per minute, and the number of keypress or non-keypress (timeout) events used to type the 

characters is presented as bits per character. (See the earlier Terminology section for a 

detailed discussion of these terms.) Bits per character does not correlate perfectly with 
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typing speed, since a timeout by definition consumes the fully allotted trial time, and a key 

press is typically much shorter. We also present rates of two kinds of errors. Note that, to 

successfully complete the trial, the stimulus must be typed correctly. One kind of error 

involves typing the wrong symbol, then deleting and retyping the correct symbol. We 

present this sort of mistake as, error rate - the number of incorrect symbols typed divided by 

the total symbols typed. Another kind of mistake in typing a symbol is to scan past the 

symbol without typing it, but eventually return to that symbol and type it correctly. This 

mistake results in extra keystrokes, which means that the binary code used to select the 

character was longer than what it would have been optimally. We present this sort of 

mistake as long code rate - the percentage of correctly typed symbols that required a longer 

than optimal code. To see how a perfect user would have performed, we present the optimal 

bits per character that could be achieved with each method.

We used a paired-sample t-test to compare the typing speed of the subjects across the six 

conditions, with Bonferroni correction based on 15 comparisons. The Huffman unigram 

condition was significantly slower, p < 0.001, than each of the other conditions, 

approximately twice as slow as Huffman 8-gram. Both the Huffman 8-gram, p < 0.01, and 

Linear grid 8-gram, p < 0.05, conditions were significantly faster than row/column auto 

scan. The Huffman 8-gram condition was also significantly faster than the RSVP 8-gram 

condition, p < 0.05. None of the other differences were statistically significant.

Table 3 (originally from Roark et al., 2013) presents mean scores for four questions: I was 

fatigued by the end of the trial. I was stressed by the end of the trial. I liked this trial. I was 

frustrated by this trial. The responses showed a consistent preference for Huffman and linear 

grid conditions with an 8-gram language model over the other conditions (see results in 

Table 3).

Experiment 2: Fixed Rate Scanning by Participants without Disabilities

Having a calibration session, and setting scan rates at the fastest scan rate at which 

participants can perform the task within stipulated error rate bounds, ensures that methods 

that allow for anticipation, such as row/column scanning, get some advantage in terms of 

characters per minute that might be produced. However, the fastest scan rate at which the 

task can be accomplished is not the same as the scan rate that results in the most characters 

per minute. In fact, the relatively high error rates and long code rates that were observed in 

some of these conditions may lead one to believe that these scan rates were not optimal in 

this respect and that a more leisurely scan rate which resulted in fewer errors and missed 

targets may in fact yield faster typing. From these considerations, we ran a follow-up 

experiment using a fixed scan rate of 600ms across all of the conditions. Note that there are 

many ways in which a scan rate can be chosen for a particular individual, through the use of 

more complex calibration methods or with the help of a speech-language pathologist. Rather 

than individualizing, we chose a rate that was comfortable across all participants and 

conditions, but fast enough to avoid frustration. The same participants were used for this 

experiment as for Experiment 1, and the testing protocol was identical to that experiment. 

Participants had at least one day between Experiment 1 and Experiment 2. Results are 

presented in Table 4.

Roark et al. Page 13

Augment Altern Commun. Author manuscript; available in PMC 2015 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In only two of the conditions (auto row/column scanning and linear grid scanning) were the 

typing speeds in characters per minute slower than in the calibrated condition, and neither 

slowdown reached statistical significance. In most conditions, the reduction in error and 

long code rates offset the slowdown in scan rate, resulting in significantly faster typing for 

both Huffman scanning conditions and the RSVP 8-gram condition. Within this experiment, 

we again find that the Huffman unigram condition was significantly slower than each of the 

other conditions, p < 0.001, again using paired-sample t-test with Bonferroni correction 

based on 15 comparisons. The nearly factor of two slowdown in this condition relative to the 

other Huffman scanning condition was also preserved. We also find that the Huffman 8-

gram condition is significantly faster than every other condition, p < 0.001. Finally, the row/

column step scan, linear grid 8-gram and RSVP 8-gram conditions were all significantly 

faster than row/column auto scan, p < 0.001. None of the other differences were statistically 

significant.

Experiment 3: Scanning by Participant with Severe Speech and Physical Impairments

After examining performance using these new scanning methods for participants without 

disabilities, we turned to performance of a man who uses AAC. GB participated in four of 

the original six conditions. Step scanning was omitted because it requires a greater number 

of key presses than auto scanning methods, and was too difficult for GB. Based on the prior 

results, we see that the Huffman unigram method is much more difficult for the users, hence 

this was also omitted. The remaining four conditions were preserved: auto scan row/column, 

Huffman scanning with an 8-gram model, linear scanning on a grid, and linear scanning 

with RSVP.

Rather than using an automatic scan rate calibration method, we provided the user with a 

training session, in which a participating speech-language pathologist established the correct 

position of the switch and manually calibrated the scan rate of various conditions to be 

comfortable for the user. A scan rate of 1s was established for the row/column scanning 

condition and 1.5s for the other conditions.

Table 5 presents GB’s typing speed and other statistics for the four conditions, with the 

same test stimuli as the previously presented results. To no surprise, typing speed was 

slower for all conditions when using GB’s 1s versus 600ms scan rates in the prior 

experiment. Error rates and long code rates were also increased, except for the linear grid 8-

gram rate where GB’s rate matched the rate of the other participants. For GB, Huffman 8-

gram yielded a 60% speedup over row/column auto scanning, more than the 50% speedup 

observed in Experiment 2. Table 6 presents GB’s responses to the user survey, showing a 

preference for the row/column scanning and Huffman scanning versus the linear scanning 

conditions, presumably due to frustration with positions requiring a long linear scan through 

many options. In addition, the RSVP condition was the one judged to be fatiguing and 

stressful. GB, as disability consultant to our RSVP BCI project, also provides regular 

feedback on the focused attention that is needed for the RSVP Keyboard, commenting often 

that it would be difficult to use this paradigm for message generation (see Table 6).
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Discussion

The experimental examination of language-model effects within static scanning grids is a 

timely endeavor, as AAC is becoming more available through SGDs and mobile 

technologies to literate individuals with severe speech and physical impairments. Adults 

with acquired impairments are coming to the task of single-switch spelling with expertise in 

letter prediction and word prediction gained from using smart phones and word processors. 

They are asking sophisticated questions about how to increase typing speed for spontaneous 

conversation, given their past experiences with mobile technology and computer access. The 

field of AAC has not kept pace with the rapid computational language and machine learning 

advances that are occurring for general technology. With renewed interest from both 

computational linguists and AAC experts in language enhancement for functional 

communication, we must begin to analyze binary switch scanning performance with 

language, cognitive, sensory/motor and environmental variables. The field of natural 

language processing can offer new avenues of research for the AAC field to make assistive 

technology for communication more effective and efficient (Darragh & Witten, 1992; 

Higginbotham, Moulton, Lesher, & Roark, 2012). The introduction of Huffman coding as a 

plausible scanning technique is one such endeavor.

Despite the small study size (17 study participants, including just one literate adult who used 

AAC), several key results are apparent. First, Huffman scanning requires a strong language 

model to be a viable alternative to row/column scanning. When just using a unigram model, 

Huffman scanning was significantly slower than either of the row/column scanning 

approaches. For the three methods that do not make use of the contextual language model 

(unigram Huffman scanning and both row/column scanning approaches), we observed a 

relatively high long code rate, leading to a near doubling of the length of codes required for 

each character in the absence of errors and a slow scan rate. The slow scan rate reduces the 

error rates, but does not yield improved speeds for any of these methods.

Second, the contextual model significantly improves Huffman scanning. The 8-gram 

language model reduces the optimal bits per character for Huffman scanning over the 

unigram model, and reduces the difference between the actual bits per character achieved by 

the participants and the optimal. This results in a near doubling of typing speed over 

Huffman scanning with the unigram model. With the faster calibrated scan rates, linear 

scanning on the grid with the 8-gram model yields nearly the same bits per character as 

Huffman scanning. This effect results from a decrease in the error rate and long code rate 

with Huffman scanning. We believe the reduced error rate is influenced by easier visual 

scanning, resulting from just one cell being highlighted at each step, drawing the eye to the 

target cell more quickly. The long code rate remains substantially lower for linear scanning 

than for Huffman scanning, even at the more leisurely fixed scan rate of 600ms. This same 

result was observed for GB, who noted his preference for linear scanning.

Finally, scanning with the RSVP interface is slower than Huffman scanning with an 8-gram 

model or linear scanning on the grid, due to an increase in error rate. Even so, it yields 

speeds commensurate with row/column scanning. Finding a symbol on the grid and waiting 

for its cell to be highlighted seems to be a slightly easier task than recognizing the symbol 
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that appears in the single RSVP screen and reacting, even for literate adults with no visual 

attention challenges. The fact that this task became easier with the slower fixed scanning 

rate (error rates decreased dramatically) demonstrates the extra time demands of recognition 

and reaction of this condition versus just watching for a cell in the grid to light up.

The results from different scanning paradigms speak to a pressing need to evaluate the 

visual processing demands and working memory requirements of all alphabetic scanning 

systems. While our work highlights the contribution of language models to scanning, there 

are many unexplored variables that affect performance. Wilkinson, Hennig, Soto, and 

Zangari (2009) emphasized the multiple and unique cognitive processing demands of AAC 

technologies, without discussing alphabetic scanning paradigms for literate users. Thistle 

and Wilkinson (2012) discuss the attention demands of dynamic screens and grid layouts 

with symbols for children. Visual attention patterns of adult AAC users with aphasia have 

been explored, again in dynamic screens rather than scanning matrices (Thiessen, 

Beukelman, Ullman, & Longenecker, 2014). The rapid changing demands of letter-based 

scanning paradigms are another visual presentation that deserves our attention, and can 

account for significant variation in learning and use by literate individuals with and without 

disabilities. Additional variables, including the specific method of error recovery in a 

particular scanning approach, the possibility of imperfect scan rate calibration, and the 

demands of the copy task itself could have an impact on typing speed. In previous work, we 

controlled the level of difficulty of phrases in the copy task and contributions of the 

language model to letter selection, and found that both variables affect alternative access 

spelling, in this case with a brain-computer interface (Orhan et al., 2012). It is difficult, with 

user studies, to control all influencing factors. When simulations are conducted, as in Lesher 

et al. (1998) or MacKenzie (2012), all variables are controlled to examine a full range of 

factors that affect optimal configurations of typing systems. The current results cannot be 

compared easily with the outcomes from simulations; or, for that matter, to results with an 

ambiguous keyboard such as Hansen et al. (2003) or MacKenzie & Felzer (2010). The 

conditions under which we collected data (two user studies for individuals with and without 

disabilities) provided substantially different testing situations than MacKenzie (2012), which 

included simulations and word completion. Reviewing different stimulus conditions 

(simulations versus user studies), language model contributions (word completion versus no 

word completion), and keyboards (ambiguous versus unambiguous) will lead to important 

and interesting questions that this paper has left unresolved.

Results for the 16 participants without disabilities and for GB, the participant with locked-in 

syndrome for 20 years, were similar for four conditions. For both non-disabled and disabled 

participants, the Huffman scanning is the fastest of the options, but linear scanning on a grid 

is competitive due to a lower long code rate. Note that for the linear scanning on the grid, 

GB’s bits per character almost mirror the mean of the participants without disabilities (Table 

4), so that the differences in typing speed can be attributed to differences in scan rate. This 

provides evidence that people who use AAC and present with only physical impairments 

perform within normal limits for age-matched peers. Even though GB prefers partner-

assisted auditory alphabet scanning, his technology use resembles that of his non-disabled 

peers. He demonstrates that spelling-based keyboard interfaces with letter and word 
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prediction for individuals who are locked-in are viable clinical options, if the individuals 

retain cognitive and language skills for functional expression.

GB’s participation here highlights the unique role that people with severe disabilities should 

play in all AAC research. While disability advocates remind us of “nothing about me 

without me,” (Delbanco, et al., 2001) this concept is not always practiced during technology 

research and development. Often we read about experiments with symbol sets or device 

layouts that have been presented to children without disabilities, or engineering efforts that 

simulate conditions without including potential users. In fact, the challenges that are posed 

to people with severe speech and physical impairments are the very barriers that we must 

address in research. These barriers may affect attitudes toward adoption or abandonment, the 

availability of customization options and preferences for device features, and the ultimate 

challenge of real time implementation. GB and other individuals with disabilities who are 

research consultants or disability advocates are the experts who we must learn from. Their 

opinions, equipment testing, feedback and experimental results validate research and 

development efforts. GB tells us that he participates in research so that he can help others 

who are less fortunate than he is. By examining his behavior, we are given an opportunity to 

scientifically answer the real questions that should be asked. Inclusion of GB and others 

with complex communication needs provides a level of AAC validity that leads to 

measurement and interpretation of the relevant constructs or ideas.

We have demonstrated the importance of contextual language modeling for the usability of 

Huffman scanning. An extension of this work would be the investigation of learning effects 

on message generation with scanning paradigms. The order of paradigm presentation or 

even the repetitive text stimuli might have affected results. We report results from novice 

users of scanning interfaces, with the exception of our participant who uses AAC. Some of 

the differences between the calibrated experiment and the fixed rate scanning experiment 

were likely due to novice users having high error rates with very fast scan rates, a skill that 

should improve with training. Further, the frequency ordered grid more heavily impacts 

speed for novices than expert users, since expert users are familiar with the order of letters 

on the grid. The effect of training would determine whether expertise speeds up Huffman 

and linear scanning as much as row/column scanning, a research question that should be 

explored. These could be addressed easily through simulations but would not provide the 

human-computer interface results that we explored.

Additional investigations are warranted to optimize performance for users based on their 

individual preferences and behaviors. Parameters can be adjusted, and are customizable in 

currently available AAC scanning systems. It is difficult to control for individual variability, 

and based on our sample size, we cannot conclude that Huffman scanning is faster than 

various kinds of row/column scanning. We asked whether scanning based on Huffman codes 

– which are guaranteed to yield the best optimal bits per character – would be found to be 

sufficiently useable by individuals as a viable alternative to available scanning methods. 

Based on the results presented here, it is clear that the Huffman scanning was found to be 

sufficiently useable to capture much of the gain promised by the optimal Huffman codes. In 

fact, GB, the participant who uses AAC, typed faster with Huffman scanning than with row/

column scanning. Within AAC, there are currently too few options to speed up text entry for 
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the literate person who relies on scanning access for message generation. Huffman scanning 

may provide a potentially useful alternative.
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Figure 1. 
Spelling grid used for standard row/column scanning
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Figure 2. 
The typing interface presented to participants with and without disabilities (a) for row/

column scanning and (b) after an error is entered during the copy task
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Figure 3. 
The typing interface presented to participants with and without disabilities during the 

Huffman scanning paradigm
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Figure 4. 
The typing interface presented to participants with and without disabilities during the RSVP 

paradigm
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Table 1

Calibrated Scan Rates

Scanning condition Scan rate (ms)

M (SD)

Row/column step scan 419 (95)

Row/column auto scan 328 (77)

Huffman and linear scan 500 (89)
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Table 6

Likert Scores for AAC user Survey Questions (5 = Strongly Agree; 1 = Strongly Disagree)

Question Row/Col Huffman Linear Linear

Auto 8-grm grid RSVP

I was fatigued by the end of the trial. 1 1 1 3

I was stressed by the end of the trial. 1 1 1 5

I liked this trial. 5 5 1 1

I was frustrated by this trial. 1 1 5 5
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