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Abstract

Background & Aims—Chronic unexplained nausea and vomiting (CUNV) is a debilitating 

disease of unknown cause. Symptoms of CUNV substantially overlap with those of gastroparesis, 

so the diseases therefore may share pathophysiologic features. We investigated this hypothesis by 

quantifying densities of interstitial cells of Cajal (ICCs) and mapping slow wave abnormalities in 

patients with CUNV vs controls.

Methods—Clinical data and gastric biopsy specimens were collected from 9 consecutive patients 

with at least 6 months of continuous symptoms of CUNV, but normal gastric emptying, treated at 

the University of Mississippi Medical Center, and from 9 controls (individuals undergoing 

bariatric surgery but free of gastrointestinal disease or diabetes). ICCs were counted and 

ultrastructural analyses were performed on tissue samples. Slow-wave propagation profiles were 

defined by high-resolution electrical mapping (256 electrodes; 36 cm2). Results from patients with 

CUNV were compared to those of controls as well as patients with gastroparesis who were 

previously studied by identical methods.

Results—Patients with CUNV had fewer ICCs than controls (mean 3.5 vs 5.6 bodies/field; P<.

05), with mild ultrastructural abnormalities in the remaining ICCs. Slow-wave dysrhythmias were 
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identified in all 9 subjects with CUNV vs only 1/9 controls. Dysrhythmias included abnormalities 

of initiation (stable ectopic pacemakers, unstable focal activities) and conduction (retrograde 

propagation, wave front collisions, conduction blocks, and re-entry), operating across 

bradygastric, normal (range 2.4−3.7 cycles/min), and tachygastric frequencies; dysrhythmias 

showed velocity anisotropy (mean 3.3 mm/s longitudinal vs 7.6 mm/s circumferential, P<.01). 

ICCs were less depleted in patients with CUNV than those with gastroparesis (mean 3.5 vs 2.3 

bodies/field; P<.05), but slow-wave dysrhythmias were similar between groups.

Conclusions—This study defined cellular and bioelectrical abnormalities in patients with 

CUNV, including the identification of slow-wave re-entry. Pathophysiologic features of CUNV 

were observed to be similar to those of gastroparesis, indicating that they could be spectra of the 

same disorder. These findings offer new insights into the pathogenesis of CUNV and may help to 

inform future treatments.
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INTRODUCTION

Chronic unexplained nausea and vomiting (CUNV) is a relatively uncommon but 

debilitating disease. The cause is currently unknown, with patients exhibiting chronic gastric 

symptoms while demonstrating normal gastric emptying and lacking obstruction or obvious 

structural abnormality.1,2

Pasricha et al. recently comprehensively reported the clinical features of CUNV.2 It was 

found that the features of this disorder overlap substantially with gastroparesis, being almost 

identical in terms of demographics, symptoms, disease duration, health care utilization, and 

quality of life. Similar observations have also been reported elsewhere.3,4 Pasricha et al. 

concluded that CUNV is poorly defined and not adequately categorized by Rome III criteria, 

and that further research was needed to determine whether CUNV is part of a spectrum of 

the same syndrome as gastroparesis, or represents a distinct disorder(s).2

There has been substantial recent progress in understanding the pathogenic mechanisms of 

gastroparesis,5,6 and among several contributing factors, there is an increasing focus on the 

role played by interstitial cells of Cajal (ICC). ICC depletion is now recognized as the 

predominant cellular abnormality in gastroparesis.7–9 By contrast, few studies to date have 

investigated the mechanisms underlying CUNV,10 and a role for ICC has not been 

adequately evaluated.

ICC generate and propagate slow waves, which coordinate phasic gastric contractions, and 

ICC loss in gastroparesis is known to be associated with dysrhythmic slow wave activity.9,11 

In particular, a recent study, using new techniques of high-resolution (HR), multi-electrode 

mapping,12 demonstrated a range of abnormal slow wave initiation and conduction patterns 

in most patients with gastroparesis, which were not observed in controls.9 Gastric 

dysrhythmias are associated with nausea and vomiting, potentially causing these symptoms, 
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and could therefore be contributing to the pathophysiology and symptomatology of both 

CUNV and gastroparesis.13,14

In this study, we hypothesized that ICC depletion and spatially-complex slow wave 

dysrhythmias occur in CUNV, as has been found in gastroparesis. This hypothesis was 

tested by performing ICC density and ultrastructural analyses, in combination with in-vivo 

HR gastric mapping in a cohort of CUNV patients, with comparison to new controls and 

gastroparetic patients previously investigated using identical methods.

METHODS

Ethical approval was granted by the New Zealand Regional Ethics Committee, and by the 

Institutional Review Boards at The University of Mississippi and Mayo Clinic. All patients 

provided informed consent.

Patients

CUNV Cohort: Consecutive patients with at least six months of continuous symptoms of 

CUNV who were undergoing implantation of gastric electrical stimulation devices at the 

University of Mississippi Medical Center were invited to participate. All patients had a 

history, drug history, physical examination, upper endoscopy, and appropriate radiological 

and laboratory investigations to exclude other causes of symptoms. Patients with cyclic 

vomiting syndrome were excluded.15 Patients were also excluded if they had gastroparesis, 

as diagnosed by scintigraphy testing according to a standardized test meal16 and consensus 

recommendations (>60% retention at 2 hours and / or >10% gastric retention at 4 hours),2,17 

or malignancy, primary eating disorders, or pregnancy. Hyperglycemia can induce 

dysrhythmias,18 and blood glucose was kept within the normal range during the 

perioperative period.

Demographic data, comorbidities, medical histories, and body mass index were recorded. 

Total symptom scores were calculated by scoring five symptoms (pain, bloating / distension, 

nausea, vomiting, and early satiety) on a five-point scale (0, absent; 4, severe).9

ICC Controls were age-matched patients undergoing bariatric surgery, who were free of 

gastrointestinal diseases or diabetes. Obesity does not affect ICC numbers,7 but age 

matching was performed because ICC decrease by approximately 13% per decade.19

HR mapping controls were patients undergoing elective upper-abdominal surgery. Patients 

were excluded if they had previous gastric surgery, known gastric pathology, or a condition 

in which dysrhythmic gastric activity has been described, including gastroparesis, gastric 

tumors, pregnancy, anorexia nervosa, functional dyspepsia, atrophic gastritis, or hypo- or 

hyperthyroidism.13,20 Control patients were not taking gastric prokinetics or medications 

affecting gastric electrical activity.

A historical cohort of gastroparetic patients was utilized for further comparison.9 These 

patients underwent HR gastric mapping and ICC density analysis using identical methods, at 

the same institutions.
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ICC Density and Ultrastructural Analysis

Full-thickness gastric biopsy specimens were collected from the anterior stomach, midway 

between the curvatures and approximately 9 cm proximal to the pylorus. This site is the 

same as that chosen by the Gastroparesis Clinical Research Consortium (GpCRC) in their 

studies of cellular defects in gastroparesis.7,8 ICC cell bodies in the circular muscle layer 

were identified using a Kit antibody (mouse 1:400; Lab Vision MS-482-P; Thermo Fisher 

Scientific, Waltham, MA) and a 4-,6-diamidino-2-phenylindole (DAPI) nucleus 

counterstain, where co-localization of a DAPI-positive nucleus within a Kit-positive ICC 

signified an ICC cell body. Using the methods described by Grover et al7,21 ICC density 

was calculated by quantifying the number of cell bodies per field across 20 high-powered 

fields per specimen. Electron microscopy studies of ICC were also performed on CUNV and 

control tissues using previously described methodology.8

High-Resolution Electrical Mapping

HR mapping was performed using established and validated extracellular methods.9,22,23 

Flexible printed circuit board (PCB) electrode arrays were used (96–256 electrodes; 4–5.2 

mm interelectrode spacing; Figure 1A).24 All recordings were performed intraoperatively 

after general anesthesia and laparotomy (Table 1). These anesthetic conditions are not 

known to affect slow waves,22,25 except for the use of opiates, which may be associated 

with myoelectrical abnormalities.26

Mapping was undertaken before organ handling or stimulator placement. The PCBs were 

laid on the anterior serosa with reference to gastric landmarks.22 Warm saline-soaked gauze 

was overlain, and the cables were allowed to move freely with respiration. Patients were 

mapped for up to 15 minutes, over 1–3 gastric regions. Reference electrodes were placed on 

the shoulders and unipolar signals were acquired at 512 Hz using an ActiveTwo System 

(Biosemi, The Netherlands) modified for passive recordings.

Signal Processing, Analysis, and Interpretation

HR mapping data was analyzed in the Gastrointestinal Electrical Mapping Suite (GEMS), v.

1.5.27 Recordings were down-sampled (30 Hz) and filtered with moving-median and 

Savitzky-Golay filters.28 Slow wave activation times were identified using the FEVT 

algorithm,29 and were clustered into cycles using the REGROUPS algorithm,30 with manual 

correction. Activation maps were calculated (e.g., Figure 1),30 and sites of conduction block 

were identified. Slow wave propagation animations were generated.27

Frequency was calculated by averaging the cycle-to-cycle intervals between activation 

times. The normal human gastric slow wave frequency was defined as 2.4 – 3.7 cycles/min 

based on electrogastrography literature.31 Velocity was calculated using a finite difference 

method with Gaussian-smoothing filter, and visualized using directional arrows on a color-

gradient speed map.32 In addition, velocity was secondarily averaged across regions of 

circumferential and longitudinal propagation, to investigate conduction anisotropy.33 

Amplitudes were calculated by applying a peak-to-trough detection algorithm.28
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All data were screened for dysrhythmias by isochronal mapping and animation.27 

Dysrhythmias were identified, defined, and quantified by frequency, rhythm (stable vs 

unstable), and spatial pattern (abnormalities of initiation and/or conduction), using 

established methods.9,34,35 Data were expressed as a mean ± SD or SEM, or median and 

range. Student’s t test was used for the statistical analyses, unless otherwise noted, with a 

significance threshold of P < 0.05.

RESULTS

Study Populations

The CUNV cohort consisted of 9 consecutive patients (4 diabetic), with median 4-hour 

gastric retention of 4% (range 2 – 9%) and median total symptom score of 16/20 (range 9.5–

20). The mean time from gastric emptying test to surgery was 2.1 ± 2.3 months. The HR 

mapping controls also consisted of 9 patients, of comparable age to the CUNV cohort 

(P=0.14). Table 1 compares the CUNV and HR mapping control populations, with 

individual patient data provided in Supplementary Tables 1 and 2. The ICC control cohort 

was appropriately age-matched to the CUNV cohort (paired mean difference 0.3 years; 

P=0.8).

ICC Density and Ultrastructural Analysis

Tissue specimens were obtained from 7/9 CUNV patients. Figure 2 shows representative 

images comparing ICC density and ultrastructural features between CUNV patients and 

controls. Overall, average ICC density was reduced in CUNV patients compared to controls 

(mean 3.5 ± 0.3 SEM vs 5.6 ± 0.5 cell bodies/field; P<0.05; Figure 3). There was no 

difference between ICC densities from CUNV patients with diabetes versus without (P=0.9). 

Individual ICC densities for the CUNV patients are reported in Supplementary Table 1 

(range: 2.8 – 4.7 cell bodies/field).

The results for ICC density in CUNV patients were then compared with the historical 

gastroparetic cohort (mean 2.3 ± 0.3 SEM bodies/field), collected and analyzed using 

identical protocols.9 A one-way ANOVA between the CUNV, gastroparesis, and combined-

control cohorts showed that ICC density differed significantly across the three groups 

(P<0.05). A Newman-Keuls post-hoc comparison between the three groups indicated that 

the combined controls had higher ICC density than the CUNV (P<0.05; mean difference: 

2.0 bodies/field) and gastroparesis (P<0.05; mean difference: 3.2 bodies/field) cohorts. In 

addition, ICC density was higher in the CUNV than gastroparesis cohort (P<0.05; mean 

difference: 1.2 bodies/field; Figure 3).

Ultrastructural analyses revealed abnormalities in the ICC of 5/7 sampled CUNV patients 

compared to matched controls (Figure 2C,D). These abnormalities were less severe than 

those previously reported in gastroparesis,8 primarily consisting of thickened basal lamina, 

particularly near nerve endings, smooth muscle cells, and nerve fibers, as well as scattered 

cytoplasmic anomalies including lamellar bodies, dilated reticulum, vacuoles, and myelin 

bodies (Figure 2C).
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High-Resolution Electrical Mapping

Controls—A total of 11 recordings were performed on the 9 controls at the mid-to-lower 

gastric corpus and antrum (Figure 1), with a mean recording duration of 10 ± 3 SD min/

patient. The mean slow wave frequency across the control cohort was 2.7 ± 0.1 SEM cycles/

min. In 8/9 patients, entirely normal gastric activation patterns were observed; slow wave 

activity propagated exclusively in the antegrade direction with wavefronts oriented 

orthogonal to the curvatures (Figure 1). In these 8 controls, all activity was consistent with 

the established single pacemaker system of the normal human stomach (mean corpus 

velocity 3.0 ± 0.3 SEM mm/s).22

In one control (ID #4 in Supplementary Table 2), dysrhythmic slow wave activity was 

observed. At the time of mapping this patient, it was noted that the stomach was 

significantly distended with air following pre-oxygenation and intubation. This dysrhythmia 

occurred as a stable ectopic pacemaker in the mid-corpus, was present at the onset of 

mapping, and persistent for 330 seconds before becoming entrained by normal antegrade 

activity (Supplementary Figure 1).

CUNV Patients—A total of 18 recordings were performed on the corpus and antrum of the 

9 CUNV patients, with a mean duration of 11 ± 5 SD min/patient, which was comparable to 

the control recordings (P = 0.7). Dysrhythmic slow wave activity was observed in all 9/9 

patients, and the observed dysrhythmias were classified as abnormalities of initiation (8/18 

recordings; 6/9 patients) or abnormalities of conduction (11/18 recordings; 8/9 patients). 

Abnormalities of initiation and conduction coexisted in 5/9 patients. These dysrhythmic 

patterns were further classified according to the schema summarized in Figure 4.

Across all CUNV patients, the mean frequency during dysrhythmic slow wave activity was 

3.3 ± 0.3 SEM cycles/min (range 2.0 – 5.1 cycles/min), which was similar to that of controls 

(P > 0.05). Dysrhythmias occurred at normal frequency in 5/9 patients, bradygastric 

frequency (<2.4 cycles/min) in 2/9 patients, and tachygastric frequency (>3.7 cycles/min) in 

2/9 patients.

Slow wave activity propagated at a mean longitudinal velocity of 3.3 ± 0.6 SEM mm/s in the 

dysrhythmic CUNV cohort, which was similar to that in controls (P = 0.7). Circumferential 

propagation was also routinely observed during dysrhythmia and exhibited a highly 

anisotropic velocity profile, whereby propagation occurred more rapidly in the 

circumferential direction (mean 7.6 ± 1.5 SEM mm/s) than the longitudinal direction (P < 

0.01). During longitudinal propagation, the extracellular slow wave amplitudes were 

comparable between CUNV patients and controls (mean 0.30 ± 0.08 SEM vs 0.33 ± 0.05 

mV; P = 0.7).

Abnormalities of Slow Wave Initiation—Abnormal initiation of slow wave activity 

was identified in 8/18 recordings from 6/9 patients (Figure 5 and Supplementary Figure 2), 

whereby slow wave activity was initiated from a location other than the normal gastric 

pacemaker region (greater curvature, mid-to-upper corpus22). These abnormalities of 

initiation were further classified as either stable (occurring consistently in the same location 

over time) or unstable (transient focal activities occurring in variable locations). Stable 
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ectopic initiation (ectopic pacemaking; e.g., Supplementary Figure 2) was the most 

prevalent abnormality of initiation, observed in 4 patients, and occurring for a mean 

captured duration of 109 ± 42 SD s, although all instances were either present at the 

beginning, or persistent through the end, of the recording period. Unstable ectopic focal 

activities were observed in 2 patients, and lasted for only 18 s (1 cycle) and 50 s (2 cycles; 

Figure 5C, D), respectively.

Abnormal slow-wave initiation occurred at mean frequency of 3.1 ± 0.5 SEM cycles/min 

(range 2.0 – 5.1 cycles/min), with individual ectopic events occurring at bradygastric (1 

stable; 1 unstable), normal (3 stable), and tachygastric (1 unstable) frequencies. One patient 

(Figure 5; ID #2, Supplementary Table 1) displayed unstable focal activity for two cycles at 

bradygastric frequency (mean 2.0 ± 0.1 SD cycles/min; Figure 5C, D), which was then 

entrained by a new stable ectopic pacemaker occurring at a normal frequency (mean 3.2 ± 

0.2 SD cycles/min; Figure 5E, F) that continued to the end of the recording period.

Ectopic slow wave initiation was always associated with disorganized slow wave 

propagation. These patterns were characterized as secondary abnormalities of conduction 

and are described in the following section.

A third abnormality of slow wave initiation was observed in three recordings from a single 

patient (ID #1, Supplementary Table 1), whereby a complete lack of slow wave initiation 

and activity occurred across the entire mapped field of all three consecutive recordings. The 

electrode signals from these recordings exhibited stable baseline activity with low noise, and 

cardiac signal complexes were clearly distinguishable under modified filtering parameters 

(Supplementary Figure 3), indicating that the electrodes were functioning and that 

satisfactory contact with the serosal surface had been achieved.

Abnormalities of Slow Wave Conduction—Abnormalities of slow wave conduction 

occurred in 11/18 recordings in 8/9 patients and included conduction blocks, re-entrant 

activity, retrograde propagation, and colliding wavefronts.

Conduction blocks occurred in 4/9 patients, whereby slow wave activation terminated 

abnormally. In one case (Figure 5), a complete conduction block manifested between 

uncoupled slow wave activation propagating in opposite directions, where the block 

extended the entire width of the mapped area. In the other three cases of observed 

conduction blocks, the blocks were incomplete, inducing a wavelet that subsequently excited 

the tissue region distal to the block (e.g., Supplementary Figure 4).

Re-entrant slow wave activity occurred in a single patient, whereby wavefronts propagated 

in a complete loop around a line of unidirectional block, continuously re-activating the same 

tissue circuit over successive cycles (Figure 6). Wavefronts emanated outward from the site 

of re-entry (mean frequency 3.3 ± 0.2 SD cycles/min), establishing propagation in all 

directions and resulting in wavefront collisions with antegrade-propagating wavefronts. In 

addition, there was one further case of conduction block with looping propagation pattern 

that was incompletely captured by the mapped field, and was therefore classified as being of 
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indeterminate origin. This dysrhythmia operated at a tachygastric frequency (mean 4.3 ± 0.3 

SD cycles/min).

In general, disorganized slow wave propagation occurred secondary to all of the previously 

described abnormalities of initiation and conduction, and was quantified as retrograde 

propagation and wavefront collisions. Retrograde propagation occurred in 10/18 recordings 

across 8/9 patients, originating from ectopic pacemakers (5 recordings), sites of re-entry (1 

recording), and unidentified sites outside the mapped field (4 recordings). Retrograde 

propagation occurred at a mean velocity of 3.3 ± 0.7 SEM mm/s, which was comparable to 

that of antegrade propagation in controls (mean 3.0 ± 0.3 SEM mm/s; P = 0.7) and CUNV 

(mean 3.3 ± 0.6 SEM mm/s; P = 0.9), demonstrating directional velocity isotropy in the 

longitudinal axis of the human stomach.

Wavefront collisions occurred in 7/18 recordings across 5/9 patients, where a retrograde or 

circumferentially-propagating wavefront collided with opposing propagation (e.g., Figures 5 

and 6, and Supplementary Figure 2). Wavefront collisions were associated with wavefronts 

originating from ectopic pacemakers (4 recordings; e.g., Figure 5 and Supplementary Figure 

2), unidentified sources located outside of the mapped field (2 recordings), and re-entry (1 

recording; Figure 6).

Normal Slow Wave Propagation—Although all CUNV patients exhibited some form of 

dysrhythmic activity during at least one of their recording periods, a subset of 4/18 

recordings from 3/9 patients displayed a normal slow wave propagation pattern for the entire 

recorded duration. This normal propagation occurred at a mean frequency of 2.8 ± 0.2 SEM 

cycles/min (range 2.4 – 3.2 cycles/min) and propagated at a mean longitudinal velocity of 

2.8 ± 0.6 SEM mm/s, both of which were similar to that of controls (P = 0.8 and 0.6, 

respectively).

DISCUSSION

CUNV is accompanied by considerable morbidity, but has remained a poorly characterized 

disorder of unknown etiology. This study quantified ICC numbers and ultrastructural 

features, in combination with modern slow wave mapping techniques,12 to investigate 

pathogenic mechanisms contributing to CUNV. It was found that CUNV patients had ICC 

depletion and abnormal slow wave initiation and conduction, compared to controls. Further 

comparison to a historic cohort of gastroparetic patients9 revealed that ICC depletion and 

ultrastructural abnormalities were less severe in CUNV than in gastroparesis, but 

abnormalities of slow wave initiation and conduction were similar. The cellular and 

electrophysiological abnormalities observed in this study offer plausible contributing 

mechanisms to the pathophysiology of CUNV.

This study was partly motivated by a recent report by Pasricha et al., which provided the 

first comprehensive account of the demographic and clinical features of CUNV.2 CUNV 

was shown to be clinically indistinguishable from gastroparesis over a one-year follow-up 

period, which is consistent with other literature.3,4 Pasricha et al. concluded that further 

research was needed to conclusively determine whether CUNV is part of a spectrum of the 
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same syndrome as gastroparesis, or represents a distinct disorder(s).2 Both conclusions may 

hold truth as CUNV is likely heterogeneous. However, our study does support the idea that 

CUNV may, at least in part, be encompassed within the same disease spectrum as 

gastroparesis, by demonstrating that these disorders share common cellular and bioelectrical 

pathophysiologies.7,9 Of note, the ICC depletion and ultrastructural abnormalities in the 

CUNV cohort were less marked than in previous gastroparesis cohorts analyzed by 

equivalent methods,8,9 and the actual ICC densities are consistent with a previous 

observation that depletion of less than 3 ICC bodies per field may represent a threshold 

below which failure of gastric emptying becomes more likely.19 Gastric distension has been 

ruled out as a confounding factor in ICC counts using comparative smooth muscle nuclei 

counts.9

We focused on ICC because they are the predominant cellular abnormality in gastroparesis,7 

and because ICC densities correlate with gastric emptying, unlike other markers.21 

However, ICC, neuronal, and smooth muscle pathologies often co-exist, perhaps due to 

cellular interdependence, and it is not always clear which changes hold primacy.36 Other 

histologic abnormalities described in gastroparesis include an immune cell infiltrate typified 

by CD45 and CD68 immunoreactivity, decreased nerve fibres,7 and ultrastructural 

degradation of remaining ICC.8 These factors were not a focus of the present study, but 

would be of interest in future studies of CUNV.

The HR mapping outcomes reported in this study corroborate and expand the known range 

of dysrhythmic human slow wave patterns. These patterns have been accurately assessed in 

only one previous study in gastroparetic patients,9 of which the results of the present study 

are consistent. CUNV and gastroparesis both showed heterogeneous patterns of abnormal 

initiation and conduction, including stable and unstable ectopic pacemaking, conduction 

blocks, and secondary propagation abnormalities of retrograde propagation and colliding 

wavefronts. It was also shown that human gastric dysrhythmias routinely occurred within a 

frequency range considered normal, while normal activity could occur at frequencies 

sometimes considered abnormal, challenging ‘normal’ frequency conceptions.31 These 

results validate and reinforce that spatial mapping enables a substantially more accurate 

method of dysrhythmia detection than classical electrogastrography, which mainly focused 

on frequency31 and therefore likely underestimated the occurrence of slow wave 

abnormalities. The results from the present study also facilitate an updated classification 

schema for human gastric dysrhythmias, focused on spatial pattern.9 Furthermore, the 

finding that a subset of 4/18 recordings exhibited normal activity demonstrated that multiple 

recordings, or at least sustained recordings of greater than about five minutes, may be 

necessary to consistently detect dysrhythmic activity.

This study described re-entrant slow wave activity in the human gut. Originally described by 

Lammers et al. in 2008 in a canine model,37 and subsequently in several other invitro and 

in-vivo animal models,34,35,38 re-entry is now a focus of considerable recent interest as a 

mechanism of sustained gastrointestinal dysrhythmias.39 Based on our findings, re-entry is a 

relatively uncommon dysrhythmia in the human stomach, likely because there is a narrow 

excitable gap, or window, in which an aberrant stimulus can successfully invoke a re-entry, 

based on the relative timing of the leading depolarizing edge and refractory tail.34,35,39 Re-
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entry is also an important finding because it is a potentially treatable form of dysrhythmia, 

for example, by gastric pacing guided by mapping,40 as is routinely achieved in cardiology.

The fact that CUNV patients had normal gastric emptying despite pronounced dysrhythmia 

is consistent with previous literature, which has shown an overall positive predictive value 

of EGG abnormalities for abnormal gastric emptying of only ~65%.31 Significantly, gastric 

emptying shows no correlation with nausea and vomiting, while dysrhythmia shows 

consistent correlations with these symptoms across multiple disease states.2,13 It is therefore 

evident that the stomach has compensatory mechanisms that may preserve emptying despite 

dysrhythmias, including the rapid circumferential conduction evident in this study, which 

may aid in restoring propulsive ring contractions distal to dysrhythmic events.9,33 Together 

with dysrhythmias, other ICC abnormalities occurring in gastroparesis could cumulatively 

be contributing to delayed emptying. For example, residual ICC in gastroparesis show 

marked cellular damage, and may generate a reduced volume of current to excite smooth 

muscle.8,9,13 ICC roles in modulating resting membrane gradients, neurotransmission, and 

mechanotransduction could also be significant, but more research is needed. The presence of 

a thickened basal lamina at the contact between ICC and nerve endings in CUNV patients is 

suggestive of impairment in the crosstalk, which in turn could influence the ICC rhythmic 

activity. Further studies are now required to investigate mechanisms by which ICC damage 

causes dysrhythmia, and how dysrhythmia causes nausea and vomiting, with current 

evidence suggesting such causal associations are plausible.13

One control subject exhibited dysrhythmic slow wave activity, characterized by tachygastric 

ectopic pacemaking in the mid-corpus. This represents the only instance of slow wave 

dysrhythmia in 21 normal controls mapped to date (9 in this study, 12 in a previous study22), 

and may have occurred due to excessive gastric distension in this patient following 

anesthetic induction and intubation. A similar type of dysrhythmic initiation has previously 

been described with antral balloon distension in healthy humans.41 It may prove necessary 

to exclude subjects showing gastric distension in future studies. It is also possible that 

normal subjects have episodes of self-correcting dysrhythmia. The research implication of 

this dysrhythmic finding in a control patient was that it provided an opportunity to quantify 

circumferential conduction parameters in the healthy human stomach. The observed 

conduction profile in this patient exhibited velocity anisotropy similar to that observed in the 

ICC-depleted CUNV cohort, and also previously observed in animals and ICC-depleted 

gastroparetic humans.9,33

The main limitation of this study was the relatively small sample size. However, the current 

limited cohort is unique because intraoperative access is rare in CUNV patients, and the 

operative gastric stimulator implantation that allowed surgical access for this study is 

usually only offered for gastroparesis. Furthermore, this study also required the recruitment 

of intra-operative mapping controls. Because the mapping in this study required surgical 

access, it was performed in the anesthetized state; it would be desirable to investigate these 

slow wave patterns in awake, fed, and fasted patients, when future technological advances 

allow. While we chose the definition ‘CUNV’ following Pasricha et al.,2 such nomenclature 

is not standardized. Alternative terms have included ‘gastroparesis-like syndrome’ and 
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‘vomiting of unexplained etiology’, while the Rome III system introduced ‘chronic 

idiopathic nausea’ and ‘functional vomiting’ within more restrictive scopes.

Methodological advances will be necessary to apply these findings to clinical diagnostics in 

future, in order to reduce the invasiveness of current gastric HR mapping methods. 

Significant technical hurdles must be overcome, including endoscopic device development, 

reliable methods of automated real-time data analysis, and cost reductions in acquisition 

equipment.12,13 In addition, therapeutic trials will ultimately be required, to assess whether 

gastric dysrhythmias can be reversed in a way that meaningfully improves symptoms and 

quality of life in affected patients.

In conclusion, ICC and bioelectrical abnormalities were found in CUNV patients, similar to 

changes occurring in gastroparesis. These findings offer new pathogenic mechanisms 

underlying CUNV, and may inform future therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Normal gastric slow wave propagation in a control. (A) Position of the array. (B) 

Electrograms from positions indicated in C (frequency, 2.8 ± 0.1 SD cycles/min). (C) 

Isochronal activation map of ‘Wave 1’ indicated in B, demonstrating normal antegrade 

propagation. Black dots represent electrodes, with white dots outlined red representing 

electrodes where activity was interpolated. Each color band shows the area of slow wave 

propagation per 2 seconds. (D) Velocity map of Wave 1, showing the speed (color 

spectrum) and direction (arrows) of the wavefront at each electrode. (E,F) Isochronal 

activation and velocity field maps of ‘Wave 2’ in B, demonstrating consistency of the 

antegrade propagation. See Supplementary Video 1 for animation.
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Figure 2. 
(A,B) Representative images showing depletion of the ICC network in the gastric smooth 

muscle in a CUNV patient (A) compared to control (B). The red signal is Kit 

immunoreactivity marking ICC; the blue signal is 4’,6’-diamidino-2-phenylindone 

counterstain marking cellular nuclei. (C,D) Electron microscopy images showing mild 

ultrastructural abnormalities in a CUNV patient (C) compared to control (D). Labeled 

structural components: thick basal lamina (small astericks), nerve endings (NE), smooth 

muscle cells (SMC), lamellar body (LB), ICC-SMC contact (arrows), and peg-and-socket 

junction (large astericks).
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Figure 3. 
Comparison of ICC density between CUNV patients and healthy controls. Data from a 

recent gastroparesis (GP) cohort9 (in grey) are also displayed for comparison.
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Figure 4. 
Classification and occurrence of slow wave dysrhythmias mapped in CUNV patients. ‘N’ 

signifies normal frequency. There was one additional case (ID #5) of tachygastria of 

indeterminate origin, and a further case (ID #1) of apparent slow wave quiescence (see text).
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Figure 5. 
Abnormal slow wave initiation and conduction; isochronal intervals = 1.5 seconds. (A) 

Position of the array. (B) Representative electrograms from positions indicated in C; 

propagation sequences are labeled based on their corresponding waves 1–4, shown in panels 

C–F. (C) Isochronal activation map. Slow wave activity propagated onto the array from the 

greater-curvature, colliding with an unstable focal activity on the distal portion of the array. 

(D) The unstable focal activity was consistent over a second cycle. (E) A new stable ectopic 

pacemaker emerged in the distal portion of the array (represented by a star), initiating 

retrograde propagation that collided with the uncoupled antegrade wavefront. 

Circumferential propagation was out-of-phase with distal activity that was propagating in 

the opposite direction circumferentially, resulting in a complete functional conduction block 

(thick black line). (F) Propagation repeated as described in E, with stability of the ectopic 

pacemaker and distal block that remained consistent through the end of the recording period. 

A frequency increase occurred between the unstable focal activity of C&D (bradygastric, 2.0 

± 0.1 cycles/min) and the stable ectopic activity of E&F (normal frequency, 3.2 ± 0.2 

cycles/min). See Supplementary Video 2 for animation.
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Figure 6. 
Slow wave re-entry; isochronal intervals = 2 seconds. (A) Position of the array. (B) 

Representative electrograms from positions indicated in C; electrode 1 is repeated at the 

bottom of the electrograms to illustrate the continuity of the re-entrant circuit. (C–E) 

Isochronal activation maps. Activation propagated in a circuit around a linear conduction 

block (thick black line), re-activating that same circuit over successive cycles, thereby 

establishing re-entry (frequency, 3.3 ± 0.2 cycles/min). Slow wave activity propagated 

outward from the re-entrant circuit, in part colliding with an uncoupled antegrade-

propagating wavefront. See Supplementary Video 3 for animation.
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Table 1

Comparison of characteristics between the CUNV population and mapping controls. Methods of mapping and 

data analysis were identical.

Characteristic CUNV cohort Control cohort

No. of patients 9 9

Median age, y (range) 50 (22–59)* 57 (25–74)*

Sex (female:male) 8:1 5:4

No. of recordings 18 11

Duration of mapping (mean ± SD) 11 ± 5 min/pt 10 ± 3 min/pt

Anesthetic regimen Prophylactic antibiotics, benzodiazepine 
premedication, a short-acting intravenous 

opiate, muscle relaxants (suxamethonium or 
rocuronium), propofol, desflurane

Prophylactic antibiotics, benzodiazepine 
premedication, a short-acting intravenous opiate, 
muscle relaxant (atracurium or suxamethonium), 

propofol, isoflurane, or sevoflurane. Eight also had 
epidural or spinal block.

Electrodes (type; tip diameter; no. of 
channels)

PCB24; 0.3 mm; 256 channels PCB24; 0.3 mm; 96–256 channels

Filtering methods Savitzky-Golay (1.7s window; polynomial order 9) and moving median (20s window) filters28

Analysis and isochronal activation 
mapping methods

FEVT, REGROUPS, and SIV algorithms performed in GEMS v1.5 with subsequent manual 
review27,29,30

Frequency, velocity, and amplitude 
calculation methods

Algorithms in GEMS v1.527

*
P = 0.14.

Gastroenterology. Author manuscript; available in PMC 2016 July 01.


