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Abstract

Many types of cancer, including glioma, melanoma, non-small cell lung cancer (NSCLC), among 

others, are resistant to proapoptotic stimuli and thus poorly responsive to current therapies based 

on the induction of apoptosis in cancer cells. The current investigation describes the synthesis and 

anticancer evaluation of unique C12-Wittig derivatives of polygodial, a terpenenoid dialdehyde 

isolated from Persicaria hydropiper (L.) Delabre. These compounds were found to undergo an 

unprecedented pyrrole formation with primary amines in a chemical model system, a reaction that 

could be relevant in the biological environment and lead to the pyrrolation of lysine residues in the 

target proteins. The anticancer evaluation of these compounds revealed their promising activity 

against cancer cells displaying various forms of drug resistance, including resistance to 

proapoptotic agents. Mechanistic studies indicated that compared to the parent polygodial, which 

displays fixative general cytotoxic action against human cells, the C12-Wittig derivatives exerted 

their antiproliferative action mainly through cytostatic effects explaining their activity against 

apoptosis-resistant cancer cells. The possibility for an intriguing covalent modification of proteins 

through a novel pyrrole formation reaction, as well as useful activities against drug resistant 

cancer cells, make the described polygodial-derived chemical scaffold an interesting new 

chemotype warranting thorough investigation.
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1. Introduction

Apoptosis resistance is a hallmark of cancer, because defects in apoptosis regulators 

invariably accompany tumorigenesis and sustain malignant progression. Therefore, because 

most standard chemotherapeutic agents work by the induction of apoptosis in cancer cells, 

its disruption during tumor evolution can promote drug resistance and result in therapy 

failure [1–4]. Indeed, many types of cancer, such as the tumors of the lung, liver, stomach, 

esophagus, pancreas as well as melanomas and gliomas, are intrinsically resistant to the 

induction of apoptosis and thus refractory to the most of the currently available 

chemotherapeutic agents [5]. For example, patients afflicted by glioblastoma multiforme 

(GBM) [6], which responds poorly to conventional chemotherapy with proapoptotic agents 

[7–9], have a median survival expectancy of less than 14 months when treated with the best 

available protocol [10]. GBM is characterized by a deregulated tumor genome containing 

opportunistic deletions of tumor suppressor genes as well as amplification or mutational 

hyperactivation of receptor tyrosine kinase receptors. These genetic changes result in 

enhanced survival pathways and systematic defects in the apoptotic machinery. One solution 

to apoptosis resistance entails the complementation of cytotoxic therapeutic regimens with 

cytostatic agents and thus a search for novel cytostatic anticancer drugs that can overcome 

cancer cell resistance to apoptosis is an important pursuit [11–19].
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Furthermore, tumors that initially respond to chemotherapy can still become refractory to the 

continuing treatment by developing a multi-drug resistant phenotype (MDR) affecting a 

broad spectrum of structurally and mechanistically diverse antitumor agents [20,21]. The 

development of MDR is common with many conventional chemotherapies, including the 

well-known vinca alkaloids [22] and taxanes [23]. Thus, the search for agents capable of 

circumventing MDR mechanisms is another important area of research aiming to combat 

drug-resistant cancers [24].

In the pursuit of agents active against drug-resistant cancers, our labs have been 

investigating compounds targeting ion channels [25,26], whose alterations often represent 

important mechanisms in the impairment of apoptosis and development of drug resistance 

[27]. Our attention was recently brought to the transient receptor potential vanilloid 1 

receptor (TRPV1), which is a non-selective cation channel with preference for Ca2+ and 

identified as molecular target of a pungent component of hot chili pepper capsaicin, used as 

a spice in the culinary traditions of many countries and as an antinociceptive in traditional 

medicine [28]. Research has shown that in addition to its expression in sensory neurons and 

involvement in different modalities of pain, TRPV1 is also upregulated in various human 

cancer cells [29–31]. It has thus been proposed to be a an attractive target for the treatment 

of brain tumors [32], as it was shown that its activation with endogenous agonists leads to 

endoplasmic reticulum (ER) stress in human glioma cells, followed by cell death [32]. Many 

reports investigating TRPV1-targeting agents such as capsaicin [33–36], resiniferatoxin 

[33,37], capsazepine [34,35], and SB366791 [34], as potential anticancer agents, have 

appeared in the literature. Curiously, however, the group of α,β-unsaturated 1,4-dialdehyde 

terpenoids (Figure 1), studied for many diverse biological properties [38] and known for 

their TRPV1 agonistic activities [38–43] have not been studied as anticancer agents. 

Polygodial (1, Figure 1) is the most well known representative of these 1,4-dialdehydes and 

it was first isolated as a pungent component of the sprout of Persicaria hydropiper (L.) 

Delabre (Polygonaceae), a plant used as a popular condiment for sashimi in Japan [44]. 

Compound 1 tastes hot to the human tongue and possesses antifeedant activities [45–47], 

both of which are evidently mediated through TRPV1-targeting [38–43] possibly through 

the formation of a covalent complex [38]. Encouraged by several earlier reports of cytotoxic 

activity associated with 1 [49–54], we prepared a series of its chemical derivatives and 

studied their TRPV1 agonistic and anticancer activities in detail. A related publication 

resulting from this study describes the discovery of useful anticancer activities associated 

with 9-epipolygodial [55]. Herein, we present a series of C12-Wittig derivatives of 1 that 

exert their antiproliferative action mainly through cytostatic effects and possess promising 

activities against cancer cells resistant to apoptosis as well as those with an MDR phenotype. 

Furthermore, these compounds undergo an unprecedented pyrrole formation with primary 

amines, a reaction that could be relevant in a biological environment and lead to the 

pyrrolylation of lysine residues in the target proteins through this previously unknown 

chemical mechanism.

2. Chemistry

During earlier studies of reactivity of 1 toward various nucleophiles, the possibility of 

pyrrole formation with an active site lysine was mentioned in the literature [46], although no 
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pyrrole adduct was isolated in these experiments. In our own attempts [55] to demonstrate 

the feasibility of what could be referred to as the modified Paal-Knorr [56] pyrrolylation of 

proteins by 1, it was found that although N-alkyl pyrrole 2 (R = Bn, Figure 2A) formed, it 

was extremely unstable and readily oxidized in air. This stability problem was solved by the 

preparation and successful isolation of electron-deficient N-aryl pyrroles 2 (R = Ph and p-

NO2-C6H4); however, these adducts are obviously not relevant biologically as the resultant 

covalent complex with a lysine residue would be an alkyl pyrrole and thus also readily 

oxidizable. Although examples of lysine pyrrolylation with small molecules are extremely 

rare [57], its involvement in n-hexane-induced axonal atrophy in the central nervous system 

is a well studied phenomenon. It has been demonstrated both in vitro and in vivo that 2,5-

hexanedione, a neurotoxic n-hexane metabolite, pyrrolylates the lysine residues of axonal 

cytoskeleton proteins within specific regions of neurofilaments (Figure 2B) [58]. 

Importantly, subsequent oxidation of the 2,5-dimethylpyrrole adducts has been shown to be 

an obligatory event in the induction of neuropathy [59]. This line of reasoning would 

suggest that lysine pyrrolylation with a non-selective 1,4-dicarbonyl-containing small 

molecule could be generally toxic to cells, especially if the formed pyrrole adducts are 

unstable and may lead to further non-specific protein cross-linking events. Whether it is for 

this reason or another, as reported herein, our investigation of 1 as a potential anticancer 

agent led us to conclude that at the concentrations necessary to induce cancer cell death, 1 
behaves as a toxic fixative compound with little promise as a potential drug.

It is likely that the susceptibility of N-alkyl pyrroles 2 toward oxidation is due to the 

presence of the conjugated C7,C8-alkene, which in addition to the electronic effects, 

possibly imparts significant strain by forcing the trans-fused ring B into planarity. Our 

chemical studies of 1 indicated that the C12-aldehyde is considerably more reactive than its 

C11-counterpart and thus it seemed possible to prepare C12-Wittig derivatives of the type 3 
in Figure 2C, where X would be an electron-withdrawing group. Based on mechanistic 

considerations (intermediates A and B in Figure 2C), the formation of pyrroles 4 appeared 

feasible in the reaction of 3 with primary amines and adducts 4 were predicted to be more 

stable due to the absence of the destabilizing C7,C8-alkene. It was indeed discovered that 

polygodial (1) reacts selectively at the C12-aldehyde functionality with a variety of 

stabilized phosphorous ylides (Figure 2) producing a,b-unsaturated esters 5–10, nitrile 11 
and ketone 12 with high regioselectivity and in excellent yields. The products arising from 

alkenylation of the C11-aldehyde were not detected in these reaction mixtures. In addition, a 

terminal alkyne-containing ester 13 was prepared for a possible future conjugate synthesis 

through click chemistry. Finally, when 5 was reacted with BnNH2 in THF in the presence of 

catalytic amount of AcOH, pyrrole 14 was cleanly formed in 85% yield and turned out to be 

a stable isolable compound.

3. Anticancer Evaluation

The synthesized C12-Wittig derivatives were evaluated for antiproliferative activities in a 

panel of cancer cell lines that included apoptosis-resistant human U373 glioblastoma (GBM) 

[60], human A549 non-small cell lung cancer (NSCLC) [61] and human SKMEL-28 

melanoma [62] as well as apoptosis-sensitive human Hs683 anaplastic oligodendroglioma 

[60] and human MCF-7 breast cancer [63]. While 1 was ineffective in this cancer cell panel, 
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the C12-Wittig derivatives showed moderate double-digit micromolar potencies. Of note, 

although the potencies in this series of compounds differed among the individual cell lines, 

the average GI50 values over the 72-hour treatment period were quite similar, indicating 

either similar intracellular target binding requirements unaffected by the nature of the type 

of the group X (Figure 3) or a covalent complex formation leading to an identical mode of 

target inhibition. Further analysis of these data revealed that the C12-Wittig derivatives did 

not discriminate between apoptosis resistant and apoptosis-sensitive cells and displayed 

comparable potencies in both cell types, indicating that compounds of this class are capable 

of overcoming apoptosis resistance (Table 1).

Although the moderate double-digit potencies of the synthesized derivatives are somewhat 

unremarkable, the analysis of the actual experimental growth curves indicated that these 

compounds eliminate all cells in the cultures and generate no resistant populations (close to 

0% cell viability) at concentrations just slightly exceeding their GI50 values, as shown for 

compound 5 in Figure 4A. The contrasting effects between derivative 5 and common pro-

apoptotic agents paclitaxel and podophyllotoxin on apoptosis-resistant A549 NSCLC and 

U87 GBM cells are shown in Figures 4B and 4C. Indeed, the normally low nanomolar 

antiproliferative agents paclitaxel and podophyllotoxin have no effect on proliferation of ca. 

50% of cells at concentrations up to 100 μM [15], whereas 5 exhibited growth inhibitory 

properties against most of the cells in these cultures and, with increasing concentration, 

reached the antiproliferative levels of a non-discriminate cytotoxic agent phenyl arsine oxide 

(PAO). Compound 5 demonstrated a similar behaviour in docetaxel-resistant SCC4 and 

cisplatin-resistant SCC25 human oral cancer cell lines, as well as the docetaxel-resistant 

PC-3 human prostate cells (data not shown).

Often, tumors initially respond to chemotherapy but eventually become refractory to the 

continuing treatment. Such acquired resistance commonly occurs through the development 

of a multi-drug resistant phenotype (MDR) [64,65] affecting many common 

chemotherapeutic agents, including the vinca alkaloids [66] and taxanes [67]. In addition, 

the development of apoptosis resistance and MDR mechanisms is often related and 

concurrent [68,69], and thus it was of interest to evaluate 5 against MDR cells. Towards this 

end, the MDR uterine sarcoma cell line MES-SA/Dx5, established by growing the parent 

uterine sarcoma MES-SA in the presence of increasing concentrations of doxorubicin and 

resistant to multiple functionally and structurally unrelated molecules [70], was utilized. It 

was found that paclitaxel and vinblastine lost their potency by a factor of a thousand when 

tested for antiproliferative activity against the MES-SA/Dx5 MDR cell line as compared 

with the parent MES-SA cells. In contrast, there was little variation in the sensitivities of the 

two cell lines towards 5 (Table 2).

Due to the ability of 5 to overcome drug resistance, it was further challenged with a panel of 

GBM cell cultures maintained under neurosphere conditions. Neurospheres, known to 

promote the growth of stem-like cells from human glioma tissue, are generally resistant to 

radiation and chemotherapy [71–74]. Furthermore, compared with serum cultured glioma 

cell lines they have been shown on both histological and genetic levels to serve as a better 

model of human gliomas when injected into the brains of mice [75–78]. Figure 5 shows the 

results of cytotoxicity evaluation for compound 5 against GBM neurosphere cultures 
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carrying a tumor suppressor cdkn2a deletion [79] as well as PDGFB [80] and EGFRvIII [81] 

and amplifications, representing frequent mutations in high-grade astrocytic tumors. The 

data indicate that compound 5 used at 20 μM (average GI50 in Table 1) shows effectiveness 

similar to that of cannabidiol (CBD) at 10 μM, an orphan drug advanced to phase II clinical 

trials for the treatment of GBM. From the mechanistic perspective, it is interesting that CBD 

loses its activity against cells with the cdkn2a deletion and PDGFB amplification that 

additionally lack the TRPV1 gene (Figure 5D), whereas 5 appears to be even more effective 

against these cells (Figure 5B) than against their counterparts containing the intact TRPV1 

(Figure 5B). These data indicate that while the CBD-induced anticancer effects could indeed 

be mediated at least in part through TRPV1, which is consistent with the literature data 

suggesting activation of this receptor by CBD [82], 5 appears to work through a TRPV1-

independent mechanism.

4. Evaluation of Vanilloid Activities

To confirm that the synthesized derivatives of 1 do not have an effect on TRPV1, compound 

5 was assessed for the inhibition of specific binding of [3H]-resiniferatoxin (RTX) in rat 

spinal cord membranes [41]. The results (Figure 6A) demonstrate that in contrast to 1, which 

displayed 76% inhibition at the concentration of 10 μM, compound 5 failed to show any 

activity in this assay. In a complementary assessment of the TRPV1-mediated effects, 

measurements of Ca2+ entry into MDA-MB-231 breast cancer cells abundantly expressing 

TRPV1 receptors [83] were performed (Figure 6B and C). In agreement with the [3H]-RTX 

TRPV1 assay, 1 at its average GI50 concentration of 80 μM (from Table 1) caused a 

transient and synchronous [Ca2+]i increase in all tested cells. Moreover this Ca2+ response 

can be prevented by the TRPV1 blocker capsazepine indicating the activation of TRPV1 in 

the plasma membrane of MDA-MB-231 cells (data not shown). On the other hand, 

compound 5 at its average GI50 of 20 μM (from Table 1) displayed a different pattern with 

sustained and asynchronous [Ca2+] increases displaying a different Ca2+-signature induced 

by compound 5 compared to 1.

5. Computer modeling

In an attempt to understand why the Wittig derivatization at C12 of 1 leads to compounds 

devoid of TRPV1 activity, capsaicin, 1 and Wittig derivative 5 were docked to the 

capsaicin/RTX binding site on TRPV1 (Figure 7). The receptor for these studies was 

obtained by the refinement of the cryo-EM structure of TRPV1 (protein data bank (PDB) ID 

3J5R) [84], as described in our related manuscript [55]. The docking of capsaicin reveals 

that it is well accommodated in this pocket, with the polar phenolic moiety orientated toward 

the polar “southern” region of the binding pocket and the apolar alkyl chain extending up 

into the apolar “northern” region of the pocket (Figure 7, left). The phenolic proton of 1 is 

well positioned to form a hydrogen bonding interaction to the carboxylate of Glu570 and the 

amide proton linking the alkyl chain is well suited to form another hydrogen bonding 

interaction to Thr550 (as was observed for the reduced polygodiol derivative described in 

our related manuscript) [55]. Compound 1 is similarly accommodated in the pocket, 

although being somewhat smaller, hydrogen bonding interactions occur between the 

aldehydes and the residues Thr550 and Tyr511, thereby allowing the hydrophobic region of 
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the molecule to be well placed in the “northern” hydrophobic region of the binding pocket. 

Interestingly, docking of the Wittig derivative 5 suggests a similar pose as the best possible 

orientation; however, this would require that the apolar ester chain protrudes deeply into the 

polar “southern” region of the pocket, with the methyl group in close proximity to the 

negatively charged carboxylate of Glu570. This undesirable mismatched interaction may 

well account for the loss of TRPV1 activity for 5.

6. Studies of morphological changes in affected cancer cells

Although many reports investigating vanilloid agonists as potential anticancer agents have 

appeared in the literature, the involvement of TRPV1 in mediating their antiproliferative 

effects has been questioned on many occasions as vanilloid antagonists have consistently 

failed to prevent capsaicin or RTX-induced cell death [33–37]. In the related publication 

[55], we show that these observations also apply to α,β-unsaturated 1,4-dialdehyde 

terpenoids, such as 1 and 9-epipolygodial, and that cancer cell death induced by these 

compounds cannot be explained by TRPV1-targeting. In an effort to gain insight into 

possible mechanisms associated with antiproliferative properties of 1 and the C12-Wittig 

derivatives, the morphological changes in cells treated with these compounds were studied 

with computer-assisted phase-contrast microscopy [14] (quantitative videomicroscopy). 

Figure 8 shows that 1, at a concentration equalling its GI50 value against the U373 cell line 

(Table 1), exhibited strong fixative effects on these GBM cells. In contrast, the C12-Wittig 

derivatives 5 and 13 inhibited cancer cell proliferation without inducing cell death when 

assayed at their GI50 concentrations (Table 1).

To confirm the results obtained in the videomicroscopy experiments, trypan blue assay was 

employed to detect necrotic and late apoptotic cells that had lost their plasma membrane 

integrity (Figure 9). Indeed, while cells treated with 1 were all blue-stained before methanol 

fixation, the 13-treated cells were still alive after 72 h of treatment. These observations 

support the results of the MTT assay and provide an explanation for the effectiveness of the 

C12-Wittig derivatives against cells, which display resistance to apoptosis induction. In 

contrast, at the concentrations necessary to induce cancer cell death 1 behaves as a toxic 

fixative compound of little promise as a potential drug.

7. Conclusion

Cancers characterized by an intrinsic resistance to the induction of apoptosis are refractory 

to the most of the currently available chemotherapeutic agents and present a formidable 

clinical challenge [1–5]. For example, GBM is one of the most feared of all human diseases 

both due to the certain fatal outcome and a rapid debilitating loss of cognitive function. The 

therapy-related improvement of overall survival has been counted in months, not years, for 

the last 40 years and the GBM clinic is in dire need of conceptually new treatment strategies 

[6–8]. A great deal of recent research has been aimed at overcoming the apoptosis resistance 

of GBM cells by rendering them more susceptible to therapy-induced apoptosis [9]. Thus, in 

GBM cells, several key regulatory elements of cell homeostasis and apoptosis are altered 

through inactivating mutations, methylation, or altered expression. These alterations affect 

the p53 protein, the BCL-2 protein family, the inhibitor of apoptosis proteins (IAPs) or 
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receptor tyrosine kinases (e.g. the epidermal growth factor receptor (EGFR)) and their 

downstream signaling cascades. All of these represent attractive targets for therapeutic 

interventions and have been pursued by various researchers [9,85]. However, to date, the 

results from the clinical trials of a number of such agents, mostly targeting growth factor 

pathways, have been disappointing. For example, a randomized, controlled, phase II trial 

conducted with erlotinib, a small molecule targeting the EGFR signaling, unfortunately 

showed no therapeutic benefit [86].

The identification of agents whose mode of action is not based on cell death represents an 

alternative approach. Indeed, delaying proliferation in cancer cells over certain periods of 

time will induce cell death that usually occurs via apoptosis. In this case, apoptosis is a 

consequence and not a cause of the drug-induced effects. The present investigation led to the 

discovery of such agents, which represent novel derivatives of polygodial, a sesquiterpenoid 

widely studied as a TRPV1 agonist. Indeed, the biological effects of these compounds are 

not TRPV1-mediated and compared to the parent polygodial, which displays a fixative 

general cytotoxic action against human cells, the C12-Wittig derivatives exert their 

antiproliferative action mainly through cytostatic effects explaining their activity against 

apoptosis-resistant cancer cells. Furthermore, these novel derivatives maintain activity 

against MDR cells as well as GBM neurosphere cultures carrying tumor suppressor and 

growth factor receptor mutations representing an import challenge in the clinical 

management of high-grade astrocytic tumors. These compounds are produced in an efficient 

one-step synthesis from polygodial using a selective Wittig derivatization of the C12-

aldehyde group. Lastly, the possibility for an intriguing covalent modification of proteins 

through a novel pyrrole formation reaction make the described polygodial-derived chemical 

scaffold an interesting chemotype for the investigation of novel ways of covalent 

modification of proteins with small molecules of biological and therapeutic relevance.

8. Experimental Section

8.1 General Experimental

All reagents, solvents and catalysts were purchased from commercial sources (Acros 

Organics and Sigma-Aldrich) and used without purification. All reactions were performed in 

oven-dried flasks open to the atmosphere or under nitrogen or argon and monitored by thin 

layer chromatography (TLC) on TLC precoated (250 μm) silica gel 60 F254 glass-backed 

plates (EMD Chemicals Inc.). Visualization was accomplished with UV light, iodine and p-

anisaldehyde stains. 1H and 13C NMR spectra were recorded on a Bruker 400 spectrometer. 

Chemical shifts (δ) are reported in ppm relative to the TMS internal standard. Abbreviations 

are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Polygodial (1) 

was purchased from VWR.

8.2 General procedure for the Wittig reaction

To a solution of 1 (3 mg, 0.0128 mmol, 1 eq) in dichloromethane (3 mL) was added a 

selected Wittig reagent (5 eq). The resultant mixture was stirred at room temperature for 20 

h. After completion of the reaction, as monitored by TLC, the reaction mixture was filtered 
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and the filtrate was concentrated under reduced pressure. The crude product was purified by 

preparative TLC (EtOAc/Hexane, 1:10) to obtain Wittig products (5–12).

8.3 Compound 5

94%; 1H NMR (400 MHz, CDCl3) δ 9.47 (d, J = 4.8 Hz, 1H), 7.33 (d, J = 16.3 Hz, 1H), 

6.53 – 6.49 (m, 1H), 5.50 (d, J = 16.3 Hz, 1H), 3.71 (s, 3H), 2.83 (s, 1H), 2.37 – 2.16 (m, 

2H), 1.87 – 1.80 (m, 1H), 1.53 – 1.44 (m, 3H), 1.38 – 1.30 (m, 1H), 1.23 – 1.16 (m, 2H), 

1.00 (s, 3H), 0.94 (s, 3H), 0.90 (s, 3H); 13C NMR (100 MHz, C6D6): δ 203.8, 167.2, 146.9, 

141.1, 130.7, 116.8, 62.9, 51.2, 48.3, 41.9, 40.2, 37.2, 33.2, 32.9, 24.7, 22.2, 18.3, 15.3; 

HRMS (ESI) calcd for C18H26NaO3 (M+Na) 313.1780, found 313.1779.

8.4 Compound 6

84%; 1H NMR (400 MHz, C6D6) δ 9.36 (d, J = 4.7 Hz, 1H), 7.53 (d, J = 16.4 Hz, 1H), 5.89 

– 5.86 (m, 1H), 5.87 (d, J = 16.4 Hz, 1H), 4.13 – 4.00 (m, 2H), 2.63 – 2.58 (m, 1H), 1.79 – 

1.63 (m, 3H), 1.26 – 1.18 (m, 3H), 1.07 (td, J = 13.0, 5.8 Hz, 1H), 0.98 (t, J = 8.0 Hz, 3H), 

0.95 – 0.88 (m, 1H), 0.75 – 0.69 (m, 1H), 0.66 (s, 3H), 0.65 (s, 3H), 0.64 (s, 3H); 13C NMR 

(100 MHz, C6D6): δ 203.9, 166.8, 146.7, 140.9, 130.7, 117.3, 62.9, 60.3, 48.4, 41.9, 40.2, 

37.2, 33.2, 32.9, 24.7, 22.2, 18.3, 15.3, 14.3; HRMS m/z (ESI) calcd for C19H28NaO3 (M

+Na) 327.1936, found 327.1933.

8.5 Compound 7

94%; 1H NMR (400 MHz, C6D6) δ 9.46 (d, J = 4.4 Hz, 1H), 7.29 – 7.25 (m, 1H), 5.73 – 

5.69 (m, 1H), 4.11 – 3.97 (m, 2H), 2.68 – 2.63 (m, 1H), 2.07 (d, J = 1.5 Hz, 3H), 1.85 – 1.71 

(m, 2H), 1.66 – 1.60 (m, 1H), 1.28 – 1.21 (m, 3H), 1.14 – 1.05 (m, 1H), 0.99 (t, J = 7.1 Hz, 

3H), 0.93 – 0.87 (m, 2H), 0.78 (s, 3H), 0.72 (s, 3H), 0.70 (s, 3H); 13C NMR (100 MHz, 

C6D6) δ 202.8, 167.9, 139.1, 134.0, 132.9, 130.1, 66.0, 60.7, 48.6, 42.0, 40.1, 37.2, 33.2, 

32.9, 24.2, 22.0, 18.5, 15.4, 14.9, 14.3; HRMS (ESI) calcd for C20H30NaO3 (M+Na) 

341.2093, found 341.2091.

8.6 Compound 8

93%; 1H NMR (400 MHz, C6D6) δ 9.37 (d, J = 4.7 Hz, 1H), 7.49 (d, J = 16.2 Hz, 1H), 5.91 

– 5.81 (m, 2H), 2.66 – 2.58 (m, 1H), 1.80 – 1.63 (m, 3H), 1.42 (s, 9H), 1.26 – 1.17 (m, 3H), 

1.13 – 1.03 (m, 1H), 0.98 – 0.93 (m, 1H), 0.73 (dd, J = 11.3, 5.2 Hz, 1H), 0.66 (s, 3H), 0.65 

(s, 3H), 0.63 (s, 3H); 13C NMR (100 MHz, C6D6) δ 204.0, 166.3, 146.0, 140.4, 130.8, 119.0, 

80.0, 62.9, 48.4, 41.9, 40.2, 37.2, 33.2, 32.9, 28.2 (3C), 24.7, 22.2, 18.3, 15.3; HRMS (ESI) 

calcd for C21H32NaO3 (M+Na) 355.2249, found 355.2250.

8.7 Compound 9

80%; 1H NMR (400 MHz, C6D6) δ 9.32 (d, J = 4.7 Hz, 1H), 7.50 (d, J = 16.3 Hz, 1H), 7.24 

– 7.20 (m, 2H), 7.11 – 7.03 (m, 3H), 5.86 (d, J = 16.3 Hz, 1H), 5.84 – 5.80 (m, 1H), 5.18 (d, 

J = 12.4 Hz, 1H), 5.06 (d, J = 12.4 Hz, 1H), 2.60 – 2.55 (m, 1H), 1.78 – 1.63 (m, 3H), 1.26 – 

1.21 (m, 3H), 1.12 – 1.03 (m, 1H), 0.99 – 0.94 (m, 1H), 0.72 (dd, J = 11.3, 5.1 Hz, 1H), 0.65 

(s, 6H), 0.64 (s, 3H); 13C NMR (100 MHz, C6D6) δ 203.8, 166.6, 147.3, 141.2, 136.9, 130.8, 
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128.7 (2C), 128.6 (2), 128.2, 116.8, 66.3, 62.8, 48.4, 41.9, 40.2, 37.2, 33.2, 32.9, 24.8, 22.2, 

18.3, 15.3; HRMS (ESI) calcd for C24H30NaO3 (M+Na) 389.2093, found 389.2090.

8.8 Compound 10

92%; 1H NMR (400 MHz, CDCl3) δ 9.46 (d, J = 5.0 Hz, 1H), 7.23 (ddd, J = 15.9, 10.9, 0.8 

Hz, 1H), 6.54 (d, J = 15.9 Hz, 1H), 6.35 – 6.30 (m, 1H), 5.93 (dd, J = 15.9, 10.9 Hz, 1H), 

5.81 (d, J = 15.9 Hz, 1H), 3.73 (s, 3H), 2.83 (s, 1H), 2.35 – 2.13 (m, 2H), 1.87 – 1.79 (m, 

1H), 1.53 – 1.43 (m, 3H), 1.38 – 1.28 (m, 1H), 1.23 – 1.15 (m, 2H), 1.01 (s, 3H), 0.94 (s, 

3H), 0.90 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 206.0, 167.5, 144.9, 142.5, 137.7, 131.1, 

124.7, 120.3, 62.9, 51.5, 48.7, 41.8, 40.2, 37.4, 33.2, 33.1, 24.6, 22.3, 18.1, 15.6; HRMS m/z 

(ESI) calcd for C20H28NaO3 (M+Na) 339.1936, found 339.1936.

8.9 Compound 11

94%; 1H NMR (400 MHz, C6D6) δ 9.07 (d, J = 4.5 Hz, 1H), 6.37 (d, J = 16.9 Hz, 1H), 5.56 

– 5.49 (m, 1H), 4.60 (d, J = 16.9 Hz, 1H), 2.29 (s, 1H), 1.72 – 1.51 (m, 3H), 1.26 – 1.15 (m, 

4H), 1.09 – 0.87 (m, 2H), 0.63 (s, 6H), 0.57 (s, 3H); 13C NMR (100 MHz, C6D6) δ 203.0, 

151.5, 141.3, 130.4, 118.0, 95.4, 62.2, 48.2, 41.8, 40.2, 37.1, 33.1, 32.8, 24.6, 22.1, 18.2, 

15.3; HRMS (ESI) calcd for C17H23NNaO (M+Na) 280.1677, found 280.1676.

8.10 Compound 12

86%; 1H NMR (400 MHz, C6D6) δ 9.34 (d, J = 4.7 Hz, 1H), 7.13 (d, J = 16.5 Hz, 1H), 5.94 

(d, J = 16.5 Hz, 1H), 5.91 – 5.87 (m, 1H), 2.65 – 2.60 (m, 1H), 1.85 (s, 3H), 1.82 – 1.68 (m, 

3H), 1.29 – 1.20 (m, 3H), 1.13 (td, J = 12.8, 5.1 Hz, 1H), 1.02 – 0.93 (m, 1H), 0.80 – 0.75 

(m, 1H), 0.70 (s, 3H), 0.68 (s, 3H), 0.67 (s, 3H); 13C NMR (100 MHz, C6D6) δ 203.9, 195.8, 

144.2, 141.5, 130.9, 125.2, 63.0, 48.5, 41.9, 40.3, 37.3, 33.2, 32.9, 28.4, 24.9, 22.2, 18.3, 

15.4; HRMS (ESI) calcd for C18H26NaO2 (M+Na) 297.1830, found 297.1830.

8.11 Compound 13

To a solution of 4-pentynyl (triphenylphosphoranylidene)acetate (11.9 mg, 0.026 mmol) in 

THF (2 mL) was added triethylamine (3.5 μL, 0.026 mmol) and stirred at rt for 10 min. This 

was followed by the addition of 1 (4.0 mg, 0.0170 mmol) in THF (1 mL) and the resultant 

mixture was stirred at room temperature for 20 h. After completion of the reaction, as 

monitored by TLC, the reaction mixture was filtered and the filtrate was concentrated under 

reduced pressure. The crude product was purified by preparative TLC (9/91 EtOAc/Hexane) 

to obtain 5.5 mg of 13 (94% yield); 1H NMR (400 MHz, C6D6) δ 9.35 (d, J = 4.7 Hz, 1H), 

7.50 (d, J = 16.3 Hz, 1H), 5.89 – 5.85 (m, 1H), 5.82 (d, J = 16.3 Hz, 1H), 4.19 – 4.07 (m, 

2H), 2.60 (s, 1H), 1.93 (td, J = 7.1, 2.6 Hz, 2H), 1.79 – 1.73 (m, 1H), 1.72 (t, J = 2.6 Hz, 

1H), 1.71 – 1.60 (m, 2H), 1.58 – 1.49 (m, 2H), 1.27 – 1.18 (m, 3H), 1.14 – 1.04 (m, 1H), 

0.99 – 0.89 (m, 1H), 0.73 (dd, J = 11.3, 5.2 Hz, 1H), 0.67 (s, 3H), 0.66 (s, 3H), 0.65 (s, 

3H); 13C NMR (100 MHz, C6D6) δ 203.9, 166.7, 147.0, 141.1, 130.7, 116.9, 83.1, 69.4, 

63.1, 62.9, 48.4, 41.9, 40.3, 37.2, 33.2, 32.9, 27.9, 24.8, 22.2, 18.3, 15.4, 15.4; HRMS m/z 

(ESI) calcd for C22H30NaO3 (M+H) 365.2093, found 365.2092.
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8.12 Compound 14

To a solution of 5 (3.4 mg, 0.012 mmol) and benzylamine (1.4 μL, 0.013 mmol) in THF (2 

mL) was added AcOH (4.1 μL, 0.07 mmol). The mixture was stirred at rt for 40 h. After 

completion of the reaction, as monitored by TLC, the reaction mixture was concentrated 

under reduced pressure and co-distilled with toluene. The crude product was purified by 

preparative TLC (EtOAc/Hexane, 1:10) to obtain 3.8 mg of 14 (85% yield); 1H NMR (400 

MHz, C6D6) δ 7.09 – 7.03 (m, 2H), 7.02 – 6.98 (m, 1H), 6.91 – 6.86 (m, 2H), 6.21 (s, 1H), 

4.86 (d, J = 16.4 Hz, 1H), 4.80 (d, J = 16.4 Hz, 1H), 3.31 (d, J = 15.6 Hz, 1H), 3.27 (d, J = 

15.6 Hz, 1H), 3.15 (s, 3H), 2.80 – 2.72 (m, 1H), 2.60 (ddd, J = 15.6, 11.8, 7.1 Hz, 1H), 2.00 

– 1.92 (m, 1H), 1.87 – 1.65 (m, 3H), 1.55 – 1.45 (m, 2H), 1.45 – 1.38 (m, 2H), 1.33 (s, 3H), 

1.22 (td, J = 13.5, 3.7 Hz, 1H), 0.92 (s, 6H); 13C NMR (100 MHz, C6D6) δ 170.7, 139.6, 

135.5, 133.0, 128.8 (2C), 128.4 (2C), 127.3, 126.7, 114.4, 52.2, 51.3, 50.7, 42.6, 40.2, 34.9, 

33.8, 33.3, 30.9, 26.1, 23.2, 21.8, 20.2, 19.8; HRMS m/z (ESI) calcd for C25H33NNaO2 (M

+Na) 402.2409, found 402.2410.

8.13 Cell culture

Human cancer cell lines were obtained from the American Type Culture Collection (ATCC, 

Manassas, VA, USA), the European Collection of Cell Culture (ECACC, Salisbury, UK) 

and the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, 

Braunschweig, Germany). Human mammary carcinoma MCF-7 (ATCC HTB22) cells were 

cultured in RPMI supplemented with 10% FBS. The U87 cells (ATCC HTB-14) were 

cultured in DMEM culture medium, while the A549 cells (DSMZ ACC107) were cultured 

in RPMI culture medium supplemented with 10% heat-inactivated FBS. The GBM Hs683 

(ATCC HTB-138) cells were cultivated in DMEM supplemented with 10% FBS. The 

human uterine sarcoma MES-SA (ATCC CRL1966) and MES-SA/Dx5 cells were cultured 

in RPMI-1640 medium supplemented with 10% FBS with MES SA/Dx5 maintained in the 

presence of 500 nM Doxorubicin (Sigma). SKMEL-28 cells (ATCC HTB72) and U373 

GBM cells (ECACC 08061901) were cultured in RPMI culture medium supplemented with 

10% heat-inactivated FBS. Cell culture media were supplemented with 4 mM glutamine 

(Lonza code BE17-605E), 100 μg/mL gentamicin (Lonza code 17-5182), and penicillin-

streptomycin (200 units/ml and 200 μg/ml) (Lonza code 17-602E). The MDA-MB-231 

(ATCC HTB-26) epithelial mammary adenocarcinoma cells were cultured in Eagle's 

minimum essential medium (EMEM; Invitrogen) containing 5% fetal calf serum (FCS, 

Cambrex), 2 mM L-glutamine (Invitrogen), 0.06% HEPES (Invitrogen) and penicillin (50 

IU/ml)/ streptomycin (50 lg/ml; Invitrogen) at 37 °C in a humidified atmosphere of 5% CO2 

in air. Transformed mouse NPCs were cultured in suspension under neurosphere conditions 

at 37 °C in a humidified atmosphere of 95% O2 and 5% CO2 in DMEM F12 (Invitrogen 

11320-074) supplemented with 1x B27 supplement (Invitrogen 17504-044), 5% penicillin-

streptomycin (Biochrom 10378-017), 10 ng/ml EGF (R&D systems 236-EG), 10 ng/ml FGF 

(PeproTech 100-18B).

8.14 Antiproliferative Properties

Antiproliferative properties of the synthesized compounds were evaluated by the MTT 

assay. All compounds were dissolved in DMSO at a concentration of either 100 mM or 50 
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mM prior to cell treatment. The cells were trypsinized and seeded at various cell 

concentrations depending on the cell type. The cells were grown for 24 h to 72 h, treated 

with compounds at concentrations ranging from 0.001 to 100 M and incubated for 48 or 72 h 

in 100 or 200 μL media depending on the cell line used. The number of experiments and 

replicates varied depending on the cell line. Cells treated with 0.1% DMSO were used as a 

negative control; 1 μM PAO was used as a positive control.

8.15 Selection of Doxorubicin Resistant Cells

Selection of the MES-SA/Dx5 cell line was done according to Harker et al [70]. The cells 

were split and allowed to adhere overnight. The next day cells were initially exposed to 

doxorubicin (DOX) at the concentration of 100 nM, which represented the GI50 

concentration. The cells were maintained at this DOX concentration until their growth rate 

reached that of the untreated cells. The DOX concentration was then increased in two-fold 

increments following the same growth criteria at each concentration to a final DOX 

concentration of 500 nM. Each new DOX concentration required approximately 2 passages 

to reach the growth rate of the untreated cells.

8.16 CytoTox-Fluor™ Cytotoxicity Assay

The CytoTox-Fluor cytotoxicity assay from Promega has been used according to 

manufacturer′s instructions. In brief, 0,015 ×106 cells/well were plated in 24 well-plates in 

450 μl (5 replicates per condition) then they received 50 μl of culture medium (DMEM-F12 

without phenol red) supplemented with the drugs or respective vehicle control. After 24 

hours of incubation at 37 °C, 20 μl of cell suspension was transferred to a black 384 well-

plate and mixed with 20 μl of bis-AAF-R110 substrate dilution. After 2 hours of incubation 

at 37 °C, the fluorescence intensity was measured using the Tecan InfiniteF200 fluorescence 

plate reader (485 nm Ex/520 nm Em). Blank was subtracted from all wells and the 

fluorescence read-out for untreated cells (vehicle control) was normalized to 1. Read-outs 

from cells receiving different treatment conditions were normalized to those of untreated 

cells and fold change of relative cytotoxicity compared to untreated cells was calculated for 

each well. Graphs were generated using the GraphPad Prism software.

8.17 [3H]-Resiniferatoxin Binding Assay

To evaluate the possible affinity of different analogues to the vanilloid site of TRPV1, a 

[3H]-resiniferatoxin ([3H]-RTX) binding assay was performed as previously described 

[77,78]. Briefly, rats spinal cord were homogenized in buffer A (pH 7.4, 5 mM KCl, 5.8 mM 

NaCl, 2 mM MgCl2, 0.75 mM CaCl2, 137 mM sucrose, and 10 mM HEPES) and 

centrifuged for 10 minutes at 1000g at 4 °C and the supernatant was further centrifuged for 

30 min at 35,000g at 4 °C. The resulting pellets were than resuspended in buffer A and 

frozen until assayed. The binding reaction was performed in a final volume of 500 μL, 

containing buffer A (plus 0.25 mg/mL bovine serum albumin, BSA), membranes (0.5 mg/

mL), and 2 nM [3H]-RTX in the presence or absence of analogues of 1 (10 μM). For the 

measurement of the nonspecific binding, 100 μM nonradioactive RTX were included used. 

The reaction was started by incubating tubes at 37 °C during 60 minutes, and stopped by 

transferring the tubes to ice bath and adding 100 μg of bovine α1-acid glycoprotein (to 
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reduce nonspecific binding). Finally, the bound and free membranes [3H]-RTX were 

separated by centrifuging for 30 min at 35,000g at 4 °C. The pellet was used to quantify the 

scintillation counting. The specific binding was calculated as the difference of the total and 

nonspecific binding and the results were measured as % of specific binding.

8.18 Intracellular Ca2+ measurements

Cells were grown on glass coverslips for fluorescence imaging. The cytosolic calcium was 

measured using Fura-2-loaded cells. Cells were loaded for 45 min at 37 °C in a humidified 

atmosphere of 5% CO2 in air with 3.3 μM Fura-2/AM prepared in saline solution. 

Fluorescence was excited at 350 and 380 nm alternately using a monochromator 

(Polychrome IV; TILL Photonics, Planegg, Germany), and captured by a Cool SNAP HQ 

camera (Princeton Instruments, France) after filtration through a long-pass filter (510 nm). 

Metafluor software 7.0 (Molecular Devices) was used for acquisition and analysis. All 

recordings were carried out at room temperature. The cells were perfused with the saline 

solutions comprising of (in mM): NaCl 140, KCl 5, CaCl2 2, MgCl2 2, HEPES 10 and 

Glucose 5 (pH adjusted to 7.4 with NaOH).

8.19 Computer modeling

Molecular modelling was performed using Discovery Studio 4.5 (DS). The receptor 

template was obtained from the PDB (ID 3J5R) and chains B and D were retained for the 

simulations. Protein preparation was carried out using the Prepare Protein protocol launched 

from within DS. All docking simulations were carried out using a modified CDocker 

protocol with pregeneration of ligand conformations to adequately sample conformational 

space. Minimizations were carried out within DS employing the CHARMm forcefield 

(version 39.1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ATCC American Type Culture Collection

BSA bovine serum albumin

CBD cannabidiol
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cdkn2a cyclin-dependent kinase inhibitor 2A

DMEM Dulbecco's modified Eagle's medium

DSMZ Deutsche Sammlung von Mikroorganismen and Zellkulturen

ECACC European Collection of Cell Culture

EMEM Eagle's minimum essential medium

EGFRvIII epidermal growth factor receptor variant III

FBS fetal bovine serum

GBM glioblastoma multiforme

HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid

MDR multidrug resistance

MS mass spectrometry

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NSCLC non-small-cell lung cancer

NPC neural precursor

PAO phenyl arsine oxide

P-gp P-glycoprotein

PDGFB platelet-derived growth factor subunit B

RPMI Roswell Park Memorial Institute

RTX resiniferatoxin

TRPV1 transient receptor potential vanilloid 1 receptor.
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A number of unique C12-Wittig derivatives of the vanilloid polygodial were 

prepared.

The C12-Wittig derivatives were found to be more potent than polygodial.

The C12-Wittig derivatives maintained potency against drug-resistant cancer cells.

The C12-Wittig derivatives form pyrroles with amines in an unprecedented manner.

The C12-Wittig derivatives exert their anticancer action through cytostatic effects.
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Figure 1. 
Structures of selected α,β-unsaturated 1,4-dialdehyde terpenoids.
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Figure 2. 
(A) Demonstration of the feasibility of the modified Paal-Knorr condensation of 1 to form 

pyrrole 2, (B) Paal-Knorr pyrrole formation implicated in the neurotoxicity of hexane and 

(C) novel pyrrolylation of primary amines with C12-Wittig derivatives reported herein.
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Figure 3. 
Synthesis of C12-Wittig derivatives 5–13 and formation of pyrrole 14 from 5 and BnNH2.
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Figure 4. 
(A) The absense of resistant populations in all 5 cultures tested with analogue 5 and 

contrasting effects on viability of all cells between 5 and standard chemotherapeutic agents 

paclitaxel and podophyllotoxin in (B) A549 NSCLC and (C) U87 glioblastoma cell cultures. 

PODO = podophyllotoxin, PAO = phenyl arsine oxide.
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Figure 5. 
Activity of 5 against neurosphere glioma cell cultures with clinically relevant mutations. 

Transgenic mouse glioma cells of defined molecular subtypes were generated by forced 

expression of EGFRvIII (classical GBM subtype), PDGFB (proneural GBM subtype) in 

cdkn2a-deficient and cdkn2a/TRPV1-doubly deficient subventricular neural precursors 

(NPC). These primary cell cultures were treated for 24 hours either with 10 μM CBD versus 

a corresponding vehicle-control (containing 0,01% DMSO) or 20 μM of 5 versus vehicle 

control (0,02% DMSO). Cytotoxicity was measured 24 h after incubation and base-line 

cytotoxicity levels in the controls were arbitrarily defined as 1. Read-outs from treated cells 

were normalized to their respective vehicle controls and fold change of relative cytotoxicity 

was calculated. Each bar represents the mean ± SD from two independent experiments; 

satistical significance, as determined by unpaired t-tests, is indicated: *** represents p < 

0,001; ** p < 0,005; * p=0,0257; ns not significant).

Dasari et al. Page 25

Eur J Med Chem. Author manuscript; available in PMC 2016 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
(A) Evaluation of compound 5 in a [3H]-RTX TRPV1 displacement assay. Effects of 1 and 

5 at the concentration of 10 μM on the specific binding of [3H]-RTX to the vanilloid site of 

TRPV1 receptor from rats spinal cord membranes. Results are expressed as mean ± S.E.M 

from 3 independent experiments, analyzed by one way analysis of variance (ANOVA), 

followed by Dunnett's multiple comparison test (***p<0.05 and ****p<0.001). (B and C) 

Evaluation of 5 for TRPV1 activity in MDA-MB-231 breast cancer cells. (B) Effect of 1 (80 

μM) on MDA-MB-231 [Ca2+]i. (C) Effect of 5 (20 μM) on MDA-MB-231 [Ca2+]i.
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Figure 7. 
Molecular modeling showing the capsaicin binding region of TRPV1, with the likely 

binding pose of capsaicin (left). Compound 1 is also well accommodated in this pocket 

(middle), but the Wittig derivative 5 (right - displayed in orange and overlayed with 1 in 

green) is required to bind with its apolar ester chain embedded in the polar “southern” region 

of the pocket (as highlighted by the solvent interpolated charge surface).
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Figure 8. 
In vitro videomicroscopic analysis of the anticancer effects of 1 and its C12-Wittig 

derivatives 5 and 13. The U373 human glioma cell line was treated with polygodial, 5 and 

13 at their mean GI50 concentrations (Table 1) or left untreated. Videomicroscopy enabled 

taking pictures of the culture field every 4 minutes. The experiment was conducted once in 

triplicate. While the morphology of cells treated with 1 was fixed over time, 5 and 13 
exerted cytostatic effects on U373 cells.
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Figure 9. 
Viability of U373 cells by trypan blue staining. U373 cells were treated for 72 h with 1 or 13 
and stained with trypan blue. The experiment was conducted once in triplicate. After having 

taken pictures, cells were fixed with ice-cold methanol and again stained with trypan blue as 

internal positive control. While cells treated with 1 were all blue-stained before methanol 

fixation, the 13-treated cells were still alive after 72 h of treatment.
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Table 1

In Vitro growth inhibitory effects of the C12-Wittig derivatives of 1

compound
GI50 in vitro values (μM)

a

A549 SKMEL-28 MCF-7 U373 Hs683 Mean + SEM

1 90 65 75 >99 95 > 85 ± 6

5 21 27 7 22 24 20 ± 3

6 25 29 30 37 29 30 ± 2

7 26 37 27 37 28 31 ± 2

8 29 41 32 40 29 34 ± 3

9 28 39 27 39 31 33 ± 3

10 29 25 31 27 12 25 ± 3

11 27 42 31 36 28 33 ± 3

12 24 28 20 25 22 24 ± 1

13 30 36 30 35 33 33 ± 1

a
Average concentration required to reduce the viability of cells by 50% after a 72 h treatment relative to a control, each experiment performed in 

sextuplicates, as determined by MTT assay.

Eur J Med Chem. Author manuscript; available in PMC 2016 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dasari et al. Page 31

Table 2

Antiproliferative effects of 5 against MDR cells

GI50 in vitro values (μM)
a

MES-SA MES-SA/Dx5

Paclitaxel 0.007 10

Vinblastine 0.006 5

5 40 45

a
Concentration required to reduce the viability of cells by 50% after a 48 h treatment with the indicated compounds relative to a DMSO control 

from two independent experiments, each performed in 4 replicates, as determined by the MTT assay.
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