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Abstract

Purpose of Review—Oxygen (O2) delivery, the maintenance of which is fundamental to 

supporting those with critical illness, is a function of blood O2 content and flow. Here, we review 

red blood cell (RBC) physiology relevant to disordered O2 delivery in the critically ill.

Recent Findings—Flow (rather then content) is the focus of O2 delivery regulation: O2 content 

is relatively fixed, whereas flow fluctuates by several orders of magnitude. Thus, blood flow 

volume and distribution vary to maintain coupling between O2 delivery and demand. The trapping, 

processing and delivery of nitric oxide (NO) by RBCs has emerged as a conserved mechanism 

through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We will 

review conventional RBC physiology influencing O2 delivery (O2 affinity & rheology) and 

introduce a new paradigm for O2 delivery homeostasis based on coordinated gas transport and 

vascular signaling by RBCs.

Summary—By coordinating vascular signaling in a fashion that links O2 and NO flux, RBCs 

couple vessel caliber (and thus blood flow) to O2 need in tissue. Malfunction of this signaling 

system is implicated in a wide array of pathophysiologies and may be explanatory for the dysoxia 

frequently encountered in the critical care setting.
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Introduction: the Erythron

Recently, the red blood cell (RBC) series, from progenitor cells to mature erythrocytes, have 

been termed the Erythron. This convention serves to reinforce the concept of integrated 

tissue function as an independent organ responsible for transport of oxygen from lungs to 
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tissue[1]. In adults, the total number of circulating RBCs is in steady state unless perturbed 

by pathologic or environmental insult. This is not so during the early stages of embryonic 

development. Mature RBCs have a life span of approximately 120 days, the majority of 

which is spent traversing capillary channels of the microcirculation. It is estimated that 

RBCs travel approximately 300 miles prior to senescence and clearance from the circulation, 

completing 170,000 circuits through the heart[2] and losing 15-20% of it's hemoglobin 

content[3]. RBC survival during is attributed to the unique composition of it's membrane 

and it's ability to rotate around the intracellular contents[4]. RBCs achieve gas transport to 

and from tissues, but that is not their sole function. RBCs also play an important role in 

regulation of regional vascular tone, vascular antioxidant systems, immune regulation and 

self-recognition and the physiologic response to hypoxia on both a regional and whole body 

level.

RBC Clearance

The estimated normal life span of a mature RBC is 110-120 days[5]. To date, clearance of 

normal senescent RBCs has not been clearly understood. Two mechanisms have been 

proposed, clustering of the band 3 (B3) membrane protein[6-9] and externalization of 

membrane phosphatidyl serine (PS)[10-13], both of these processes may be accelerated in 

the setting of critical illness, impairing oxygen transport capacity. Oxidatively modified 

hemoglobin (Hb) forms hemichrome aggregates, which associate with the cytoplasmic 

domain of the abundant membrane protein B3. Subsequent, clustering of B3 exofascial 

domains increases affinity of naturally occurring anti-B3 autoantibodies, which activates the 

complement system – leading to RBC uptake and destruction by macrophages[14]. 

Normally, PS is asymmetrically distributed in the plasma membrane (a process regulated by 

flippases). Disruption of this pattern is a well-documented mark of RBC senescence[10-13], 

signaling RBC removal by the reticulo-endothelial system[13]. Alternatively, RBCs may 

proceed through a form of ‘stimulated suicide’ similar to apoptosis (termed eryptosis), 

which is characterized by cell shrinkage and cell membrane scrambling, that is stimulated by 

Ca2+ entry through Ca2+-permeable, PGE2-activated cation channels, by ceramide, caspases, 

calpain, complement, hyperosmotic shock, energy depletion, oxidative stress, and deranged 

activity of several kinases (e.g. AMPK, GK, PAK2, CK1α, JAK3, PKC, p38-MAPK). 

Eryptosis has been described in the setting of ETOH intoxication, malignancy, hepatic 

failure, diabetes, chronic renal insufficiency, hemolytic uremic syndrome, dehydration, 

phosphate depletion, fever, sepsis, mycoplasma infection, malaria, iron deficiency, sickle 

cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's 

disease[13, 15, 16].

Capture and Release of Oxygen by RBCs

Hemoglobin (Hb) is formed of 2 α and 2 β polypeptide chains each carrying a heme 

prosthetic group, comprised of a porphyrin ring bearing a ferrous atom that can reversibly 

bind an oxygen (O2) molecule. In the deoxygenated state, the Hb tetramer is electrostatically 

held in a tense (T) conformation. Binding of the first O2 molecule leads to mechanical 

disruption of these bonds, an increase in free energy and transition to the relaxed (R) 

conformation. Each successive O2 captured by T-state Hb shifts the Hb tetramer closer to 
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the R state, which has an estimated 500-fold increase in O2 affinity[17]. This concept of 

thermodynamically coupled “cooperativity” in O2 binding was first described by Bohr[18] 

and explains the sigmoidal appearance of the O2-Hb binding curve, also known as the oxy-

Hemoglobin dissociation curve (ODC) (Figure 1)[19]. Moreover, understanding of allosteric 

influence of protein function by ‘heterotropic effectors’ (e.g. For Hb, O2, which binds to the 

‘active’ site (heme) is the homotropic ligand and all other molecules influencing the Hb~O2 

binding relationship are termed heterotropic effectors.) was first achieved following 

description of the variation in Hb~O2 affinity[20]. In addition to the homotropic effects of 

ligand binding on quaternary conformational changes (e.g. cooperativity), primary ligand 

binding affinity (O2) is also affected by multiple heterotropic effectors of significant 

physiologic relevance. The major heterotropic effectors that influence Hb O2 affinity are 

hydrogen ion (H+), chloride ion (Cl−), carbon dioxide (CO2) and 2,3-diphosphoglycerate 

(DPG)[17].

P50, the oxygen tension at which 50% of Hb binding sites are saturated, is used as a standard 

means to quantify change in Hb~O2 affinity and is inversely related to the binding affinity of 

Hb for O2[19]. Elevated levels of H+, Cl− and CO2 reduce O2 binding affinity (e.g. raise 

P50). This allosteric shift in O2 affinity, called the Bohr effect[21], arises from the 

interactions among the above heterotropic effectors bound to different sites on hemoglobin – 

all of which serve to stabilize the low energy, low affinity, T-state Hb conformation[22]. 

This effect is achieved by complex interactions amongst carbonic anhydrase (CA) and the 

B3 membrane protein (also known as anion exchange protein 1, AE1). Specifically, CA 

generates H+ and HCO3
− from CO2 encountered in the microcirculation; HCO3

− then 

exchanges for Cl− across the RBC membrane through AE1. As a consequence, extra 

erythrocytic CO2 is converted into intra-erythrocytic HCl by the CA-AE1 complex, thus 

acidifying RBC cytoplasm and raising p50 (lowering affinity, also termed ‘right’ shifting the 

ODC). Additionally, through the Haldane effect, CO2 more directly lowers O2 affinity (by 

binding to the N-terminus of the globin chains to form a carbamino, further stabilizing T-

state Hb); carbamino formation also releases another hydrogen ion (further reinforcing the 

‘right shift’ in ODC)[17] (Figure 2)[23]. This set of reactions is reversed in the alkaline (and 

low CO2) milieu in the pulmonary circulation, leading to increased Hb~O2 binding affinity 

(lower P50). In sum, this physiology vastly improves O2 transport efficiency by enhancing 

gas capture in the lung and release to tissue – and does so in proportion to perfusion 

sufficiency (in the setting of perfusion lack, acidosis and hypercpanea improve O2 release). 

Of note, this tightly regulated modulation of O2 affinity may become impaired in the setting 

of critical illness[24-27] and may, in part explain the dysoxia commonly observed in this 

setting.

Less acute modulation of P50 is achieved by DPG, a glycolytic intermediate that binds in an 

electrically charged pocket between the β chains of hemoglobin, which stabilizes the T 

conformation, decreasing O2 affinity and elevating P50. DPG binding also releases protons, 

lowering intracellular pH and further reinforcing the Bohr effect. DPG in RBCs increases 

whenever O2 availability is diminished (as in hypoxia or anemia) or when glycolytic flux is 

stimulated[28]. Lastly, temperature significantly influences Hb~O2 affinity. As body 

temperature increases, affinity lessens (P50 increases, ODC shifts right); the reverse happens 

in hypothermia. This feature is of physiological importance during heavy exercise, fever or 
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induced hypothermia. It should be noted that clinical co-oximetry results and blood gas 

values are reported at 37°C and not at true in vivo temperature and can lead to either under 

or over estimation of true HbSO2% values and blood O2 tension[29].

RBC Biophysical factors Influencing tissue perfusion

Hemorheology describes flow and deformation properties of blood and its formed elements 

(RBCs, WBCs and platelets). Plasma is a newtonian fluid (viscosity is independent of shear 

rate); its viscosity is closely related to protein content[30] and in critical illness, 

physiologically significant changes in viscosity may vary with concentration of acute phase 

reactants[31-33]. Whole blood, however, is considered a non-newtonian suspension (fluidity 

cannot be described by a single viscosity value)[34]; whole blood fluidity is determined by 

combined rheological properties of plasma and the cellular components. There is increasing 

evidence that pathophysiologic variation in hemorheology is a major determinant of tissue 

perfusion and as such, of O2 delivery by RBCs[35].

The cellular components of blood, particularly RBCs, influence blood viscosity as a function 

of both number and deformability. RBC concentration in plasma (hematocrit) has an 

exponential relationship with viscosity and meaningfully diminishing tissue perfusion when 

Hct exceeds ~ 60-65[36]. RBC deformability, or behavior under shear stress, also strongly 

influences blood fluidity. Normal RBCs behave like fluid drops under most conditions, are 

highly deformable under shear and orient with flow streamlines[37]. However, during 

inflammatory stress, RBC tend to aggregate into linear arrays like a stack of coins 

(rouleaux); fibrinogen and other acute phase reactants in plasma stabilize such aggregates, 

significantly increasing blood viscosity – such a change in viscosity is most impactful upon 

O2 delivery during low flow (e.g. low shear) states (such as in critical illness) in the 

microcirculation[38]. RBC biomechanics and aggregation impact blood viscosity, strongly 

influencing the volume and distribution of O2 delivery (again more so, in the low-shear 

microcirculation, or when vessel tone is abnormal)[34]. This hemorheologic physiology is 

perturbed by oxidative stress (common in critical illness)[39, 40] and in sepsis[41-46]. This 

has been attributed to increased intracellular 2,3-DPG concentration[47], intracellular free 

Ca2+ [48] and decreased intra-erythrocytic ATP with subsequent decreased sialic acid 

content in RBC membranes[49]. Both increased direct contact between RBCs and WBCs 

and reactive oxygen species released during sepsis have also been shown to alter RBC 

membrane properties [50, 51].

Blood viscosity and subsequent tissue blood flow is altered in several patho-physiological 

states. A well-known example is catecholamine discharge, which under acute stressful 

conditions reduces circulating blood volume and elevates blood pressure. The resultant fluid 

shift leads to a higher hematocrit and increased plasma protein and overall increase in blood 

viscosity. Catecholamine discharge also increases the absolute circulating RBC mass 

secondary to reintroduction of the “reserve” RBC volume from the splanchnic 

circulation[52].

Under normal conditions, RBC adherence to endothelial cells (EC) is insignificant and RBC 

deformability permits efficient passage through the microcirculation. Again, under normal 
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conditions, enhanced EC adherence plays a role removal of senescent RBCs in the spleen. 

However, during critical illness RBC~endothelial interactions are altered by RBC injuries 

associated with sepsis[43, 44, 53, 54] and/or oxidative stress[40] (more so, with ‘activated’ 

endothelium, as occurs in critical illness)[54-56] and such RBC~endothelial aggregates 

create a physiologically significant increase in apparent blood viscosity[34]. Moreover, RBC 

adhesion directly damages endothelium[57-60] and augments leukocyte adhesion[61-64] 

further impairing apparent viscosity and microcirculatory flow. This phenomenon is 

commonly appreciated in the pathophysiology of vaso-occlusive crises in sickle cell disease 

patients [65], malaria[66], diabetic vasculopathy[67], polycythemia vera[68] and central 

retinal vein thrombosis[69], but may be more widespread than originally appreciated.

Influence of RBC signaling upon tissue perfusion

Normal physiologic regulation of microcirculatory blood flow instantaneously matches O2 

delivery to metabolic demand and is exquisitely responsive to change in O2 consumption 

across tissue region and within regions, across time[70]. This programmed physiological 

response to relative tissue hypoperfusion[71] (e.g. hypoxic vasodilation; HVD) is effected in 

a fashion which suggests the presence of an O2 sensor, detecting point-to-point variations in 

arteriolar O2 content, and subsequently initiating a signaling mechanism capable of 

immediate modulation of vascular tone. Stein and Ellsworth[72] originally identified Hb as a 

potential circulating O2 sensor, a fact later established in vivo following the discovery that 

HbSO2, rather than plasma or tissue pO2, directly correlated with blood flow[73]. RBCs 

were thus identified as vascular control elements that actively coordinate modulation of 

blood flow to resolve perfusion insufficiency (rather than simple transporters without a role 

in regulatory signaling): to date, three HbSO2-dependent RBC-derived signaling 

mechanisms have been proposed: (1) formation and export of S-nitrosthiols, ‘catalyzed’ by 

hemoglobin (SNO-Hb hypothesis)[74, 75], (2) reduction of nitrite to NO by deoxygenated 

Hb (nitrite hypothesis)[76] and (3) hypoxia-responsive release of ATP (ATP hypothesis)

[77]. Each (probably non-exclusive) mechanism has been described to play a role in blood 

flow misdistribution during various pathologic states and this newly appreciated feature of 

RBC physiology is centrally relevant to understanding tissue dysoxia in the critically ill.

Mechanistic appreciation of the above physiology has been achieved only after a 

fundamental shift in our understanding of nitric oxide (NO) biology and chemistry and this 

issue requires some attention here. Since the original identification of NO of as 

endothelium-derived relaxing factor (EDRF)[78, 79], our understanding of NO-based 

vascular signaling has advanced immeasurably[80, 81]. The apparent brief lifetime and fate 

of EDRF was originally explained by facile diffusion of NO “gas” in solution and its rapid 

terminal reactions (1) in vascular smooth muscle cells with the ferrous heme iron (Fe2+) of 

soluble guanylate cyclase (sGC), and (2) in the vessel lumen with oxygenated Hb (forming 

MetHb and nitrate), deoxygenated Hb (forming nitrosyl hemoglobin) and superoxide 

(forming peroxynitrite)[82]. We have since come to appreciate much broader biological 

chemistry of endothelial NO[83], a large portion of which we now understand to occur 

through the covalent binding of NO+ to cysteine thiols, forming S-nitrosothiols (SNO). SNO 

signaling follows oxidation of NOS-generated NO radicals to a NO+ (nitrosonium) 

equivalent, which can then cascade across thiols in peptides and proteins to regulate protein 
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function in a tightly regulated fashion by enzymatic trans-S-nitrosylation reactions (akin to 

phosphorylation[84-86]); thereby preserving NO bioactivity[80, 81] (in fact, Hb was the first 

described protein to catalyze S-transnitrosylation reactions and it is this function that is 

essential to regulation of blood flow by RBCs)[87-91]. This far broader signaling repertoire 

enabled awareness that heme in sGC is not the sole (or even the principal) target of NO 

generated by endothelium, with a wide array of alternative sGC (cyclic guanosine 

monophosphate)-independent reactions following endothelial NOS (eNOS) activation[83, 

84].

To recognize the central importance of vasoregulation by RBCs, it is essential to appreciate 

that it is now broadly accepted that (contrary to the original paradigm) endothelium-derived 

NO plays no direct role in the HVD response that underlies blood flow regulation[73, 92]. In 

fact, because of substrate (O2) limitation, NO production by eNOS is most likely attenuated 

by hypoxia[93, 94]. Moreover, NOS inhibitors do not block the acute change in blood flow 

coupled to Hb desaturation[95]. However, NO groups captured, transported, processed and 

subsequently deployed by RBCs do originally arise from eNOS[74] and perhaps other NOS 

isoforms[96] and/or nitrite[97]. As such eNOS derived NO groups are transported by RBCs 

to effect HVD at a time and place remote from the original site of NO synthesis, initiating 

immediate modulation of vascular tone in concert with cues perfusion insufficiency, 

including hypoxia, hypercarbia, and acidosis[74, 75].

Processing and export of S-nitrosothiols by RBCs

The discovery that Hb could sustain S-nitrosylation (HbSNO)[74], later characterized by 

both mass spectrometry[98] and X-ray crystallography[99], provided an explanation as to 

how NO could circumvent terminal reactions with Hb. Rather than acting solely as 

scavengers of NO (as originally described), this chemistry enables RBCs to conserve NO 

bioactivity, allowing its transport throughout the circulation (Figure 3)[74, 75, 91]. The 

formation and export of NO groups by Hb is governed by the transition in Hb conformation 

that occurs in the course of O2 loading/unloading during arteriovenous (A-V) transit[74, 75, 

100, 101]. In a tightly regulated fashion, Hb captures and binds NO at its ß-hemes and 

subsequently converts ß-heme NO into Cys-ß93-SNO[102]. The passing of NO between 

heme and thiol requires heme-redox coupled activation of the NO group, which is controlled 

by its allosteric transition across the lung[103]. NO group export from Hb occurs when steep 

O2 gradients are encountered in the periphery (HVD). This promotes NO transfer to receptor 

thiols, including those associated with the erythrocytic membrane protein AE-1 (band 3)

[104] and extra erythrocytic thiols[90, 105] to form plasma or other cellular SNOs, which 

are vasoactive at low nM concentrations[74, 75]. Importantly all NO transfers in this process 

involve NO+[74, 106], which protects bioactivity from Fe2+ heme recapture and/or 

inactivation (S-nitrosothiols are the only known endogenous NO compounds that retain 

bioactivity in the presence of Hb[74, 105, 107]). Extensive evidence supports SNO-Hb 

biology, whereby RBCs exert graded vasodilator and vasoconstrictor responses across the 

physiological microcirculatory O2 gradient. RBCs dilate pre-constricted aortic rings at low 

pO2 (1% O2), while constricting at high pO2 (95% O2)[75, 100, 107, 108]. The vasodilatory 

response at low O2 is enhanced following the addition of NO (or SNO) to RBCs, 

commensurate with SNO-Hb formation[74, 104, 107, 109]. Additionally, the vasodilatory 
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response is enhanced in the presence of extra cellular free thiol[107], occurs in the absence 

of endothelium[106, 107] (which is consistent with in vivo observation that HVD is 

endothelium independent [110]) and transpires in the time frame of normal circulatory 

transit (is effected over seconds), as confirmed by measurements of A-V gradients in SNO-

Hb[74, 90, 100, 108]. Finally, numerous groups have demonstrated that bioactivity of 

inhaled NO is commensurate with SNO-Hb formation[111-116].

Metabolism of nitrite by RBCs

Nitrite, long viewed as an inactive end product of NO metabolism[117], has recently been 

identified as another potential store of bioactive NO in the circulation[118]. Rationale for 

this proposal relies on the reduction of nitrite to (and subsequent export of) NO radical by 

RBCs. Several RBC nitrite “reductases” have been identified, including Hb[118-120], 

xanthine oxidoreductase[121], and carbonic anhydrase[122]. Some have suggested that the 

reduction of nitrite to NO radical by deoxyHb may serve as the RBC derived signaling 

mechanism regulating HVD[120, 123-125]. However, this hypothesis has two major 

shortcomings in terms of known NO chemistry/biochemistry and HVD physiology. Firstly, 

to influence vascular tone, the NO radical produced from nitrite must escape RBCs at low 

O2 tension in order to elicit a vasodilatory response. Established experimental evidence, 

however, unambiguously refutes the possibility of NO escaping RBCs as an authentic 

radical, especially given the proximity, high concentration, and rapid reaction kinetics 

(107M−1s−1) of authentic NO with deoxyHb. The only plausible reconciliation of this 

chemistry enabling bioactivity from deoxyHb-catalyzed nitrite reduction, would be that 

bioactivity instead - derives from heme captured NO (HbFe2+NO) being further converted 

into SNO-Hb[97, 102]. The second shortcoming relates to the fact that the nitrite reductase 

activity of deoxyHb is in fact symmetrical across the physiological O2 gradient[125, 126], 

with maximal activity occurring at Hb p50 (the pO2 at which Hb is 50% O2 saturated, which 

for intra-erythrocytic Hb in vivo is ~ 27 mmHg)[124, 125]. This pO2 does not align with 

peak HVD response, which also of course, increases in a steadily graded fashion as pO2 falls 

in the physiological range from 100mmHg down to approximately 5mmHg (HbSO2 ~ 1-2%) 

[71, 73]. Instead, ff RBC based vasoactivity were maximal at Hb p50, then blood flow 

would be diverted away from regions with pO2 below 27 mmHg (where it would be needed 

most). Additionally, based upon the symmetry of Hb nitrite reductase activity at the p50, 

RBCs traversing vascular beds with pO2 at p25 or p75 (or p10 and p90, etc.) would generate 

equal NO-based activity [123], where, in fact, gradually progressive (rather than equal) 

HVD responses are observed.

Adenosine Triphosphate (ATP)

ATP (but not its degradation products ADP, AMP, or adenosine [127]) has long been known 

to act as an endothelium dependent vasodilator in humans[77], binding to P2Y purinergic 

receptors to induce local vascular tone[128, 129] and to influence conducted 

vasodilation[130, 131] via stimulation of vasoactive signals including endothelial NO, 

prostaglandins, and endothelial-derived hyperpolarization factors (EDHFs).
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More recently, RBCs have been identified as potential sources of vascular ATP[77, 132, 

133], with release being stimulated by conditions associated with diminished oxygen supply 

relative to demand; i.e., hypoxia, hypercapnia, and low pH[77, 132, 134]. Despite its 

seeming potential as a mediator of HVD, RBC derived ATP falls short on a couple of fronts. 

Firstly, HVD is unaltered by both endothelial denudation and eNOS deletion[106]; however, 

ATP vasoactivity is endothelial dependent. Secondly, blood levels of ATP rise and fall over 

minutes, which is not commensurate with the physiologic time scale for the RBC-based 

HVD response that occurs in the course of A-V transit over seconds. Despite its 

shortcomings in terms of acting as the primary mediator of HVD, it is more likely that Hb 

and ATP serve complementary vasoactive roles, in acute local and prolonged systemic 

hypoxia respectively[106, 135-137].

Conclusion: Blood flow disruption during critical illness by maladaptive 

RBC-based signaling

Evidence is mounting in support of a causal relationship between acquired RBC dysfunction 

and a host of perfusion-related morbidities that complicate critical illness[41, 108, 138-152]. 

Recently, it has been observed that levels of SNO-Hb are altered in several disease states 

characterized by disordered tissue oxygenation[108, 109, 153-160]. In addition, where 

examined, RBCs from such patients exhibit impaired vasodilatory capacity[90, 108, 109, 

157, 159-161]. These data suggest that altered RBC-derived NO bioactivity may contribute 

to human pathophysiology. Specifically, alterations in thiol-based RBC NO metabolism 

have been reported in congestive heart failure[108], diabetes[109, 156], pulmonary 

hypertension[100, 155] and sickle cell disease[157, 162], all of which are conditions 

characterized by inflammation, oxidative stress and dysfunctional vascular control. 

Moreover, known cross-talk between SNO signaling and cellular communication via carbon 

monoxide[163-165], serotonin[86, 166, 167], prostanoids[168, 169], 

catecholamines[170-172] and endothelin[173-175] may permit broad dispersal of signals 

generated by dysfunctional RBCs. Precise understanding of the roles of dysregulated RBC-

based NO transport in the spread of vasomotor dysfunction from stressed vascular beds may 

open novel therapeutic approaches to a range of pathologies.
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Key Points

• RBC dysfunction may contribute to the dysoxia commonly observed in the 

critically ill, by impairing delivery of RBCs to tissue (altered rheology and 

adhesion) or by impairing O2 delivery from perfusing RBCs (altered p50, Bohr 

and Haldane shifts).

• RBCs are newly appreciated to capture, process, transport and release NO in a 

tightly regulated fashion that links regional blood flow to metabolic demand in 

support of O2 delivery homeostasis.

• Likewise, malfunction of RBC-based control of vasoactive effectors may 

contribute to disordered perfusion commonly observed in the critically ill.
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Figure 1. 
The normal whole blood oxygen equilibrium curve (OEC)[19]. P50 is the pO2 at which 

hemoglobin is half-saturated with O2. The principle effectors that alter the position and 

shape of the curve under physiological conditions are indicated.
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Figure 2. 
The quantitative behavior of the Carbaminohemoglobin (HbCO2) dissociation curves at 

various oxygen tension levels[23].
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Figure 3. 
RBCs transduce regional O2 gradients in tissue to control NO bioactivity in plasma by 

trapping or delivering NO groups as a function of HbO2 saturation[91]. In this fashion, 

circulating NO groups are processed by Hb into the highly vasoactive (thiol-based) NO 

congener, S-nitrosothiol (SNO). By exporting SNOs as a function of Hb deoxygenation, 

RBCs precisely dispense vasodilator activity in direct proportion to regional blood flow 

lack. Because oxy- and deoxy-Hb process NO differently, allosteric transitions in Hb 

conformation afford context-responsive (O2-coupled) control of NO bioavailability, linking 

the sensor and effector arms of this system. Specifically, Hb conformation governs the 

equilibria among deoxyHbFeNO (A; NO sink), oxySNOHb (B; NO store), and acceptor 

thiols including the membrane protein SNO-AE1 (C; bioactive NO source). Direct SNO 

export from RBCs or S-transnitrosylation from RBCs to plasma thiols (D) yields vasoactive 

SNOs, which influence resistance vessel caliber and close this signaling loop. Thus, RBCs 

either trap (A) or export (D) NO groups in response to physiologic cues, linking vessel tone 

to tissue pO2 in a fashion that calibrates blood flow to tissue respiration.
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