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Axial diffusion in a two-dimensional channel of smoothly varying geometry can be approximately
described as one-dimensional diffusion in the entropy potential with position-dependent effective
diffusivity by means of the modified Fick-Jacobs equation. In this paper, Brownian dynamics
simulations are used to study the range of applicability of such a description, as well as the accuracy of
the expressions for the effective diffusivity proposed by different researchers. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4934223]

I. INTRODUCTION

The Fick-Jacobs (FJ) equation1 provides an approximate
one-dimensional description of axial diffusion in two-dimen-
sional channels and three-dimensional tubes of varying geom-
etry. Denoting the channel width by w(x) and the tube radius
by r(x), where the x-coordinate is measured along the chan-
nel/tube axis (centerline), one can write the FJ equation in two
and three dimensions, respectively, as
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Here, c(x, t) is the effective one-dimensional concentration of
diffusing particles at point x at time t, and D0 is the intrinsic
particle diffusivity in free space. The channel width in Eq. (1.1)
and the square of the tube radius in Eq. (1.2) can be interpreted
as Boltzmann factors with corresponding entropy potentials.

The first attempt to give a rigorous derivation of this
equation was made by Zwanzig2 more than two decades ago.
Assuming that the channel width and the tube radius are slowly
varying functions of x,

|w ′(x)| , |r ′(x)| << 1, (1.3)

where w ′(x) = dw(x)/dx and r ′(x) = dr(x)/dx, Zwanzig
derived a modified FJ equation which has the form of Eqs. (1.1)
and (1.2) with D0 replaced by a position-dependent effective
diffusivity D(x), which is smaller than D0. According to
Zwanzig (Zw), the effective diffusivity is given by

DZw(x) = D0

1 + w ′(x)2/12
(1.4)

and

DZw(x) = D0

1 + r ′(x)2/2 (1.5)

in two and three dimensions, respectively.
During the last two decades, the problem of the derivation

of the modified FJ equation has attracted attention of many

researchers.3–14 The reason is that quasi-one-dimensional sys-
tems of varying geometry play an important role in different
processes ranging from controlled drug delivery to entropic
transport of different substances in soils and biological tissues.
Along with the problem of deriving the modified FJ equation,
there are also questions of the range of applicability of this
approximate one-dimensional description and the accuracy of
the expressions for the effective position-dependent diffusivity
obtained by different researchers. These questions were stud-
ied numerically for three-dimensional tubes in Refs. 15 and 16
and recently discussed in Ref. 17. Here, we analyze the range
of applicability of the modified FJ equation and accuracy of the
available expressions in the case of two-dimensional channels.

We do this by applying the methodology proposed in
Ref. 15. Specifically, we take advantage of the fact that the
effective diffusivity is a function of the channel width varia-
tion rate w ′(x). Therefore, when this rate is a constant, w ′(x)
= const = 2λ, the effective diffusivity is also a constant, which
we denote by Dλ. In such a case, which is schematically shown
in Fig. 1, the modified FJ equation, if applicable, reduces to
Eq. (1.1) with D0 replaced by Dλ. This equation is used to
derive simple analytical formulas for the mean first-passage
times of the particle between the narrow (n) and wide (w) ends
of the channel, τn→w and τw→ n. The obtained formulas give
these times as the ratios of functions of the geometric param-
eters λ and L of the channel to the effective diffusivity, Dλ.

We use these formulas and the mean first-passage times
obtained from Brownian dynamics simulations to find the
effective diffusivity as a function of λ and L for the n → w and
w → n particle transitions between the two channel ends. This
diffusivity is used (1) to establish the range of applicability
of the modified FJ equation and (2) to assess the accuracy of
several expressions for Dλ obtained in deriving this equation
by different methods.

II. RESULTS AND DISCUSSION

The mean first-passage times between the two ends of
the channel of length L and the constant width variation rate
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w ′(x) = 2λ, schematically shown in Fig. 1, are given by (see the derivations in the Appendix)

τn→w(λ,L) = 1
4λ2Dλ

[λL (2 + λL) − 2 ln (1 + λL)] (2.1)

and

τw→ n(λ,L) = 1
4λ2Dλ


2(1 + λL)2 ln (1 + λL) − λL (2 + λL) . (2.2)

These mean first-passage times were obtained from Brownian dynamics simulations for wide ranges of λ and L, 0 ≤ λ ≤ 2, and
0.5 ≤ L ≤ 50, where length is measured in units of the half-width of the narrow end of the channel. The numerically obtained
τn→w(λ,L) and τw→ n(λ,L) were used to find effective diffusivities Dn→w

λ (L) and Dw→ n
λ (L) defined as

Dn→w
λ (L) = 1

4λ2τn→w(λ,L) [λL (2 + λL) − 2 ln (1 + λL)]
(2.3)

and

Dw→ n
λ (L) = 1

4λ2τw→ n(λ,L)

2(1 + λL)2 ln (1 + λL) − λL (2 + λL) . (2.4)

The values of the effective diffusivities as functions of λ and
L are given in Tables I and II.

The approximate one-dimensional description in terms of
the modified FJ equation is applicable when the effective diffu-
sivities Dn→w

λ (L) and Dw→ n
λ (L) are (i) equal to one another

and (ii) independent of the channel length, L. Table III gives
the diffusivity ratio, Dn→w

λ (L)/Dw→ n
λ (L), for 0 ≤ λ ≤ 2 and

0.5 ≤ L ≤ 50. The results presented in Tables I–III show that
for sufficiently large L the diffusivity is independent of the
length (see also Ref. 16 for a three dimensional case) and the
deviations of the diffusivity ratio from unity do not exceed 3%
when λ and L satisfy the inequalities λ ≤ 0.6 and 2 ≤ L ≤ 50.
The deviations from unity increase with λ. For λ = 0.8 and
λ = 1, the deviations are within the range of 6% and 8%,
respectively. Based on the results presented in Tables I–III, we
conclude that the modified FJ equation provides a reasonably
accurate one-dimensional description of axial diffusion in two-
dimensional channels when λ and L satisfy

λ ≤ 1, L ≥ 2. (2.5)

These inequalities establish the range of applicability of the
modified FJ equation.

Next we compare the effective diffusivities Dn→w
λ and

Dw→ n
λ , obtained from our simulations with the λ-dependences

of the effective diffusivity, which follow from the expressions
for D(x) obtained by different researchers. In addition to the

FIG. 1. Schematic representation of a two-dimensional channel of length L
and variable width w(x), w(x)= 2(1+λx), 0 ≤ x ≤ L, where 2λ is the width
variation rate. The half-width of the narrow end of the channel is used as a
unit of length.

Zwanzig formula in Eq. (1.4), we also consider formulas for
D(x) proposed by Reguera and Rubi (RR)3 and Kalinay and
Percus (KP)6, which are, respectively, given by

DRR(x) = D0�
1 + w ′(x)2/4�1/3 (2.6)

and

DKP(x) = arctan (w ′(x)/2)
w ′(x)/2 D0. (2.7)

An alternative derivation of the second formula is given by
Martens et al.10

Recently, Dagdug and co-authors proposed a new ap-
proach to the reduction of axial diffusion of point particles
in two-dimensional channels to the effective one-dimensional
description, which allows them to treat channels of arbi-
trary shapes.13 The key idea of the approach is to perform
the reduction in a curvilinear coordinate system chosen so
that the channel boundaries are straight lines. The developed
formalism provides an iteration procedure for finding the effec-
tive position-dependent diffusivity D(x). When the channel
axis is a straight line, the first iteration recovers the Kalinay-
Percus formula for the effective diffusivity.

In Fig. 2, we compare the values of the effective diffusivity
obtained using the simulation results with the λ-dependences
which follow from the different expressions for D(x),

DFJ
λ /D0 = 1 (Fick-Jacobs), (2.8)

DZw
λ /D0 =

1
1 + λ2/3

(Zwanzig), (2.9)

DRR
λ /D0 =

1

(1 + λ2)1/3 (Reguera-Rubi), (2.10)

DKP
λ /D0 =

1
λ

arctan(λ) (Kalinay-Percus). (2.11)

One can see that Zwanzig’s formula for the effective diffu-
sivity, Eq. (1.4), leads to the lower boundary for Dλ given by
Eq. (2.9). One can also see that the λ-dependences given by
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TABLE I. Effective diffusivity Dn→w
λ (L) as a function of λ and L, given by Eq. (2.3) with τn→w(λ, L) obtained

from Brownian dynamics simulations.

L

0.5 1 2 4 6 8 10 20 50

λ

0 0.974 0.988 0.976 0.993 1.001 1.007 1.004 1.005 1.003
0.2 0.968 0.976 0.972 0.978 0.992 0.999 0.987 0.991 0.994
0.4 0.955 0.959 0.947 0.953 0.961 0.968 0.959 0.961 0.963
0.6 0.937 0.933 0.921 0.916 0.925 0.928 0.922 0.924 0.921
0.8 0.918 0.899 0.890 0.885 0.887 0.893 0.888 0.891 0.884
1 0.900 0.877 0.856 0.850 0.851 0.857 0.853 0.856 0.847
1.2 0.884 0.854 0.829 0.817 0.819 0.827 0.820 0.827 0.814
1.4 0.865 0.831 0.803 0.793 0.793 0.796 0.790 0.801 0.785
1.6 0.849 0.811 0.779 0.770 0.770 0.770 0.765 0.777 0.761
1.8 0.836 0.790 0.763 0.748 0.747 0.751 0.744 0.754 0.743
2 0.823 0.778 0.744 0.730 0.732 0.732 0.724 0.733 0.728

TABLE II. Effective diffusivity Dw→n
λ (L) as a function of λ and L, given by Eq. (2.4) with τw→n(λ, L) obtained

from Brownian dynamics simulations.

L

0.5 1 2 4 6 8 10 20 50

λ

0 0.966 0.976 0.995 1.000 0.990 1.000 1.004 1.010 1.013
0.2 0.959 0.968 0.981 0.993 0.983 0.991 0.981 0.986 1.009
0.4 0.939 0.946 0.953 0.960 0.957 0.952 0.952 0.951 0.960
0.6 0.907 0.905 0.913 0.900 0.921 0.910 0.904 0.901 0.907
0.8 0.869 0.853 0.868 0.864 0.866 0.847 0.852 0.861 0.849
1 0.822 0.789 0.804 0.798 0.798 0.794 0.789 0.793 0.782
1.2 0.764 0.741 0.747 0.744 0.741 0.739 0.739 0.748 0.733
1.4 0.715 0.696 0.695 0.690 0.682 0.687 0.687 0.689 0.678
1.6 0.667 0.646 0.641 0.641 0.633 0.637 0.638 0.645 0.608
1.8 0.610 0.599 0.592 0.600 0.584 0.589 0.588 0.592 0.596
2 0.568 0.550 0.543 0.560 0.546 0.550 0.552 0.561 0.551

TABLE III. The ratio of the effective diffusivities Dn→w
λ (L)/Dw→n

λ (L), as a function of λ and L.

L

0.5 1 2 4 6 8 10 20 50

λ

0 1.008 1.012 0.981 0.993 1.011 1.007 1.000 0.995 0.989
0.2 1.009 1.009 0.990 0.984 1.009 1.008 1.006 1.005 0.985
0.4 1.017 1.014 0.994 0.993 1.004 1.017 1.007 1.010 1.003
0.6 1.033 1.030 1.009 1.017 1.005 1.019 1.020 1.026 1.016
0.8 1.057 1.054 1.025 1.025 1.024 1.054 1.043 1.035 1.042
1 1.095 1.111 1.064 1.065 1.067 1.080 1.081 1.080 1.083
1.2 1.157 1.152 1.109 1.099 1.106 1.119 1.110 1.105 1.111
1.4 1.210 1.194 1.155 1.149 1.162 1.158 1.151 1.163 1.158
1.6 1.274 1.256 1.215 1.200 1.216 1.210 1.199 1.204 1.253
1.8 1.370 1.319 1.287 1.247 1.278 1.274 1.266 1.273 1.246
2 1.449 1.413 1.370 1.302 1.341 1.331 1.312 1.308 1.320

Eqs. (2.10) and (2.11) are very close to one another. In addi-
tion, both are in good agreement with the values of Dw→ n

λ /D0
obtained from the simulations of the w → n transitions over
the entire range of λ, 0 ≤ λ ≤ 2. This is not the case with
the values of Dn→w

λ /D0 obtained from the simulations of the
n → w transitions, which are markedly larger than the values
of Dw→ n

λ /D0 when λ > 1.

Figure 2 shows that for λ > 1 the modified FJ equation
with D(x) given by RR or KP formulas, Eqs. (2.6) and (2.7),
works well when the particle goes in the w → n direction
and fails when it goes in the opposite, n → w direction. The
physical reason for this direction dependence can be explained
as follows. Moving in the w → n direction, the particle has to
climb the entropy barrier. It reaches the barrier top and gets
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FIG. 2. Comparison of different dependences Dλ drawn using Eqs. (2.8)-
(2.11) (curves) with the values of Dλ,n→w and Dλ,w→n obtained from
Brownian dynamics simulations (symbols). The symbols give the simulation
results for the channel of length L = 20.

trapped by the absorbing narrow end of the channel after many
unsuccessful attempts during which the particle suffers many
collisions with the channel walls. Due to these collisions, the
particle learns about the entropy potential. Reduction to the
effective one-dimensional description of the particle motion
in the entropy potential is accompanied by the λ-dependent
decrease of the effective diffusivity.2,12 The situation is quali-
tatively different when the particle goes in the n → w direction
in the channel with λ > 1. Here, the reduction to the effective
one-dimensional description is not justified because the par-
ticle does not experience enough collisions with the channel
walls.

To summarize, our simulation results have shown that
the reduction of axial diffusion in two-dimensional channels
to the effective one-dimensional description in terms of the
modified FJ equation is applicable when the channel width
variation rate does not exceed unity, |w ′(x)| ≤ 1. This is a
significantly weaker constraint than that in Eq. (1.3), imposed
by Zwanzig2 in deriving the modified FJ equation. When the
one-dimensional description is applicable, the best approxima-
tions for the position-dependent effective diffusivity, entering
into the modified FJ equation, are given by the Reguera-Rubi
and Kalinay-Percus formulas, Eqs. (2.6) and (2.7), respec-
tively, which give very close values for this quantity.
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APPENDIX: MEAN FIRST PASSAGE TIMES τn→w
AND τw→n

Consider a particle diffusing in a channel shown in Fig. 1,
assuming that the reduction to the effective one-dimensional
description is applicable. Let G(x, t |x0) be the particle one-
dimensional propagator (Green’s function) on the interval

(0, L), where x and x0 are the particle positions at time t
and at t = 0, respectively, 0 < x, x0 < L. This propagator
satisfies Eq. (1.1) with D0 replaced by Dλ, which has the
form

∂G
∂t
= Dλ

∂

∂x


w(x) ∂

∂x

(
G

w(x)
)

, (A1)

where channel width w(x) is given by

w(x) = 2(1 + λx). (A2)

Let τ (x0 → L) be the particle mean first-passage time
from x0 to the wide end of the channel located at x = L in
the presence of a reflecting boundary at the narrow channel
end located at x = 0. This time, considered as a function of x0,
satisfies18,19

Dλ

w(x0)
d

dx0


w(x0) dτ

dx0


= −1, (A3)

subject to the boundary conditions

τ |x0=L
=

dτ
dx0

�����x0=0
= 0. (A4)

The solution for τ (x0 → L) is given by

τ (x0 → L) = 1
Dλ

 L

x0

dx
w(x)

 x

0
w(y)dy. (A5)

The mean first-passage time τn→w is the mean first-passage
time in Eq. (A5) with x0 = 0, τn→w = τ (0 → L). Substituting
w(x) in Eq. (A2) into Eq. (A5) with x0 = 0, and performing
the integrations, we arrive at the expression for τn→w given in
Eq. (2.1).

The particle mean first-passage time from x0 to the narrow
end of the channel, τ (x0 → 0), when the wide channel end
at x = L is a reflecting boundary, considered as a function of
x0, satisfies the same Eq. (A3). The boundary conditions for
τ (x0 → 0) differ from those in Eq. (A4) and are given by

τ |x0=0 =
dτ
dx0

�����x0=L

= 0. (A6)

Integrating Eq. (A3) with the boundary conditions in Eq. (A6),
we obtain

τ (x0 → 0) = 1
Dλ

 x0

0

dx
w(x)

 L

x

w(y)dy. (A7)

The mean first-passage time τw→ n is the mean first-
passage time in Eq. (A7) with x0 = L, τw→ n = τ (L → 0). To
obtain the expression for τw→ n in Eq. (2.2), it remains to
substitute w(x) in Eq. (A2) into Eq. (A7) with x0 = L and to
perform the integrations.
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