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 The formation of bile salts in the liver is the quantita-
tively most important pathway of cholesterol elimination 
from the body ( 1, 2 ). Other pathways of cholesterol me-
tabolism include the conversion of cholesterol into steroid 
hormones and vitamin D 3 . The maintenance of choles-
terol homeostasis in various tissues and cells requires com-
plex interactions of a number of physiological factors 
( 3, 4 ), including several cholesterol-metabolizing enzymes 
of the cytochrome P450 family (CYP). 

 Cytochrome P450 proteins utilize heme cofactor to per-
form oxidation chemistry with a vast diversity of drugs and 
endogenous molecules, including steroids, vitamin D, and 
eicosanoids. Membrane-bound CYPs localized either in 
the endoplasmic reticulum or mitochondria, where they 
use different redox partners to shuttle electrons from 
NADPH to molecular oxygen, resulting in the insertion of 
one atom of oxygen into the substrate while the other oxy-
gen atom is reduced to water ( 5 ). The active site is buried 
in the core of the protein and presents a preformed cavity 
above the heme connected to the surface through a chan-
nel. Despite a unique but rather conserved P450-fold, the 
molecular mechanisms of CYP substrate specifi city and se-
lectivity remain elusive. 

 Cholesterol oxidation products, especially 7-ketocholes-
terol (7KCh), are highly toxic and associated with chronic 
diseases including atherosclerotic and neurodegenerative 
processes ( 6, 7 ). 7KCh has potent pharmacological prop-
erties to induce infl ammation and apoptosis ( 8 ). As a pho-
tooxidation product of nonenzymatic and possibly enzymatic 
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(codons 1–24) was replaced with an optimized sequence, 
MAKKTSS. The C-terminally His 5 -tagged protein was coex-
pressed with GroEL/ES (pGro12, Takara Bio Inc.) in  Escherichia 
coli  JM109. Cells were lysed by passing through a Microfl uidizer 
(Microfl uidics Corp.) at 18,000 psi. Sodium cholate was added to 
the lysate at a fi nal concentration of 23 mM, and the lysate was 
incubated at 4°C for 1 h. After centrifugation at 60,000  g  for 1 h, 
protein was purifi ed using metal affi nity chromatography on a 
HiTrap chelating column charged with Ni 2+  (Amersham Biosci-
ences) and cation-exchange chromatography using a Source 30S 
column (Amersham Biosciences). The protein storage buffer was 
50 mM potassium phosphate buffer, pH 7.4, 20% glycerol, and 
0.5 M NaCl. The molecular mass of purifi ed protein measured by 
ESI-MS was 56,255 Da (expected 56,257 Da). The spectrophoto-
metric index OD 418/OD280 of purifi ed sample used in crystal-
lization trials was 1.5. A total P450 protein concentration was 
determined from reduced CO difference spectra ( 21 ). 

 Protein crystallization 
 Purifi ed CYP7A1 was crystallized in the presence of 100  � M 

cholesterol using the hanging drop vapor diffusion method at 
18°C after mixing 1 µl of the protein solution with 1 µl of the res-
ervoir solution containing 0.1 M sodium chloride, 0.1 M tri-
sodium citrate pH 5.5, and 20% polyethylene glycol (PEG) 400. 
Crystals were soaked with 30% glycerol as cryoprotectant before 
fl ash freezing in liquid nitrogen. To obtain a complex with cholest-
4-en-3-one, a T104L mutant was used, and the crystals were grown 
in conditions containing 0.1 M MES pH 6.0 and 18% PEG 550 
monomethylether (MME)   at room temperature and soaked with 
20% glycerol for fl ash freezing in liquid nitrogen. For the T104L 
mutant-7KCh complex, crystals were grown in 0.1 M sodium chlo-
ride, 0.1 M tri-sodium citrate pH 5.6, and 20% PEG 400. 

 Structure determination and refi nement 
 Crystallographic methods and results are summarized in 

  Table 1  .  Diffraction data were collected at 100 K at synchrotron 
radiation sources. The ligand-free structure was solved by molec-
ular replacement with PHASER ( 22 ) and a search model derived 
from Protein Data Bank (PDB  ) entry 2IAG ( 23 ). Density-modi-
fi ed maps from RESOLVE ( 24 ) guided pruning of the initial 
model. Molecular replacement with an intermediate model and 
MOLREP ( 25 ) produced the current orientation of the model in 
the unit cell. The ligand-free structure subsequently served as 
search model for molecular replacement solution of the com-
plex structures with PHASER. Restraints for substrate geometry 
were calculated with PRODRG ( 26 ). 

 Spectral binding assay 
 Ligand binding affi nities were determined with the spectral-

ligand binding assay as described previously ( 27 ). 

 Enzyme assays 
 The 7 � -hydroxylase activity of CYP7A1. Activity was measured 

in the reconstituted system at 37°C in 25 mM Hepes buffer pH 
7.2 containing 0.1 mM DTT, 0.1 mM EDTA, 4 mM MgCl 2 , and 
0.15% sodium cholate. The aliquots of concentrated recombi-
nant proteins were mixed and preincubated for 5 min at room 
temperature. The fi nal concentrations of CYP7A1 and NADPH-
cytochrome P450 reductase (CPR)   were 0.5 and 1.0  � M, respectively. 
Cholest-4-en-3-one (10 mM in 45% hydroxypropyl-beta-cyclodex-
trin, HPCD  ) was added to the reaction mixture at a fi nal concen-
tration of 50  � . After 10 min of preincubation at 37°C, the 
reaction was started by adding NADPH to a fi nal concentration 
of 0.25 mM. Aliquots (0.5 ml) were taken from the incubation 
mixture at selected time intervals. Steroids were extracted with 5 ml 

pathways in the retina, 7KCh might be a pathogenetic factor 
in age-related macular degeneration ( 9 ). The major routes 
for 7KCh metabolism include  a ) conversion into less toxic 
27-hydroxylated 7KCh by CYP27A1/CYP46A1 ( 10–13 ) and 
further to more water-soluble metabolites, thus protecting 
mitochondria from reactive oxygen species;  b ) esterifi cation 
including sulfonation ( 14 );  c ) lipoprotein-mediated elimina-
tion ( 15 ); and  d ) interconversion to 7 � -hydroxycholesterol 
by 11 � -hydroxysteroid dehydrogenase type 1 ( 16, 17 ). 
However, the mechanisms of 7KCh formation and elimi-
nation are still not fully understood. 

 Conversion of cholesterol into 7 � -hydroxycholesterol by 
CYP7A1 represents the fi rst and rate-limiting step in the clas-
sic pathway of bile salts biosynthesis. Hydroxylation of the 
ring system of cholesterol in a regio- and stereospecifi c man-
ner with further oxidation and shortening of the side chain 
produces water-soluble bile acids with powerful detergent 
properties to emulsify dietary lipids ( 4 ). Bile acids also serve 
as signaling molecules that bind to G-protein-coupled recep-
tors (GPCRs)   and nuclear hormone receptors that regulate 
lipid, glucose, and energy metabolism ( 18 ). A modulation of 
both oxysterol and bile acid signaling pathways has recently 
emerged as a source of promising novel drug targets to treat 
common metabolic and hepatic diseases ( 19 ). 

 Bile acid synthesis is tightly regulated through the tran-
scriptional regulation of CYP7A1 ( 1 ) and possibly by the 
availability of substrate to the enzyme, which is located in 
the cholesterol-poor endoplasmic reticulum ( 20 ). In hu-
mans, three cytochrome P450 enzymes perform the 7 � -
hydroxylation reaction: CYP7A1 is specifi c for cholesterol, 
CYP7B1 for oxysterols and steroids, and CYP39A1 for 24( S )-
hydroxycholesterol. None of these 7 � -hydroxylases are 
structurally characterized, hindering understanding of the 
molecular mechanisms of their substrate selectivity. Here 
we present crystal structures of CYP7A1, both unliganded 
and bound to either the substrate cholest-4-en-3-one or the 
inhibitor 7KCh. Ligands are bound deep in the active site 
cavity, isolated from the bulk solvent, in a previously unob-
served orientation complemented by unusual structural 
features of CYP7A1. An asparagine (Asn  ) residue in place 
of the highly conserved threonine (Thr) in I helix does not 
directly interact with cholest-4-en-3-one. Instead, the Asn 
residue appears to interact with the sixth ligand of the 
heme iron in the ligand-free and 7KCh structures. Main-
taining the network involving the 7-keto group and interac-
tion with the protein’s active site residues along with closed 
conformation of the access channel explain a competitive 
inhibition by 7KCh. Combining these new fi ndings with 
previous data prompted us to suggest a working model for 
cholesterol binding by CYP7A1 from the membrane. 

 MATERIALS AND METHODS 

 CYP7A1 protein expression and purifi cation 
 The CYP7A1 cDNA was purchased from Origene [accession 

code TC123882 (NM_000780)] and subcloned into a modifi ed 
pCW-LIC vector. The N-terminal transmembrane anchor domain 
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heme plane; a profound I helix kink disrupted the G helix 
at C term to form a separate G'' helix; an Asn residue in-
stead of the conserved Thr, which is involved in oxygen 
activation in most P450s; and a long meander region on 
the proximal surface, a site for the interaction with the 
redox partner ( Fig. 1A, B ). CYP7A1 was structurally less 
similar to CYP51, the evolutionary oldest P450, with the 
preserved function of sterol 14 � -demethylation in the cho-
lesterol biosynthetic pathway. 

 Ligand-free CYP7A1 crystallized in the presence of cho-
lesterol adopted a closed conformation with no obvious ac-
cess channels. It is unclear whether the rigid and closed 
active site was a crystallization artifact or refl ected the 
in vivo state of the enzyme in the absence of the substrate 
and/or certain physiological stimuli. Electron density maps 
showed some peaks in the putative substrate binding site, 
but density was too weak to enable placement of the sub-
strate in the model. Additional efforts to cocrystallize and 
analyze WT CYP7A1 with a substrate failed to produce in-
terpretable electron density for the cholesterol molecule. 

 An analysis of the closed conformation shows the loca-
tion and orientation of residues lining the active site cavity 
and those residues that are likely to interact with the 
substrate. Structure-based sequence comparison of 7 � -
hydroxylases reveals two polar residues, Thr104 and Ser 
105 of B' helix, as potential substrate recognition residues. 
The B' helix is known to control substrate specifi city and 
generally displays considerable deviation in sequence and 
structural organization within the P450 family ( 28 ). The 
active site was not as nonpolar as expected for the binding 
of the hydrophobic cholesterol substrate. Therefore, we 
hypothesized that mutation of these active site polar resi-
dues to the corresponding nonpolar residues of CYP7B1 

of methylene chloride. After vigorous mixing, aqueous and 
organic layers were separated by centrifugation at 3,000 rpm for 
10 min. The organic layer was carefully removed and dried under 
argon fl ow. Methanol (100  � l) was added to the resulting pellet, 
and steroids were analyzed on an HP1090 liquid chromatograph 
equipped with a Bondapak C18-column (3.9 × 300 mm) or an 
LC-MS system (Thermo Accela HPLC system with LCQ-Fleet MS 
system). The 7 � -hydroxylase activity in the presence of 7KCh was 
measured in the reconstituted system, which includes 0–100  � M 
of 7KCh as described previously. 

 RESULTS AND DISCUSSION 

 Overall structure of CYP7A1 
 CYP7A1 exhibited a typical cytochrome P450-fold with 

the conserved structural core of helices D, E, I, and L 
around the heme prosthetic group (  Fig. 1  ).  The most sim-
ilar structures available in the PDB, identifi ed using the 
DALI server, were prostacyclin synthase, CYP8A1 (PDB 
code 3B6H, 34% identity, 2.0 Å rmsd), and lanosterol 
14-demethylase, CYP51 (PDB code 3JUS, 22% identity, 3.5 
Å rmsd). Notably, CYP8A1 is a self-suffi cient P450 (i.e., 
requires neither molecular oxygen nor NADPH reductase 
to perform its distinct isomerase reaction, as opposed to 
the typical monooxygenase reaction). However, another 
member of the CYP8 family, CYP8B1, as well as CYP7A1 
and CYP7B1, is involved in bile acid biosynthesis and re-
quires a cytochrome P450 reductase as an electron donor. 
Despite the divergent chemistry of their respective cata-
lyzed reactions and different substrates, CYP7A1 shared 
common structural features with CYP8A1 ( 23 ). Specifi -
cally, the B' helix was approximately perpendicular to the 

 TABLE 1. Data collection and refi nement statistics     

Ligand None Cholest-4-en-3-one 7KCh

PDB code 3DAX 3SN5 3V8D
X-ray source NSLS-X25 APS 23IDB CLS 08ID ( 46 )
Wavelength [Å] 0.9686 0.9793 0.9762
Cell a, b, c [Å] 55.34, 80.16, 84.94 56.16, 137.63, 160.15 55.62, 74.22, 87.93
Cell  � ,  � ,  �  [°] 64.36, 75.23, 72.17 90.00, 90.00, 90.00 66.33, 75.53, 69.62
Space group P1 P2 1 2 1 2 1 P1
Data reduction software DENZO, SCALEPACK ( 47 )  a  XDS, XSCALE ( 48 ) DENZO, SCALEPACK  a  
Resolution limits (outer shell) [Å] 38.01–2.11 (2.16–2.11) 30.00–2.75 (2.82–2.75) 43.67–1.90 (1.93–1.90)
Completeness [%] 91.7 (63.0) 99.8 (100.0) 97.2 (89.0)
Redundancy 3.7 (3.1) 7.4 (7.5) 3.8 (3.7)
Rmerge 0.063 (0.427) 0.098 (0.990) 0.075 (1.042)
<I/ � (I)> 13.1 (2.5) 14.2 (2.4) 10.7 (1.2)
Molecular replacement model PDB:2IAG PDB:3DAX PDB:3DAX
Final refi nement software REFMAC ( 49 ) AUTOBUSTER ( 50 ) ( 51 ) REFMAC
Refi nement resolution [Å] 30.00–2.15 29.58–2.75 43.67–1.90
Number of refl ections in work/free set 61,020/2,018 31,339/1,775 90,113/2,066
Rwork/Rfree 0.189/0.228 0.182/0.220 0.185/0.225
Number of refi ned atoms/average B-factor [Å 2 ]  b  7,737/38.0 7,357/77.6 8,115/31.2
 Protein 7,519/38.3 7,215/78.0 7,584/31.1
 Heme 86/29.4 86/52.5 86/22.3
 Substrate None 56/56.2 58/21.6
RMSD bonds [Å]/angles [°] 0.017/1.3 0.009/1.0 0.014/1.4
Molprobity favored/outliers [%]  c  98.6/0.0 97.6/0.1 98.7/0.1

RMSD, root mean square deviation.
  a   Scaled refl ection statistics calculated using POINTLESS/AIMLESS ( 52 ).
  b   PHENIX.PDBTOOLS ( 53 ).
  c   PHENIX.RAMALYZE ( 53 ).
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nucleus facing the heme plane at a distance of  � 3.5 Å 
( Fig. 1C ). The substrate was positioned above the heme 
propionates rather than the pyrrol rings. This “pushing” 
of the substrate toward the B' helix is caused by W284 and 
N289 of I helix that protrude into the active site. As a re-
sult, the aliphatic chain of cholest-4-en-3-one was bound in 
the hydrophobic pocket formed by H helix, bent I helix, 
and the extended B-C loop; whereas the C7 carbon of the 
steroid B-ring was 5 Å away from the heme iron for stereo-
specifi c oxidation. 

 The hydrophobic side chain of the T104L mutant in the 
B' helix provided additional favorable van der Waals con-
tact with the C19 methyl group of cholest-4-en-3-one. No-
tably, T104L was located in the hydrophobic environment 
of V220 and L486, residues known to affect substrate binding 

could be favorable for interaction with cholesterol and 
thus render the protein more amenable to cocrystalliza-
tion. We designed and analyzed mutant protein T104L 
and solved crystal structures of its complexes with cholest-
4-en-3-one and 7KCh. 

 Substrate recognition 
 CYP7A1 can bind and hydroxylate cholesterol and 

cholest-4-en-3-one with high effi ciency as well as oxysterols 
(  Table 2  ) ( 29 ).  The T104L mutant was similar to WT in 
binding and catalytic properties ( Table 2 ) and readily crys-
talized with substrates. The structure of the T104L mutant 
in complex with cholest-4-en-3-one explicitly identifi ed 
key residues involved in 7 � -hydroxylation. Cholest-4-en-3-
one bound parallel to the heme with the  � -side of the steroid 

  Fig.   1.  CYP7A1 structure. A: Overall structure of CYP7A1 rainbow-colored from blue N terminus to the red 
C terminus. B: A sequence alignment and superposition of I helix in CYP7A1 (yellow), CYP19A1 (green, 
PDB code 3EQM), human CYP51A1 (blue, PDB code 3LD6),  Mycobacterium tuberculosis  CYP51 (pink, PDB 
code 1EA1) highlighting active site residue Asn289. C: CYP7A1 bound to cholest-4-en-3-one. Cholest-4-en-3-
one (orange) is surrounded by 16 residues within 4 Å from different structural elements: B' helix (H101, 
T104L, S105), B-C loop (I114), C helix (I125 and F129), H helix (R260), I helix (V281, W284, A285, and 
N289), the loop between the K helix and  � 1–4 strand (S360 and L361), and the loop between two  � 4 strands 
at the C terminus (G485, L486, and G487).   
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485, and this interaction would likely be preserved in cho-
lesterol binding. This fi nding suggests that the presence of 
a hydroxyl or keto group at the C3 position is a signifi cant 
determinant for substrate binding, consistent with previ-
ous studies ( 31 ). 

 Binding of cholest-4-en-3-one was accompanied by struc-
tural changes at the entrance of the access channel, mostly 
at the N terminus of the protein, where transition from a 
loop to A' helix conformation and the movement of the 
loop between  � 1 and  � 2 strands result in channel opening 
(  Fig. 2A  ).   

and metabolism ( 30, 31 ), thus stabilizing the T104L 
mutation. 

 As noted previously, the active site volume and position-
ing of the substrate was controlled by bulky W284, posi-
tioned above the C6-C7 bond of cholest-4-en-3-one. The 
indole moiety of W284 was sandwiched between F216 
(F' helix) and A288 (I helix) and interacted with D213 (F 
helix), which also formed a salt bridge with R483 near the 
protein surface. This interaction network seems to be im-
portant for the proper function, as evident from the 
R486C mutation of homologous CYP7B1, which is linked 
to neurodegenerative disease ( 32 ). In CYP7A1, the muta-
tion W284F but not W284Y has been shown to abolish a 
spectral response to cholesterol ( 31 ), indicating the re-
quirement of this residue to maintain the local network 
for proper positioning of the steroid ring scaffold near the 
heme. Residue W284 is conserved among microsomal ste-
rol 7 � -hydroxylases (CYP7B1, CYP8B1, and CYP39A1), as 
well as in CYP8A1, but is absent in P450s that catalyze cho-
lesterol side chain hydroxylation (CYP11A1, CYP27A1, and 
CYP46A1). This fi nding is consistent with the role of the 
active site tryptophan as a “low ceiling” keeper ( 33 ), which 
is required for both monooxygenase (CYP7B1, CYP8B1, 
and CYP39A1) and isomerase (CYP8A1) activities. 

 Due to steric hindrance by W284, a steroid substrate 
cannot move any closer to the heme iron. Substitution of 
a “canonical” Thr for Asn in I helix may enable C7 regiose-
lectivity of CYP7A1. From the multiple sequence align-
ment of >180 CYP7 proteins, we can deduce a new motif of 
L W Axxx N T in place of (A/G)Gxx T , which is present in 
most P450s, and a different proton transfer pathway/
mechanism is anticipated. A stable CO complex and the 
lack of heme movement upon substrate binding are typi-
cal features of P450s including CYP7A1, but not of CYP8A1 
with P450-fold but non-P450 chemistry ( 34 ), which exhib-
its the highest structural homology with CYP7A1. The 
atypical Asn of CYP7A1 may have a slightly different func-
tion from that of CYP8A1. In CYP7A1, N289 was positioned 
within 3.8 Å of C6 of cholest-4-en-3-one and may assist O-O 
bond cleavage in later steps of the catalytic cycle. On the 
other hand, the corresponding Asn of CYP8A1 stabilizes 
stereospecifi c substrate binding by a hydrogen bond with 
one of two chemically equivalent endoperoxide oxygen 
atoms, based on analysis of an analog. Moreover, binding 
of the substrate to the heme iron in CYP8A1 is accompa-
nied by heme movement ( 34 ). 

 Cholest-4-en-3-one adopted an elongated conforma-
tion, and its keto oxygen was located  � 3.4 Å away from the 
amide link between S360 and L361. In the 7KCh complex 
structure, the 3 � -hydroxyl hydrogen bonded with glycine 

 TABLE 2. Binding and activity of WT and T104L mutant          

Cholesterol 4-Cholesten-3-one 25OH-CH 27OH-CH

Form  K d  , µM Turnover, min  � 1  K d  , µM Turnover, min  � 1  K d  , µM Turnover, min  � 1  K d  , µM Turnover, min  � 1 

WT 1.85 ± 0.18 0.48 ± 0.02 0.14 ± 0.03 0.17 ± 0.04 NS 0.89 ± 0.15 NS 4.11 ± 0.15
T104L 1.04 ± 0.07 1.38 ± 0.12 0.08 ± 0.009 0.36 ± 0.10 NS — NS 7.03 ± 0.27

NS, no or weak spectral response. The spectral response, A 390–420 , was <0.005 absorbance units when 1 µM P450 was titrated with up to a 50 µM 
steroid.

  Fig.   2.  A: Superposition of 7KCh-bound (cyan) with cholest-4-en-
3-one-bound (brown) structure. Labeled regions show displace-
ment and different conformation (A' helix). B: 7KCh binding. 
Selected residues, heme (salmon), and hydrogen bonding of 3 � -
OH and 7-keto groups of 7KCh (blue) are shown.   
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cause opening of the substrate access channel, into which 
cholesterol enters with its side chain leading. Further posi-
tioning in the active site would ensure that the position of 
cholesterol hydroxylation approaches the heme iron. 
Consistent with a generally accepted model for cholesterol 
substrate delivery directly from the membrane, this rela-
tively straightforward binding model is supported by muta-
genesis, chemical modifi cation studies ( 28, 30, 38 ), and 
membrane penetration depth calculations ( 39–41 ). Inter-
estingly, all available mammalian P450s structures of en-
zymes that hydroxylate sterol substrates (CYP11A1: PDB 
code 3N9Y, CYP46A1: PDB code 2Q9F, and CYP7A1: PDB 
code 3SN5), independent of the cholesterol hydroxylation 
position on the aliphatic chain or the ring system, show a 
conserved cholesterol orientation (side chain near the 
heme). The possibility of a cholesterol fl ip-fl op from the 
membrane into the channel similar to cholesterol diffu-
sion within the membrane ( 42, 43 ) cannot be excluded 
and warrants further investigation. 

 A unique feature of CYP7A1, compared with other cho-
lesterol-metabolizing P450s, is a long meander region on 
the proximal side. This region acts as the electron transfer 
interface and contains the positively charged residues that 
appear to contribute to reductase binding. The meander 
is located close to the Cys-binding loop, which can modu-
late electronic properties of the heme and ultimately the 
catalytic function of CYP7A1 ( 44 ). An alternative position-
ing of the meander is observed in full-length yeast CYP51 
in complex with lanosterol ( 45 ) and suggests the follow-
ing:  a ) a signifi cant fl exibility of this region that enables its 
relocation for capping the Cys-binding loop and contacts 
with the C helix, thereby dramatically changing the elec-
tron transfer interface; and  b ) that it may interact with 
other protein effectors, which stimulate/regulate sub-
strate binding. Modulation of the interaction interface by 
the longer meander might also be a feature of CYP7/8 
proteins evolutionary closest to CYP51 and might be fur-
ther adapted for nonmonooxygenase chemistry (e.g., self-
suffi cient CYP8A1). 

 In conclusion, CYP7A1 structures identify residues in-
volved in cholest-4-en-3-one binding and specifi c interac-
tions with the inhibitor 7KCh. Some structural features 
that have evolved to hydroxylate the cholesterol ring sys-
tem are not unique to CYP7A1 and enable different chem-
istry in other CYPs. Following the general concept for 
cholesterol-metabolizing cytochrome P450s to acquire a 
substrate molecule from the membrane, we suggest that 
orientation of cholesterol in the different leafl ets of the 

 Structure in complex with 7KCh, a CYP7A1-specifi c 
inhibitor 

 7KCh is a strong competitive inhibitor of CYP7A1 (IC 50  
 � 1 µM) ( 35 ) and recently has been reported to be the 
product of the CYP7A1 action on 7-dehydrocholesterol in 
vitro and possibly in vivo ( 36, 37 ). Inhibition of CYP7A1 
activity, estimated in our standard reconstituted enzymatic 
reaction, was similar for WT CYP7A1 and the T104L mu-
tant with  K i  (app) at 5.6  � M and 6.8  � M, respectively. 

 To investigate the structural basis of CYP7A1 inhibition 
by 7KCh, we determined the crystal structure of the com-
plex. Crystals were obtained with the T104L mutant under 
conditions similar to that for the ligand-free protein (see 
Materials and Methods). When compared with the ligand-
free structure, the presence of 7KCh did not affect the 
overall conformation (rmsd 0.4 Å). The 7KCh-bound 
structure represents a closed conformation different from 
the semiopen cholest-4-en-3-one-bound structure ( Fig. 2A ). 
These ligand-specifi c structural differences suggest that 
conformational dynamics play an important role in sub-
strate recognition. A possibility of resistance to conforma-
tional changes by the crystal packing in the 7KCh-bound 
structure, however, is not excluded. 

 The structure of the active site with 7KCh was virtually 
the same when compared with the substrate. The same set 
of residues packed against the steroid core and the side 
chain of 7KCh. In addition, the 3 � -OH group of 7KCh 
formed hydrogen bonds with G485 and the hydroxyl 
group of S360 ( Fig. 2B ). A water molecule is coordinating 
the heme iron, consistent with the result of the ligand 
binding assay, which showed no transition from low spin 
of the Soret band. Notably, the iron-coordinating water 
formed a hydrogen bond to the 7-keto group of the inhibi-
tor and also to the Ala285 backbone carbonyl and the side 
chain of Asn289. This network might resemble the state 
during proton delivery to the heme-bound dioxygen with 
Asn289 serving as the key proton donor, although unpro-
ductive in the presence of the 7-keto group. Overall, the 
structural data are consistent with 7KCh competitive inhi-
bition in functional assays and demonstrate that the same 
hydrophobic and polar interactions are utilized as for the 
substrate. 

 Structural adaptations for cholesterol hydroxylation 
by CYP7A1 

 Both ligand-bound CYP7A1 structures suggest that the 
steroid entered the active site with the side chain fi rst. This 
binding orientation might be the evolutionary adaptation 
to access a cholesterol molecule from the membrane. We 
hypothesize that CYP7A1 is embedded into the outer leaf-
let of the membrane at a depth of approximately half of 
the lipid bilayer ( � 10–15 Å). In this mode, the N-terminal 
transmembrane helix, the F-G loop, and the A' helix 
(membrane binding regions) face the cholesterol mole-
cule from the inner leafl et of the membrane with choles-
terol side chain oriented toward the entry point of the 
access channel (  Fig. 3  ).  Either certain stimuli (e.g., chang-
ing in local lipid composition) or interactions with other 
proteins may induce the conformational changes that 

  Fig.   3.  A model of cholesterol abstraction from the membrane 
by CYP7A1 (surface representation). Several cross-sections of the 
active site and access channel are shown.   
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