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Abstract

Surveys often ask respondents to report non-negative counts, but respondents may misremember 

or round to a nearby multiple of 5 or 10. This phenomenon is called heaping, and the error 

inherent in heaped self-reported numbers can bias estimation. Heaped data may be collected cross-

sectionally or longitudinally and there may be covariates that complicate the inferential task. 

Heaping is a well-known issue in many survey settings, and inference for heaped data is an 

important statistical problem. We propose a novel reporting distribution whose underlying 

parameters are readily interpretable as rates of misremembering and rounding. The process 

accommodates a variety of heaping grids and allows for quasi-heaping to values nearly but not 

equal to heaping multiples. We present a Bayesian hierarchical model for longitudinal samples 

with covariates to infer both the unobserved true distribution of counts and the parameters that 

control the heaping process. Finally, we apply our methods to longitudinal self-reported counts of 

sex partners in a study of high-risk behavior in HIV-positive youth.
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1. Introduction

When survey respondents report numeric quantities, they often recall those numbers with 

error. Respondents sometimes round up or down, for example to the nearest integer, decimal 

place or multiple of 5 or 10. This kind of misreporting is called heaping, and when the 

probability of heaping depends on the true value of the unheaped variable, the mechanism is 

non-ignorable (Heitjan and Rubin, 1991). Heaping is a well-known problem in many survey 
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settings, and robust inference for heaped data remains an important problem in statistical 

inference (Heitjan, 1989; Wang and Heitjan, 2008; Wright and Bray, 2003; Crockett and 

Crockett, 2006; Schneeweiss, Komlos and Ahmad, 2010). Reporting errors are frequently 

observed for a variety of measurements, including self-reported age (Myers, 1954; 

Stockwell and Wicks, 1974; Myers, 1976), height and weight (Rowland, 1990; Schneeweiss 

and Komlos, 2009), elapsed time (Huttenlocher, Hedges and Bradburn, 1990) and household 

purchases (Browning, Crossley and Weber, 2003). Respondents may be inclined to 

misreport when the survey addresses topics that seem private, embarrassing or culturally 

taboo (Schaeffer, 1999). For example, there may be significant misreporting in studies of 

drug use (Klovdahl et al., 1994; Roberts and Brewer, 2001), cigarette use (Brown et al., 

1998; Wang and Heitjan, 2008) or number of sex acts or sexual partners (Westoff, 1974; 

Golubjatnikov, Pfister and Tillotson, 1983; Wiederman, 1997; Weinhardt et al., 1998; 

Fenton et al., 2001; Ghosh and Tu, 2009).

Several authors have proposed approximations to correct estimates using heaped data 

(Sheppard, 1897; Schneeweiss and Komlos, 2009; Schneeweiss, Komlos and Ahmad, 2010; 

Schneeweiss and Augustin, 2006; Tallis, 1967; Lindley, 1950). Others have explored 

smoothing techniques for heaped data on the grounds that smoothing may have the effect of 

“spreading out” grouped responses (Hobson, 1976; Singh, Suchindran and Singh, 1994). 

Heitjan (1989) and Heitjan and Rubin (1990, 1991) provide an important unifying 

perspective on heaped and grouped data by introducing the concept of coarsening, in which 

one observes only a subset of the complete data sample space. Based on this paradigm, 

Wang and Heitjan (2008) formulate a model for heaped cigarette counts and apply these 

ideas to study impact of a drug treatment on smoking. Jacobsen and Keiding (1995) discuss 

extensions of the coarse data concept to more general sample spaces than those considered 

by Heitjan and Rubin (1991). Wright and Bray (2003) model heaped nuchal translucency 

measurements as samples from a mixture model and propose a Gibbs sampling scheme to 

draw from the joint distribution of the true counts and unknown rounding parameters. Bar 

and Lillard (2012) model the age at which subjects quit smoking by supposing that heaping 

takes place on a grid of multiples of 5 or 10.

Most attempts to disentangle heaped count responses from latent true values can be 

understood as mixture models. To illustrate, suppose each subject draws their latent true 

count x from a distribution with mass function f(x|ϕ) on the non-negative integers that 

depends on parameters ϕ and then reports a possibly different value y from a reporting 

distribution with mass function g(y|x, θ) that depends on the true count x and parameters θ. 

Because the reporting distribution g depends on the latent true count x, the heaping 

mechanism is non-ignorable. The likelihood contribution of an observed count y is therefore

(1)

Figure 1 shows a graphical representation of this mixture model for heaped counts. The 

objects of inference are often the true counts x and the parameters ϕ underlying the true 

count distribution f(x|ϕ).
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Many approaches characterize the reporting mechanism as a choice between reporting 

truthfully and misreporting at suspected heaping grid points (for example, Wang and 

Heitjan, 2008; Wright and Bray, 2003; Wang et al., 2012; Bar and Lillard, 2012). The 

probability of reporting a particular heaped value depends on the value of the latent true 

value: Wang and Heitjan (2008) use a proportional odds model for different heaping grids; 

Bar and Lillard (2012) propose a multinomial distribution governing the choice of different 

heaping rules; McLain et al. (2014) propose a semi-parametric model for heaping (digit 

preference) of duration-time data in which subjects are equally likely to round up or down. 

Most models for count data only allow exact heaping to the multiple of 5, 10, or 20 that is 

nearest to the latent true count, and the heaping rule is the same for all subjects. However, 

limiting heaped responses to the nearest grid point can produce inferences of true counts that 

are unrealistically constrained. For example, if the reported count is y = 35 and the model 

only allows heaping to multiples of 5, then one must infer x ∈ {33, …, 37}. Furthermore, 

established models do not allow for misremembering as a function of the true count or 

quasi-heaping to counts close to, but not equal to, the specified grid values (for example, a 

subject whose true count is 93 may report 101 or 99 instead of the heaped value 100).

In this paper, we relax several of these restrictive assumptions and incorporate rigorous 

analysis of heaped data into a hierarchical regression model. In Section 2 we propose a 

novel reporting distribution by imagining the true count x as the starting point of a 

continuous-time Markov chain on the non-negative integers  known as a general birth-

death process (BDP). The ending state of this Markov chain after a specified epoch is the 

reported count y. Jumps from integer state k to k + 1 or k − 1 occur with instantaneous rates 

λk and μk respectively, with μ0 = 0 to keep the process on . We specify λk and μk so that the 

process is attracted to nearby heaping grid points. Our BDP heaping model characterizes an 

infinite family of reporting distributions g(y|x, θ) that is 1) indexed by the true count x; 2) 

controlled by a small number of parameters θ that are readily interpretable; and 3) can be 

computed quickly to provide a reporting likelihood. The model permits heaping to values 

beyond the nearest grid point, provides for multiple heaping grids and continuous transitions 

between them, allows misremembering and quasi-heaping, and accommodates subject-

specific heaping intensities. In Section 3, we outline a Bayesian hierarchical model for 

longitudinal counts and a Metropolis-within-Gibbs scheme for drawing inference from the 

joint posterior distribution of the unknown parameters. We are interested in learning about 

the parameters ϕ underlying the true counts, the true counts x themselves, and the 

parameters θ that govern the reporting/heaping process. Finally, in Section 5, we 

demonstrate our method on longitudinal self-reported counts of sexual partners from a study 

of HIV-positive youth.

2. Constructing the Reporting Distributions

Let x be the true count for a subject and let y be their reported count. Let g(y|x, θ) be the 

probability of reporting y, given that their true count is x under the parameter vector θ. To 

parameterize g(y|x, θ) to allow heaping, suppose y represents the state of an unbounded 

continuous-time Markov random walk, taking values on , starting at x and evolving for a 

finite arbitrary time. We accomplish this task by defining the birth and death rates λk and μk 

of a general BDP in a novel way so that the process is attracted to grid points on which we 
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expect heaping to occur. The transition probabilities of this process give rise to the family of 

reporting distributions g(y|x, θ). We extend the proportional odds framework of Wang and 

Heitjan (2008) to allow heaping to different grid values depending on the magnitude of the 

count. First we present background on general BDPs and show how to use the transition 

probabilities of a general BDP to model heaping.

2.1. General birth-death processes

A general BDP is a continuous-time Markov random walk on the non-negative integers 

(Feller, 1971). Let U(t) ∈  be the location of the walk at time t. Define the transition 

probability Pab(t) = Pr(U(t) = b | U(0) = a) to be the probability that the process is in state b 

at time t, given that it started at state a at time 0. A general BDP obeys the Kolmogorov 

forward equations

(2)

for all a, b ∈ , where Pab(0) = 1 if a = b, Pab(0) = 0 if a ≠ b, and μ0 = λ−1 = 0 to keep the 

BDP on . In this setting, t is arbitrary; for example, halving t and multiplying all birth and 

death rates by two does not change the distribution of U(t)|U(0). The forward equations (2) 

form an infinite sequence of ordinary differential equations describing the probability flow 

into and out of state b within a small time interval (t, t + dt). Karlin and McGregor (1957) 

provide a detailed derivation of properties of general BDPs. Unfortunately, it remains 

notoriously difficult to find analytic expressions for the transition probabilities in almost all 

general BDPs, and often one must resort to numerical techniques (Novozhilov, Karev and 

Koonin, 2006; Renshaw, 2011). Appendix A gives an overview of the Laplace transform 

technique we use to numerically compute the transition probabilities efficiently.

In our heaping parameterization, we model the true count U(0) = x as the starting state of a 

BDP and U(t) = y as the ending state. We therefore set t = 1 and define g(y|x, θ) = Pxy(1) so 

that Pxy is a function of the unknown parameter vector θ, where the {λk} and {μk} are all 

functions of θ. We emphasize that the time parameter t is meaningless in this context, 

because scaling t by a constant and dividing the birth and death rates by the same constant 

does not change the transition probabilities.

2.2. Specifying the jumping rates λk and μk

Grunwald et al. (2011) and Lee, Weiss and Suchard (2014) model under- and over-

dispersion in count data using a simple linear BDP with λx = μx = λx, but do not address 

heaping. In addition to modeling dispersion, BDPs can be used to parameterize general 

families of probability measures on  (Klar, Parthasarathy and Henze, 2010). In our heaping 

model, we imagine errors in self-reported counts to come from two sources: dispersion due 

to misremembering and heaping. Misremembering adds variance by spreading reported 

counts around the true count. Heaping results in preference for reporting certain counts, for 

example on a grid of values such as multiples of 5 or 10. We specify both of these sources of 

misreporting error using a BDP with jumping rates {λk} and {μk} that are modeled as 

functions of the finite-dimensional parameter vector θ.
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To motivate development of our general BDP model for heaping, suppose for now that 

heaping occurs at multiples of 5. We wish to define a random walk on  that is dispersed 

around its starting point and attracted to multiples of 5, with this attraction increasing with 

proximity to each multiple of 5. For example, if the true count is x = 49, then the reported 

count y is more strongly attracted to 50 than 45, because 49 is closer to 50. Here, attraction 

to a given multiple means that the likelihood of the BDP moving toward that multiple is 

greater than that the likelihood of moving in the other direction. Informally, we wish to 

assign birth and death rates such that

(3)

One way to quantify the strength of attraction to the multiple of 5 immediately above k is (k 

mod 5). Likewise, the attraction to the multiple of 5 immediately below k is (−k mod 5), 

which is equal to 5 − (k mod 5). In both directions, the closer k is to the nearby multiple of 5, 

the greater its attraction to it.

Subjects whose true number of sex partners is greater than 100, for example, may be less 

able to accurately recall this number than subjects whose true count is less than 10. We 

therefore model dispersion around the true count in the reported counts due to 

misremembering as increasing the true count. Consider a general BDP with jumping rates

(4)

where the (1+k) in the birth rate arises because we wish to allow the BDP to escape from 

zero with positive rate. In this formulation of the birth and death rates, the dispersion 

parameter θdisp ≥ 0 is the propensity to over- or under-report and θheap ≥ 0 is the propensity 

of rounding up or down to multiples of 5. Figure 2 shows the birth rates λk, death rates μk, 

and reporting probabilities with true count x = 33 for this heaping model. The complexity of 

the reporting distributions generated by the heaping model is evident in Figure 2; the BDP 

tends toward multiples of 5 and the magnitude of θheap controls the severity of heaping. The 

BDP heaping model exhibits subtler behavior than a dispersion distribution with added mass 

at the heaping points.

Figure 3 shows reporting distributions for true count x = 7. When θheap = 0, the reporting 

distribution only adds variance to the true count. As θheap becomes larger, the peaks in the 

reporting distribution at the heaping points become more pronounced. When θheap is large 

and θdisp is small, the reporting distribution is sharply peaked at nearby multiples of 5 and 

the values between heaping points have little probability mass.

In general, suppose that heaping occurs at equally-spaced grid points mk where m ∈  is the 

grid spacing; for example, m could be one of 5, 10, 20, 25, or 100. Analogous to (4), the 

birth and death rates become
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(5)

Figure 4 shows birth and death rates for several heaping grid spacings m.

We can analytically characterize the properties of the reporting distribution when θheap is 

zero. Given the true count x, the mean and variance of the reported count y are

(6)

Appendix B provides a derivation of these expressions. It is evident that both the mean and 

variance of y|x increase linearly with the true count x, consistent with our belief that the 

severity of misremembering scales in proportion to the magnitude of the true count.

2.3. Heaping regimes

As true counts become larger, coarseness often increases; small counts appear to be heaped 

at multiples of 5, then 10, and finally 50 or 100 for larger counts. Models such as (4) that 

enforce heaping to the same grid regardless of the magnitude of the count may provide 

insufficient rounding behavior when the coarseness increases with x. Consider J distinct 

heaping grids and suppose mj is the grid spacing for regime j, where j = 1, …, J. Let vj(x) be 

the intensity of regime j as a function of the true count x. Regime 0, with intensity v0(x), is 

the probability of accurately reporting the true count. Regime j, with intensity vj(x), 

corresponds to heaping at multiples of mj. We follow Wang and Heitjan (2008) to develop a 

proportional odds model for smooth transitions between heaping grids.

Define birth and death rates

(7)

where the heaping regime probabilities are

(8)

and we restrict the regime transition parameters γ0 > 0 and γ1 > γ2 > ⋯ > γJ. We have, by 

construction,
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(9)

for every x ∈ . In this proportional odds model, γ0 determines the transition rate between 

regimes and γj/γ0 controls the midpoint of the transition between regimes j − 1 and j. Figure 

5 shows the heaping regime model defined above. Each row shows a different heaping 

regime model and reporting distribution g(y|x, θ, γ) where γ = (γ0, …, γJ) for x = 14, 23, 53 

and θ = (0.5, 1.5).

2.4. Justification for the BDP heaping model

We formulate the heaping model as a continuous-time Markov process for three reasons: 

mathematical convenience, diversity of reporting distributions, and parsimony in 

parameterization. First, the theory of general BDPs is well-developed and efficient methods 

now exist for computing transition probabilities for any specification of the birth and death 

rates (Crawford and Suchard, 2012). The heaping probability mass function g(y|x) is 

automatically normalized to integrate to one (since it is the likelihood of a Markov process), 

so the mixture model (1) is always well-defined. Second, the model described in (7) and (8) 

exhibits a great diversity in reporting distributions, from no heaping, to always-heaping, 

under a wide variety of magnitude-based regimes (see Figures 2–5 for examples). Third, the 

general BDP achieves this complex behavior using only two parameters for the heaping 

process and four in the regimes specification. Additionally, the specification of heaping 

regimes via (7) and (8) results in an appealing property: the reporting distribution can by 

highly asymmetrical when the true count is subject to two heaping regimes. For example, 

the third row of Figure 5 shows how the true count x = 14 can be pulled toward 10 and 20 

with very different probabilities.

3. A hierarchical model for longitudinal counts

We describe a generalized linear mixed model (GLMM) for longitudinal counts. Label 

subjects i = 1, …, N, with each subject’s true count Xit and self-reported count Yit at real 

calendar time points tij for j = 1, …, ni. We record d-dimensional covariates Wit and c-

dimensional Zit for each subject at each time point. Consider the following hierarchical 

model

(10)

(11)

and

(12)
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where the vector of regression coefficients α is d × 1, the subject-specific random effect βi is 

c × 1 with the covariance matrix Σβ is c×c, and ηit is the subject-timepoint-specific mean of 

the outcome distribution in the GLMM.

A model without heaping arises when we set Yit = Xit for all i and t. To incorporate heaping, 

let

(13)

We allow the BDP heaping model to have a separate heaping intensity parameter θheap,i for 

each subject. If Xit = x, the birth and death rates for subject i are

(14)

where m1 = 5, m2 = 10, m3 = 50, and v1(x), v2(x), and v3(x) are defined above in (8). The 

subject-specific heaping intensity is

(15)

where Hi is a heaping covariate vector for subject i, ω is an unknown parameter vector of 

corresponding dimension, and ξi is a subject-specific random effect, with distribution

(16)

To complete our Bayesian hierarchical model for longitudinal studies, we specify 

conditionally conjugate prior distributions for α and Σβ,

(17)

where Vα, a, b, Vγ, Aβ and mβ are fixed hyperparameters of corresponding dimension that 

we specify in Section 5.

Finally, we fit an alternative model of Wang and Heitjan (2008) in which responses not 

equal to a heaping point are assumed to be reported accurately. The model for the latent 

counts Xit is identical to (10)-(12), but the heaping distribution is different. If x is the true 

count, then y is reported as
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(18)

Once the heaping regime in (18) has been determined, the reported count y arises 

deterministically.

3.1. Posterior inference

We estimate the joint posterior distribution with Markov chain Monte Carlo (MCMC). We 

describe standard Gibbs and Metropolis-Hastings samplers for the full conditional 

distributions of α, β = (β1, …, βN), θ, γ, and Σβ in the supplemental article (Crawford, Weiss 

and Suchard, 2015). Sampling from the conditional posterior distribution of the true counts 

is more challenging because of the lack of conjugacy between Pr(Xit|Zit, Wit, α, βi) and g(Yit|

Xit, θ). Fortunately, the discrete nature of count data makes some simplifications possible. 

The conditional distribution of the unobserved true count Xit is

(19)

It is computationally costly to evaluate g(y|x, θ) hundreds of times to construct the 

distribution of Xit. In the Appendix we present a method for approximating this density by a 

discretized normal distribution derived from the dynamics of the BDP with θheap = 0, 

allowing efficient sampling. We then employ a Metropolis-Hastings accept/reject step to 

sample from the correct posterior.

4. Simulation study

To validate the proposed heaping model and the associated Bayesian inference framework, 

we simulate data under a simplification of the hierarchical model described in Section 3,

(20)

for subjects i = 1, …, n and repeated measures t = 1, …, 5, with α and βi scalars. The 

heaping parameter θheap,i = θheap is constant for every subject. Setting α = 2, , γ = 

(0.5, −5, −10, −20), and θdisp = 0.5 and θheap = 2 yields observed counts qualitatively similar 

to those we observe in the Application section below. From this model, we simulate datasets 

with N = 100, 250, and 500 total observations from n = N/5 subjects. Using 100 replicates, 

table 1 reports true parameter values, average posterior means, average posterior variances, 

and mean squared error (MSE) for each dataset. Standard deviations are given in 

parentheses. As expected, simulations with larger N give, in general, more accurate 

parameter estimates, with posterior variance and MSE decreasing with N. Posterior mean 
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estimates of the heaping regimes parameters γ2 and γ3 parameters are close to their true 

values, but their MSE does not appear to decrease monotonically with N. The regime 

parameters may be only weakly identified in datasets with few large reported counts. Since 

these parameters control the midpoints of transitions between heaping regimes, they may be 

highly variable unless many counts fall near these transitions. In addition to larger N, it may 

be necessary to observe a greater proportion of heaped counts near regime transitions in 

order to achieve a substantial reduction in posterior variance for γ2 and γ3.

5. Application to self-reported counts of sex partners

To illustrate the effectiveness of our mixture model and general BDP characterization of the 

reporting distributions g(y|x, θ), we analyze a survey of HIV-positive youth regarding their 

sexual behavior from the Choosing Life: Empowerment, Action Results (CLEAR) 

longitudinal three-arm randomized intervention study designed to reduce HIV transmission 

and improve quality of life (Rotheram-Borus et al., 2001). Respondents (175, interviewed 

between 2 and 5 times for 816 total observations) report the number of unique sex partners 

they had during the previous three months. Figure 6 summarizes the reported counts. There 

are several striking features of the reported counts: 1) a fair proportion (27%) of the counts 

are zero; 2) the histogram shows peaks at integer multiples of 10; and 3) a few counts are 

very large.

We let Wit in (11) be an 8 × 1 vector of covariates for subject i at time t by including subject 

baseline age, gender (1 for male, 0 for female), an indicator for men who have sex with men 

(MSM), an indicator for injection drug use, time since baseline interview, an indicator for 

post-baseline educational intervention and an indicator for use of methamphetamine or other 

stimulant drugs. Time since baseline interview, use of drugs, and post-baseline intervention, 

depend on the timepoint t. To facilitate comparison of estimated effects, subject age and 

time since baseline interview were standardized by subtracting the mean and dividing by the 

standard deviation. We let Zit = 1, making βi a scalar; this provides a subject-specific 

random intercept. We fit two subject-specific heaping models. In the first, we let Hi = 1 so 

that θheap,i is a subject-specific random intercept. In the second, Hi = (1, gender). Based on 

the histogram of aggregate counts in Figure 6, we use the BDP rate model in Equation (7) 

with J = 3 regimes corresponding to heaping at grid points at multiples of 5, 10, or 50.

We assign hyperparameters as follows: for the fixed effects α, α0 = 0 and Σα = 10I where I 
is the identity matrix; for the heaping parameters θ, a = 0.001 and b = 0.001, such that each 

has a prior expectation of 1 and variance 1000; for γ, . Since the subject-specific 

random effects βi are scalars, βi has inverse gamma distribution with parameters Aβ = 4 and 

mβ = 5.

5.1. Results

To evaluate the usefulness of our heaping distributions and to compare to previous 

approaches, we fit six hierarchical Bayesian models: 1) Poisson mixed effects (PME) with 

Xit = Yit and no heaping; 2) the model of Wang and Heitjan (2008) (WH08) as defined by 

(18); 3) BDP with dispersion and no heaping; 4) BDP model with dispersion and global 
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heaping parameter θheap; 5) BDP model with subject-specific heaping intensity; and 6) BDP 

model with subject-specific heaping intensity and a fixed effect controlling heaping 

propensity for male and female subjects. In each case, the model for the underlying true 

count is identical to (10)–(12). The priors on equivalent parameters are also the same for all 

models.

Table 2 shows posterior summaries for each model. The first eight rows are regression 

coefficients for the fixed effects α. Estimates of fixed effects in the WH08 model are similar 

to those found in the PME model without heaping. In general, fixed effects estimates all 

have larger variance in the heaping models because the BDP reporting distribution induces 

over-dispersion. Use of stimulants is positively associated with increased true count. While 

the intervention is not significantly associated with decreased reported counts in the model 

without heaping and in the Wang and Heitjan (2008) model, the intervention has a clear 

association with reduced true counts in the BDP heaping models. This result suggests that 

heaping in reported counts may obscure important associations between covariates and 

count outcomes. Figure 7 plots the posterior distribution of true counts Xit versus their 

corresponding reported values Yit. The points are slightly jittered to show the density of 

samples. The gray dashed line traces Xit = Yit. Larger reported counts often correspond to 

smaller estimated true counts, possibly because the same subjects also reported very low 

counts at other timepoints.

Estimates of θdisp are similar for all BDP models with heaping, suggesting that dispersion or 

misremembering carries information that is distinct from heaping or rounding in the data. 

The regime parameters γ0, …, γ3 are similar for all the BDP heaping models, but likely not 

comparable to the WH08 model, as the heaping mechanism is different. Estimates of the 

regime parameters can be interpreted by transforming them into their regime transition 

midpoints −(γ1, γ2, γ3)/ γ0. For example, the posterior mean estimates for the “Heaping” 

model indicate that the “no heaping” regime dominates when the true count is between 0 and 

−γ1/γ0 = 10.7 (posterior mean), and heaping to multiples of 50 dominates when the true 

count is greater than −γ3/γ0 = 16.2. Between these values, heaping to multiples of 5 or 10 

dominates. Estimates of γ1, γ2, γ3 exhibit fairly large posterior variance, and posterior 

intervals for γ1 and γ2 show substantial overlap. This indicates that there is not strong 

evidence of heaping to multiples of 5 and 10 in the data; rather, small counts exhibit little 

heaping, and large counts show strong heaping to multiples of 50.

We find that there is no significant difference in heaping by gender under our model: the 

gender-specific effect ω in the last model is not significantly different from zero. This 

finding is in contrast to those of other researchers who see a strong effect of gender on 

reporting of sexual behaviors (Wiederman, 1997). One of the goals of the CLEAR study was 

to show that educational intervention for HIV-positive youth could reduce risky behaviors. 

While heaping behavior may differ with respect to gender among subjects in the CLEAR 

study, the small number of reported counts per subject does not permit us to detect such a 

difference under the BDP heaping model. The intervention tended to reduce true counts, and 

Pr(αintv < 0) > 0.95 for every model.
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We report two goodness-of-fit measures. The first is deviance information criterion (DIC), 

computed by conditioning on posterior samples of the parameters that directly affect the 

outcome Yit. For the “no heaping” model, these parameters are α and β; for the WH08 

model, the Xit’s and γ; for the “dispersion-only’ model, the Xit’s and θdisp, for the ‘heaping’ 

model the Xit’s, θdisp, θheap, and γ; for the ‘subject-specific heaping’ model the Xit’s, θdisp, γ, 

and ; and for the ‘subject-specific heaping+gender’ model the Xit’s, θdisp, γ, , and ω. The 

second goodness-of-fit measure is the sum of squared mean prediction errors, 

, where Ŷit the mean posterior predictive value of Yit, 

calculated by conditioning on the same parameters as used to calculate the DIC. The Wang 

and Heitjan (2008) model is unique because Yit|Xit depends only on the four rounding 

regimes parameters γ, so the DIC is low, and the heaping models all show similar DIC. The 

SSPE tells a different story: the dispersion-only model shows the worst fit, and the BDP 

heaping models outperform the WH08 model. These goodness-of-fit measures should be 

interpreted carefully since the WH08 and BDP heaping models have somewhat different 

structure.

The proportional odds model for different heaping regimes (rounding to 5, 10, and 50) 

introduced by WH08 proves to be an essential ingredient in our analysis. The apparent 

heaping pattern observed in the CLEAR counts of sex partners suggests that heaping to 

multiples of 50 happens often as counts become larger than 30 or 40. We find that heaping 

models that required rounding to multiples of 5, even for large counts, provide a very poor 

fit (results not shown). However, in our analyses, the model of WH08 has a serious 

drawback; when only one heaping regime is in effect, it places a nearly uniform distribution 

on the true count. The inferred true count distribution is proportional to the product of this 

uniform distribution and the posterior predictive distribution of the true count. Figure 8 

illustrates the problem for specific subjects. Both the WH08 model and the subject-specific 

BDP heaping model have similar predictive distributions f(x|α, β) for the latent true count x, 

and in both cases only the v3 regime (rounding to the nearest multiple of 50) is in effect. But 

the rounding model of WH08 assumes that rounding is always to the nearest grid point, so 

for example, a reported value of y = 200 means that x ∈ {175, …, 225} with probability one. 

The heaping distribution g(y = 200|x, θ, γ) implicitly places a nearly uniform distribution on 

this set, so the inferred posterior distribution of the true count x is a truncated version of f(x|

α, β). In contrast, the BDP heaping model provides a reporting distribution g(y = 200|x, γ, θ) 

that has support on all of  and preferentially places more mass on those x that are most 

likely to deliver the reported count y. In settings where the true counts themselves might be 

the objects of inference, we believe the BDP heaping model provides more realistic and 

useful estimates.

6. Discussion

In this paper, we have illustrated how researchers can infer the posterior distribution of true 

integer counts from reported counts using a general BDP reporting distribution within a 

hierarchical modeling framework. Our most substantial innovation is the novel reporting 

distribution g(y|x, θ) based on the BDP with specially defined jumping rates that make the 

Markov chain attracted to heaping grid points. Use of simple linear BDPs to model over-

Crawford et al. Page 12

Ann Appl Stat. Author manuscript; available in PMC 2015 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dispersion or reporting error has been proposed before (Grunwald et al., 2011; Lee, Weiss 

and Suchard, 2014). However, we have substantially expanded the possibilities for general 

birth-death models of reporting error to explicitly incorporate both over-dispersion and 

heaping, while providing a computational method to evaluate likelihoods and sample from 

the posterior distribution of the true counts. This approach has the benefit of providing a 

sophisticated and highly configurable family of reporting distributions indexed by the true 

count and just a few unknown parameters θ and γ.

Statisticians may understandably be wary of parametric assumptions about the way study 

participants report data. However, applied and methodological research in public health 

offers some clues into reporting mechanisms. Researchers in this field often address the 

problem of reporting error in surveys related to sexuality and other taboo topics (Schaeffer, 

1999). Wang and Heitjan (2008) discuss validation of reported counts of cigarettes smoked 

by measuring tobacco products in the blood. In related work, Wang et al. (2012) compare 

instantaneous and retrospective self-reports of cigarette consumption under a similar model 

for heaping. Other survey methods are possible, including using diary-like surveys or 

repeated questionnaires to assess reporting error. Studies like these can provide useful 

information about the parameters θ and γ in our BDP heaping model. Armed with prior 

information about rounding propensities, perhaps stratified by personal attributes such as 

gender, age or sexual orientation, public health researchers could proceed with a Bayesian 

analysis similar to the one outlined in this paper to jointly estimate true counts and 

regression parameters. Designing a model that accommodates various assumptions about 

both the mechanism generating the true counts and the cognitive processes that give rise to 

the reported counts can be challenging. The BDP model for heaped counts presented in this 

paper is one promising step in this direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: NUMERICAL EVALUATION OF REPORTING PROBABILITIES

We efficiently find the transition probabilities Pab(t) by first applying the Laplace transform 

to both sides of the forward equations (Karlin and McGregor, 1957; Murphy and 

O’Donohoe, 1975). This turns the infinite system of differential equations (2) into a 

recurrence relation whose solution yields an expression for the Laplace transform of the 

transition probability Pab(t). To illustrate, let the Laplace transform hab(s) of the transition 

probability Pab(t) be
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(21)

Then differentiating hab(s) with respect to t and setting a = b = 0, (2) becomes

(22)

for b ≥ 1. Rearranging (22), we find the recurrence

(23)

From this recurrence, we arrive at the well-known continued fraction representation for 

h00(s),

(24)

(see Murphy and O’Donohoe, 1975; Crawford and Suchard, 2012, for further details). This 

is the Laplace transform of the transition probability P00(t). From (24), we can derive similar 

continued fraction representations for hab(s) for any U (0) = a and U (t) = b. These 

expressions are given in the supplemental article (Crawford, Weiss and Suchard, 2015). 

Crawford and Suchard (2012) present a numerical method for inverting transforms (24) to 

compute the transition probabilities in any general BDP with arbitrary jumping rates 

 and . The supplementary material of Crawford, Minin and Suchard (2014) 

shows how numerical error is controlled in the computation. Section B of this Appendix 

gives an approximation to the reporting distribution that is useful for sampling.

APPENDIX B: APPROXIMATION OF REPORTING PROBABILITIES

In this Appendix, we derive an approximation to the conditional distribution of the reported 

count given the true count, Yit|Xit. The full conditional distribution of the ith subject’s true 

count Xit at timepoint j is

(25)

where ηit = exp(Witα + Zitβi) and Pxy(θ) = g(y|x, θ) is the general BDP transition probability 

under the model described in Section 2.2. Under a Metroplis-Hastings scheme, we need to 
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propose a new value of Xit efficiently; we approximate the density Pxy(θ) as normal. Let 

θheap = 0 and θdisp > 0. Then this simplified BDP has birth and death rates

(26)

This is a linear process with immigration that has an asymptotically normal distribution. 

Similar to Section 2.1, let U(t) be a BDP starting at U(0) = a. Following Lange (2010), we 

form the probability generating function (PGF)

(27)

where s is a “dummy” variable and Pab(t) = Pr(U (t) = b | U (0) = a) is the transition 

probability. Although H(s, t) has a closed-form solution that can be inverted to obtain the 

Pab(t) in analytic form, the details are somewhat complicated, and we only require a normal 

approximation to this density. The mean ma(t) = (U (t) | U (0) = a) is given by

(28)

and likewise the second factorial moment ea(t) is given by

(29)

where the expectations are conditional on the process beginning in state U(0) = a. This 

suggests that we can determine the mean and variance of U(t) | {U(0) = a} by finding the 

partial derivatives of H with respect to the dummy variable s. To derive these quantities, we 

form a partial differential equation for the solution of the PGF

(30)

See Lange (2010), Bailey (1964) and Renshaw (2011) for the details of deriving this 

generating function. Now, the time-derivative of the mean falls out as

(31)

and the time-derivative of the second factorial moment is
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(32)

Solving these differential equations with the initial conditions ma(0) = a and ei(0) = a2 − a 

yields

(33)

From these, we determine that

(34)

where the second line arises because Var[U(t) | U(0) = i] = ea(t) + ma(t) − ma(t)2. Therefore 

a reasonable approximation to the probability mass function of U(t) | {U(0) = a} is the 

normal distribution with the mean and variance above. This approximation serves as an 

effective proposal within a Metropolis-Hastings accept/reject step.
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Fig. 1. 
Mixture model schematic for reported counts. Each subject chooses their true count x from 

the distribution f(x|ϕ), then reports the possibly different count y drawn from the distribution 

g(y|x, θ).
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Fig. 2. 
Birth rates λk (left), death rates μk (center), and reporting probabilities for true count x = 33 

(right) in the heaping model (4) for different values of the dispersion parameter θdisp and 

heaping intensity θheap. Larger values of θdisp result in more dispersion about the true count. 

Larger values of θheap result in more heaping to nearby multiples of 5.
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Fig. 3. 
Reporting probabilities for heaping at multiples of 5 with true count x = 7 using different 

values of the dispersion parameter θdisp and the heaping parameter θheap. Larger values of 

θdisp allow reports closer to zero; when θheap is positive, heaping occurs at zero, providing a 

mechanism for zero-inflated reports.
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Fig 4. 
Birth rates λk (left), death rates μk (center), and reporting probabilities (right) for different 

heaping grids with true count x = 33 and θdisp = 1. The first row shows the reporting 

distribution for θheap = 0. Subsequent rows show the birth and death rates and reporting 

probabilities with θheap = 2.5 with heaping at multiples of 5, 10, and 50. When heaping is to 

multiples of 50 (bottom row), reporting is concentrated at y = 50.
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Fig 5. 
Heaping regimes. Each row shows a different heaping regime model with reporting 

probabilities for θdisp = 0.5 and θheap = 1.5. A gray line denotes the true counts x = 14, 23, 

53. In the first row, the regime intensities are shown with regime parameters γ = (0.5, −10, 

−20, −40). For x = 14, the reporting distribution is dominated by regime 0, which specifies 

no heaping. For x = 23, the reporting distribution is dominated by regime 1, so rounding to 

nearby multiples of 5 is evident. At x = 53, regime 2 is dominant, and the reporting 

distribution is peaked at multiples of 10. In the second row, γ = (1.5, −10, −25, −40), and the 

reporting distribution for x = 53 is dominated by regime 3, so the model exhibits heaping to 

multiples of 50. In the third row, γ = (1, −5, −10, −20).
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Fig 6. 
Summary of self-reported counts of sex partners. At left, the histogram shows aggregate 

reported number of partners in the previous three months, for all subjects, at all time points. 

At right is the same histogram with the vertical axis limited to (0, 0.01) to show greater 

detail. There is an apparent preference for reporting counts in multiples of 5, 10, and 50.
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Fig 7. 
Posterior samples of true counts on the horizontal axis versus reported counts on the vertical 

axis for the CLEAR data under the BDP heaping model. The points have been slightly 

jittered to show the density of posterior samples. A gray dashed line is shown on the 

diagonal.

Crawford et al. Page 25

Ann Appl Stat. Author manuscript; available in PMC 2015 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 8. 
Marginal posterior distributions of true counts Xit for individual subjects under the BDP 

heaping model with subject-specific heaping parameters and the model of Wang and Heitjan 

(2008). The subject- and timepoint-specific covariate values are listed with each plot. A gray 

vertical line denotes the reported count Yit = y. Not all inferred true count distributions are 

centered at the reported count. Moreover, the inferred true counts become more dispersed as 

the reported count increases. The Wang and Heitjan (2008) model does not allow responses 

beyond the nearest heaping point and effectively puts a uniform prior distribution on 

responses that fall within this window. This results in inferred true counts whose posterior 

distribution is a truncated version of the predictive distribution of Xit.
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