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Surface plasmon resonance (SPR) is a widely used, affinity based, label-free biophysical technique to
investigate biomolecular interactions. The extraction of rate constants requires accurate identification
of the particular binding model. The bivalent analyte model involves coupled non-linear differential
equations. No clear procedure to identify the bivalent analyte mechanism has been established.
In this report, we propose a unique signature for the bivalent analyte model. This signature can
be used to distinguish the bivalent analyte model from other biphasic models. The proposed
method is demonstrated using experimentally measured SPR sensorgrams. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4933318]

Surface plasmon resonance (SPR) is a well-accepted
label-free tool to investigate and analyze biomolecular inter-
actions, including protein-protein,1–3 protein-DNA,4–6 and
protein-lipid membrane interactions.7 Neither the simplest
equilibrium SPR data analysis method6 nor the single expo-
nential fitting of SPR profiles8 can handle biphasic reaction
mechanisms. Several reports in order to improve resolution
of the SPR system,9–11 SPR data fitting programs,12 and an
analytical solution based approach for the analysis of several
biphasic binding mechanisms that are governed by linear
rate equations13 have been reported. However, clear proce-
dure to identify the bivalent analyte mechanism has not been
established.

In this study, we have explored an approach to identify
and analyze the bivalent analyte model that has been used
to analyze SPR sensorgrams of a wide range of biomolec-
ular interactions.14–23 As being demonstrated in our previous
study,13 measured SPR profiles can often be fitted to different
biphasic models with comparable fitting qualities. Therefore,
fitting quality alone cannot identify the underlying mecha-
nism. We propose an approach, presented below, that can
identify the bivalent model unambiguously. The procedures of
data fitting and model identification are illustrated by experi-
mentally measured SPR sensorgrams.

Figure 1 shows the cartoon scheme of the bivalent analyte
model, which is represented by the following two-step process:

[A] + [L] ka1−−⇀↽−−
kd1

[AL1], [AL1] + [L]
ka2−−⇀↽−−
kd2

[AL2], (1)

where [A] represents bivalent analyte, [L] represents ligand,
[AL1] represents analyte-ligand complex with one ligand, and
[AL2] represents analyte-ligand complex with two ligands
bound to single analyte. The ka’s are the association rate con-
stants, and kd’s are the dissociation rate constants. Let X1
be [AL1], and X2 be [AL2], the density of free ligand on
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the sensor chip is thus B0 − X1 − 2X2, with B0 as the initial
ligand concentration. The two-step process of Figure 1 can be
represented by the following rate equations:

Ẋ1 = 2ka1C (B0 − X1 − 2X2) − kd1X1 − Ẋ2, (2)

Ẋ2 = ka2X1 (B0 − X1 − 2X2) − 2kd2X2, (3)

where C is the concentration of analyte.
Strictly speaking, Eq. (3) is only valid when [AL1] is

freely mobile in the bulk solution. When [AL1] is restricted
within a layer (reaction layer) on sensor chips, the second asso-
ciation rate constant (ka2) needs to be replaced by a two dimen-
sional (2D) rate constant, k∗a2. As one can see, by comparing
Eqs. (2) and (3), that ka1C and k∗a2X1 must have the same unit
of s−1. It is important to understand that the solution of the rate
equations (Eqs. (2) and (3)) gives 2D density of ligand-analyte
complex, not directly the SPR responses. In the following, for
simplicity, we assume that SPR responses are proportional to
the combined 2D densities X1 and X2.

When rate equations are linear differential equations, it
makes the analysis possible to fit SPR sensorgrams directly
with solutions of rate equations. For non-linear rate equa-
tion, there is no such simplification. Additionally, non-linear
differential equations, in general, have no analytical solutions.
Therefore, previously proposed method13 cannot be directly
applied. We rewrite Eqs. (2) and (3) in variables Y = X1 + X2
and X2. The rate equations are in the form of Eqs. (4) and (5),

Ẏ = 2ka1C (Bo − Y) − kd1Y − (2ka1C − kd1)X2, (4)

Ẋ2 = k∗a2

�
X2

2 − Y2� + k∗a2BoY −
�
k∗a2Bo − 2kd2

�
X2. (5)

As expected, Eq. (5) is non-linear, and however, Eq. (4)
shows that there exists an “optimal concentration,” Co =

kd1
2ka1

at which the rate equation for Y is independent of X2 and,
therefore, is a linear differential equation with an analytical
solution of single exponential function,

Y (t) = B0

2
(1 − e−(2ka1Co+kd1)t) = B0

2
(1 − e−(4ka1Co)t). (6)
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FIG. 1. Cartoon scheme for bivalent analyte model.

The unknown constant of B0 in Eq. (6) does not affect the
exponent. The exponent, together with C0, determines ka1 and
kd1. However, at this “optimal concentration” Co, the solution
Y (t) does not depend on k∗a2 or kd2. Therefore, this “optimal
concentration” method will not obtain these two rate constants.
At the optimal concentration, the SPR signal does have contri-
butions from both X1(t) and X2(t), but the solution contains no
information on the relative strength of these two components.
In practice, the SPR profiles at different analyte concentration
can be fitted individually using single exponential function,
and the fitting errors should have a minimum at the “optimal
concentration.” The existence of this “optimal concentration”
is the unique signature of the bivalent analyte model, thus can
be used to distinguish the bivalent-analyte model from other
biphasic models that were discussed in our previous study.13

It is worthwhile to point out that this signature is discarded in
any “global” fitting procedure.

We have demonstrated our theoretical model of identify-
ing the bivalent analyte model using experimentally measured
SPR sensorgrams. Biacore T200 instrument was used to re-
cord SPR sensorgrams. Sensor chip CM5 was used to immo-
bilize recombinant ezrin proteins onto the sensor surface
via standard amine coupling chemistry. Various concentra-
tions (15.625 nM–500 nM) of anti-ezrin monoclonal antibody
(ezrinAb) were passed through the ezrin immobilized sensor
surface. Figure 2 depicts the SPR sensorgrams for ezrinAb-
ezrin binding. As shown in Figure 2, the SPR association
profiles did not reach equilibrium state and as a result the
simplest equilibrium data analysis method cannot be used. The
lowest R2 value of fitting of both association and dissociation

FIG. 2. SPR sensorgrams for ezrinAb binding to immobilized ezrin. The
dashed lines are experimental data and the red continuous lines are fit to
single exponential association and dissociation equations.

profiles (Figure 2) was less than 0.75. This indicates that the
interaction mechanism is not 1:1. We, therefore, fitted the SPR
sensorgrams using following double exponential functions:

R = D + Ee−σ1t + Fe−σ2t (association), (7)
R = Ee−γ1t + Fe−γ2t (dissociation), (8)

where D, E, F, σ1, σ2, γ1, and γ2 are fitting parameters with
D = −(E + F). The lowest R2 value of fitting of the SPR sen-
sorgram was better than 0.97 (data not shown).

As discussed in our previous report,13 a “good” global
fitting quality cannot guarantee the correct identification of the
underlying mechanism. One should examine the behavior of
the exponents (fitting parameters, Eq. (7)) as a function of the
analyte concentration. The dependency of the sum of the expo-
nents on ezrinAb concentration as shown in Figure 3(a) shows
that underlying mechanism is none of the three models as dis-
cussed in detail in our previous report.13 In addition, the prod-
uct of the exponents should be either linear (two-step confor-
mational change model) or quadratic (heterogeneous ligand
model and bivalent ligand model) for the biphasic mechanism
to be any of the three biphasic mechanisms.13 As shown
in our previous report, the quadratic dependency must have
positive coefficients (coefficients of the quadratic, linear, and
constant term in a quadratic equation).13 The dependency of
the product of the exponents as shown in Figure 3(b) therefore
added another validation that the underlying mechanism is not
any of the biphasic mechanisms as explained above. Notably,
the biphasic models (two-step conformational change model,
heterogeneous ligand model, and bivalent ligand model) are
governed by coupled system of linear differential equations,13

unlike the bivalent analyte model presented in this report.
Finally, to correctly identify the underlying biphasic

model, we utilized the signature of the bivalent analyte model
as explained above. The distribution of R2 value obtained by
fitting SPR association profiles at different analyte concentra-
tions with single exponential function (Figure 2) is shown in
Figure 4.

The distribution of R2 value for the experimental data
followed exactly the theoretical model as predicted by Eqs. (4)
and (6). Therefore, the underlying biphasic mechanism for
ezrinAb-ezrin binding should be the bivalent analyte. The
monoclonal anti-ezrin antibody is an IgG1 type antibody, which
has two Fab portions for binding to ezrin. Therefore, the
IgG antibody represents a good model for bivalent analyte.
From the fitting of the SPR association profiles (Figure 2), the
“optimal concentration” is determined to be 62.5 nM. Once
the “optimal concentration” is determined, Eq. (6) can be

FIG. 3. The dependency of (a) the sum of the exponents σ1+σ2 and (b) the
product σ1×σ2 on the ezrinAb concentration.
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FIG. 4. R2 value vs. log(C/Co) for single exponential fitting of SPR associ-
ation profiles (Figure 2). C is ezrinAb concentration and Co is the “optimal
concentration” (62.5 nM). The symbols are R2 values and the dashed lines
are guide to eyes.

used to determine the ka1 and kd1 and hence the equilibrium
dissociation constant (KD1) of the interaction (KD1 =

kd1
ka1

)
corresponding to the first phase of the interaction. The ka1,
kd1, and KD1 values were determined to be 0.74 × 104 M−1 s−1,
0.92 × 10−3 s−1, and ∼124 nM, respectively. Our method
cannot determine the parameters related to the second phase
of the interaction, which are not of any use to determine the
KD2 in terms of molar unit.

In summary, we have presented an identification and anal-
ysis of the bivalent analyte model that is applied to a wide range
of SPR experiments. The proposed procedure will first locate
the “optimal analyte concentration” by fitting the individual
SPR profile at different analyte concentrations to the single
exponential function. Our method can be of valuable guidance
for the SPR users in order to unambiguously identify and
analyze the bivalent analyte mechanism. Our procedures of
model identification along with the some prior experimental
results of the system under study may also provide SPR users
a strong support for the identification of the bivalent analyte
model.

Experimental SPR sensorgrams were measured by us-
ing Biacore T200 instrument available in Biacore Molecular

Interaction Shared Resource (BMISR) facility at Georgetown
University. The BMISR is supported by National Institutes of
Health Grant No. P30CA51008.
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