FoxP1 orchestration of ASD-relevant
signaling pathways in the striatum
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Mutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such
as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the
gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1
mouse brains. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well
as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny

neurons and that reduction of Foxp1 correlates with defects in ultrasonic vocalizations. Finally, we demonstrate that
FoxP1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene
expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for

FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways im-

portant for vocal communication.
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Autism spectrum disorder (ASD) denotes a group of het-
erogeneous neurodevelopmental conditions that are all
characterized by diminished sociability, impaired com-
munication, restricted interests, and stereotypic behav-
iors. While there is a strong genetic component to ASD,
this is divided among several hundred genes, each with
only a small contribution to the prevalence of the disorder
(Geschwind and State 2015). Furthermore, many autism-
risk genes are thought to exert their effects during early
brain development (State and Sestan 2012; Xu et al.
2014; Parikshak et al. 2015). Transcription factors play a
key role in orchestrating the spatial and temporal gene
expression patterns important for this process. Therefore,
the identification of gene networks regulated by tran-
scription factors implicated in both ASD and brain de-
velopment should provide insight into the complex
developmental brain mechanisms at risk in autism.

The transcription factors Forkhead box P1 (FOXP1) and
FOXP2 have been implicated in neurodevelopmental dis-
orders such as ASD and developmental verbal dyspraxia
(DVD), respectively (Bacon and Rappold 2012). Foxpl is
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a member of the Fox family of transcription factors, for
which there is a designated protein nomenclature (upper-
case for primates, lowercase for rodents, and mixed case
for other species) (Kaestner et al. 2000). Foxpl is highly
enriched within the developing and mature neocortex,
hippocampus, and striatum (Ferland et al. 2003; Tera-
mitsu et al. 2004). Numerous studies have identified het-
erozygous deletions, point mutations, and duplications of
FOXP1 as being causal for ASD (Bacon and Rappold 2012,).
In particular, recent large-scale exome sequencing efforts
have identified FOXP1 as a gene with recurrent de novo
mutations associated with ASD (lossifov et al. 2014).
Therefore, understanding how FOXP1 functions within
the brain should allow for key insights into the molecular
pathways at risk in ASD. Several reports have begun to
elucidate a role for Foxpl in the brain (Rousso et al.
2012; Tang et al. 2012}, and recent work has shown that
mice with brain-specific loss of Foxp1 have altered hippo-
campal electrophysiology, striatal morphology, and social
behaviors (Bacon et al. 2015). However, the region-specific
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transcriptional profile of Foxpl in the mouse brain, how
well this profile is conserved in human-relevant Foxpl
haploinsufficient models, and the behavioral consequenc-
es of disrupting these regional gene networks remain
largely unknown.

FOXP2 is a paralog of FOXP1, and mutations in the
FOXP2 gene lead to a number of brain and cognitive defi-
cits, including DVD (Fisher and Scharff 2009; Bacon and
Rappold 2012). In addition to being able to heterodimerize
with Foxp2, Foxpl expression overlaps with Foxp2 expres-
sion in the GABAergic medium spiny neurons (MSNs) of
the striatum, a brain region critically involved in human
language, vocal imitation in zebra finches, and rodent ul-
trasonic vocalizations (USVs) (Ferland et al. 2003; Li et al.
2004; Teramitsu et al. 2004; Fisher and Scharff 2009). Ad-
ditionally, Foxp2 mutant mice demonstrate disruptions in
mouse USVs as well as alterations in the electrophysiolog-
ical and projection properties of MSNs (Shu et al. 2005;
Enard et al. 2009; Vernes et al. 2011; French et al. 2012).
Given the role for both Foxpl and Foxp2 in the striatum,
we hypothesized that Foxpl regulates regional gene ex-
pression patterns in the brain and that normal levels of
Foxpl are crucial for mouse vocalization behavior. To
test this hypothesis, we took advantage of a heterozygous
(Foxp1*/~) mouse model and a human neural progenitor
(hNP) cellular model with altered expression of FOXPI.
Using high-throughput sequencing technologies, we
used these two systems to identify a conserved role for
FoxP1 in regulating autism-risk genes. We showed that
Foxpl differentially regulates the excitability of dopamine
receptor 1-positive (D;*) versus D," MSNs. We also dem-
onstrated reduced USVs in Foxpl*/~ mice, similar to
that seen in Foxp2*/~ mice (Shu et al. 2005). This similar-
ity in behavioral phenotype is reflected at the genomic
level, as Foxpl-regulated genes in the striatum overlap
with genes regulated by Foxp2 in the striatum. Finally,
we found that FoxP1 regulates conserved pathways in-
volved in striatal identity in both humans and mice. Tak-
en together, these results suggest that FoxP1 plays a
critical role in regulating striatal function and vocal com-
munication, which, when disrupted, contributes to phe-
notypes characteristic of ASD.

Results

Foxp1 gene regulation within distinct brain regions

In order to assess the ASD-relevant role of Foxpl within
the brain, we took advantage of a Foxpl animal model.
As Foxp1l knockout mice are embryonic-lethal at embry-
onic day 14.5 (E14.5) due to a developmental heart defect
(Wang et al. 2004) and as most patients with FOXP1 mu-
tations are haploinsufficient, we carried out analyses on
Foxp1 heterozygous (Foxp1*/~) mice (Hu et al. 2006). We
tested the specificity of an antibody recognizing FoxP1 us-
ing hNPs with forced FOXP1 expression as well as whole
brains from E13.5 Foxp1 knockout embryos. We identified
expression of two Foxpl isoforms (A and D), previously
shown to be expressed in mouse brains (Wang et al.
2003), both of which were absent in brain tissue from
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knockout embryos (Supplemental Fig. 1A). Three brain re-
gions relevant to ASD with substantial levels of Foxpl ex-
pression are the striatum, hippocampus, and neocortex
(Ferland et al. 2003; Maloney et al. 2013). We quantitative-
ly determined an ~50% reduction in total Foxpl protein
levels (isoforms A and D) in the Foxp1*/~ hippocampus
or striatum compared with control littermates (Fig. 1A,
B). Interestingly, neocortical expression of Foxpl (either
total protein or isoform-specific expression) was not re-
duced to 50% in Foxp1*/~ mice, suggesting a homeostatic
up-regulation of Foxpl in the neocortex of these animals
(Fig. 1A,B; Supplemental Fig. 1B,C).

We ascertained potential transcriptional targets of
Foxpl in vivo using RNA sequencing (RNA-seq) in the
hippocampus or striatum of Foxpl™* mice and control
littermates. To identify differentially expressed genes
(DEGs), we filtered using a false discovery rate (FDR) of
<0.05 and an absolute log fold change of >0.3 (Supplemen-
tal Table 1). As a control, RN A-seq was also conducted in
the neocortex, and, not unexpectedly, we did not observe
significant changes in gene expression in this brain region
(data not shown).

Foxp1 regulation of ASD-associated pathways
in the striatum and hippocampus

To characterize the identified Foxpl targets with respect
to ASD etiology, we compared the list of Foxpl DEGs
with the current list of annotated ASD genes in the SFARI
database (667 genes) (http://www.sfarigene.org). We found
that in vivo Foxpl-regulated genes significantly overlap
with ASD genes in both the hippocampus and striatum
(Fig. 1C). The SFARI database stratifies genes based on
the strength of their association with ASD, and when we
removed the genes in categories #5 and #6 (hypothesized
support and not supported, respectively) and repeated
our analyses, we obtained a similar result (17 genes [P =
0.057] for striatum and 39 genes [P = 0.0001] for hippocam-
pus, hypergeometric tests) (data not shown). Using quan-
titative RT-PCR (qQRT-PCR), we confirmed 11 of 12
selected targets from the overlap between the Foxpl*/~
striatal data set and the ASD genes in independent sam-
ples (Fig. 1D).

Mouse Foxpl targets were further prioritized with re-
spect to neurodevelopmental human diseases using
weighted gene coexpression network analysis (WGCNA),
which allows for the discovery of networks (or modules) of
genes with high levels of coexpression (Supplemental Fig.
2A; Zhang and Horvath 2005; Oldham et al. 2008). The
top hub gene (or gene with the highest number of connec-
tions) in the striatal-associated MsM18 module is Dpp10
(dipeptidyl peptidase) (Fig. 1E). DPP10 is an ASD gene
that encodes for a protein that regulates surface expres-
sion and properties of the potassium channel Kv4.2 (Mar-
shall et al. 2008; Foeger et al. 2012). Of note, the gene
encoding Kv4.2, KCND2, has also been implicated in
ASD (Lee et al. 2014) and is highlighted within the
MsM19 module (Supplemental Fig. 2C). We also observed
and confirmed that Dpp10 is increased and that Kcnd? is
decreased in the striatum of Foxp1*/~ mice (Fig. 1F).
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Figure 1. Regulation of ASD genes by Foxpl in the mouse brain. (A) Representative immunoblot displaying reduced Foxp1 protein levels
in the hippocampus (HIP) and striatum (STR), but not the neocortex (CTX), of Foxp1*/~ mice. Gapdh was used as a loading control. (B)
Quantification of Foxpl expression in adult Foxpl*/~ mouse brains. Data are represented as means + SEM. n=4 mice per genotype for
each region. (*) P =0.033 (hippocampus); (*) P =0.0163 (striatum), Student’s t-test, compared with wild-type levels normalized to Gapdh.
(C) Venn diagram showing overlaps between the differentially expressed genes (DEGs) in the mouse and ASD gene lists (144 genes be-
tween the hippocampus and striatum [P = 1.21 x 1072], 116 genes between the hippocampus and ASD [P =3.74 x 107°], and 43 genes be-
tween the striatum and ASD [P =0.002], hypergeometric test [P-values were adjusted using Benjamini-Hochberg FDR procedure]). (D)
Confirmation of salient ASD-related gene targets in independent striatal samples from Foxpl*/~ mice using quantitative RT-PCR
(QRT-PCR). Data are represented as means + SEM. n =4 mice per genotype. With the exception of Dner, all qRT-PCR values displayed
are significant at P < 0.05 (Student’s t-test, compared with wild-type levels normalized to actin). (E) Visualization of a striatal-specific sub-
module (MsM18) that contains Dpp10 (dipeptidyl peptidase) as a major hub gene. (F) qRT-PCR confirmation of Dpp10 and Kcnd?2 acti-
vation in Foxp1*/~ mouse striatal samples. Data are represented as means + SEM. n = 4 mice per genotype. All gqRT-PCR values displayed
are significant at P < 0.05 (Student’s t-test, compared with wild-type levels normalized to actin).

Alteration of Kv4.2 function has been previously ob- vant pathways in human brain development (Parikshak
served in a mouse model of Fragile X syndrome (FXS) et al. 2013). We therefore compared the mouse WGCNA
(Gross et al. 2011), and Fragile X mental retardation pro- modules with previously identified FMRP targets (Darnell
tein (FMRP)-regulated genes have previously been shown et al. 2011) and found modules containing FMRP tar-
to have significant genomic interactions with ASD-rele- gets (MsM1, MsM6, MsM12, MsM14, and MsM23)
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(Supplemental Fig. 2A). While certainly interesting with
regard to potential converging pathways, such enrich-
ments need to be interpreted cautiously, as recent work
has uncovered that FMRP targets tend to be highly ex-
pressed long genes in the brain (Ouwenga and Dougherty
2015). Of particular interest, MsM14 correlates with geno-
type and contains a number of FMRP target genes, includ-
ing the gene encoding FMRP (Fmrl) (Supplemental Fig.
2B), highlighting a potential direct role for coordination
of disease-relevant genes in the striatum by Foxpl and
FMRP.

Foxp1 regulates shared targets with Foxp2 in the striatum

Asprevious work has implicated a role for the related tran-
scription factor FoxP2 in striatal function, including al-
tered MSN electrophysiology and morphology (Enard
et al. 2009), and as the striatum is also one of the few brain
regions where Foxpl and Foxp2 have overlapping ex-
pression (Ferland et al. 2003), we compared the list of

Foxpl target genes in the striatum with published striatal
Foxp2 targets in Foxp2*/~ mice (Enard et al. 2009). We
identified a significant overlap between Foxpl-regulated
genes and previously published Foxp2 targets that are
changing in the same direction across data sets with re-
duction of the respective transcription factors, indicating
possible coregulation of these targets (Fig. 2A). This over-
lap represents 12% of the total Foxpl target genes identi-
fied in the striatum. Using independent samples, we
confirmed six of these genes changing with Foxpl expres-
sion in the striatum via qRT-PCR (Fig. 2B). Within the in
vivo WGCNA analysis, both Foxpl and Foxp2 are coex-
pressed within the MsM3 module, which is enriched for
striatal DEGs (Fig. 2C). Interestingly, within the MsM3
module, the gene encoding the dopamine receptor
Drd1lais coexpressed with both Foxp2 and Foxp1 (Fig. 2C).

MSNs of the striatum are categorized as either D" (ex-
pressing the Drdla receptor) or D," (expressing the Drd2
receptor) projection neurons, and these two subpopula-
tions of neurons are associated with opposing functions
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Figure 2. Foxpl and Foxp2 regulate overlapping targets within the striatum. (A) Significant overlap of DEGs in the striatum of Foxp1*/~
and Foxp2*/~ mice (67 genes between the Foxp1*/~ and the Foxp2*/~ striatal data sets [P = 2.82 x 107°], hypergeometric test). (B) gRT-PCR
confirmation of a subset of these genes in independent Foxp1*/~ striatal samples. Data are represented as means = SEM. 1 =3 mice per

genotype. All qRT-PCR values displayed are significant at P <0.05

(Student’s t-test, compared with wild-type levels normalized to actin).

(C) Visualization of the regionally specific striatal module MsM3 showing coexpression of both Foxpl and Foxp2. Foxpl and Foxp2 con-
nections are highlighted in magenta. Genes in bold typeface indicate striatal DEGs, and boxed genes indicate Foxpl and Foxp2 DEGs that

overlap. (D) RNA-seq data from Foxp1*/~ mice and microarray data

from Foxp2*/~ mice were overlapped with the most recently published

list of known enriched transcripts within D;* or D, MSNs (Maze et al. 2014). Genes from both Foxp1*/~ and Foxp2*/~ mice significantly
overlapped with D;* MSN-enriched genes (36 genes [P =1.12 x 107°] and 61 genes [P = 1.99 x 107'?], respectively, hypergeometric test). P-

values for each overlap are shown within bar graphs.
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in the coordination of motor activity (Gerfen and Sur-
meier 2011). To investigate whether disrupted Foxpl sig-
naling in the striatum would be expected to produce
differential gene expression changes in D;* versus D,
MSNs, we overlapped our RNA-seq data set with pub-
lished gene lists obtained from translating ribosome affin-
ity purification of D;* and D, MSNs (Maze et al. 2014).
We found a significant enrichment of both Foxpl and
Foxp2 target genes within D;* MSNs specifically (Fig.
2D). Although we found that the number of Foxpl target
genes is roughly equally distributed between genes en-
riched in both D;" and D," MSNs (Fig. 2D), the number of
Foxp2 target genes enriched in D" MSNs is almost twice
the number of Foxp2 target genes enriched in Dy” MSN5s
(Heiman et al. 2008; Vernes et al. 2011; Maze et al. 2014).
These results are in line with published data showing that
Foxp2 is more enriched in D;" MSNs. Moreover, the over-
lapping targets of Foxpl and Foxp2 going in the same di-
rection are expressed only in D;* MSNs, supporting
coordinated regulation in these specific neurons. Interest-
ingly, Foxpl-specific target genes that are enriched in D,"
MSNs include several genes involved in cation transport
(e.g., Atp1bl, Kcnk2, Htr7, Kcnip2, and Hrh3) (Supple-
mental Table 2). Together, these data support a role for
Foxpl and Foxp2 providing coordinated regulation of stria-
tal signaling pathways and that this regulation may be dif-
ferential between D;" and D,* MSNs in Foxp1*/~ mice.

Reduction of Foxpl leads to differential changes
in the excitability of striatal MSNs

Together with the coregulation of genes by Foxpl and
Foxp2 (Fig. 2), the gene expression data indicated a role
for FoxP1 in regulating genes coding for proteins involved
in both ion channel and neuronal activity, in particular
within D," MSNs (Supplemental Tables 1, 2). We therefore
investigated the effect of reduced Foxp1 expression on neu-
ronal activity within either D;" or D," MSNs. At postnatal
day 18 (P18), acute striatal slices were made from progeny
of Foxp1*/~ mice crossed with either Drd1a-tdTomato*'~
or Drd2-GFP*'~ reporter mice (Gong et al. 2003; Ade
etal.2011)and whole-cell recordings of MSNs were carried
out. D," (GFP*) MSNs from Drd2-GFP*/~;Foxp1*/~ mice
(Fig. 3A) exhibited significantly increased excitability,
as indicated by the higher number of action potentials
evoked for a given current step (Fig. 3B,C), an increase in
input resistance (Fig. 3D), and a decrease in current thresh-
old (Fig. 3E). We also observed no differences in resting po-
tential (Fig. 3F), the action potential width (Fig. 3G), or the
frequency of the spontaneous excitatory postsynaptic
events (SEPSCs) of D," MSNs (Fig. 3H). Interestingly, we
did observe a significant decrease in the amplitude of
SsEPSCs of these MSNs (Fig. 31). Together, these data dem-
onstrate that reduction of Foxpl leads to increased ex-
citability of D,” MSNs in response to reduced Foxpl
expression.

Given the opposing functions traditionally associated
with D" and D," MSNs (Gerfen and Surmeier 2011) and
the possibility for differential regulation of gene ex-
pression within D;* and D,* MSNis in the Foxp1*/~ mouse

FoxP1 regulates autism-relevant genes

striatum (Fig. 2D), we asked whether the increased excit-
ability of D," neurons due to Foxpl loss was generalizable
to all MSNis. Again, at P18, we carried out whole-cell re-
cordings on MSNs from acute striatal slices. Although
trending toward a decrease in excitability, D;* (tdTo-
mato*) MSNs from Drdla-tdTomato™'~;Foxp1*/~ mice
(Supplemental Fig. 3A) exhibited no significant change
in their excitability compared with controls (Supplemen-
tal Fig. 3B,C). We also found no significant increase in in-
put resistance (Supplemental Fig. 3D) or current threshold
(Supplemental Fig. 3E) and no significant difference in
resting potential (Supplemental Fig. 3F) or action poten-
tial width with reduction of Foxpl in these neurons (Sup-
plemental Fig. 3G). Finally, we observed no changes in the
frequency or amplitude (Supplemental Fig. 3H,I) of
sEPSCs. These data indicate that haploinsufficiency of
Foxpl causes differential changes in the membrane excit-
ability of D;" and D," MSNSs.

Foxp1 regulates mouse USVs

Huntington’s and Parkinson’s disease mouse models pro-
vide evidence for the involvement of MSNs in directing
the production of USVs (Pietropaolo et al. 2011; Grant
et al. 2014). Additionally, knockout of the Drd2 receptor
reduces the number of USVs produced by mouse pups
(Curry et al. 2013). Because we uncovered a significant
overlap between Foxpl*/~ and Foxp2*/~ striatal target
genes as well as altered MSN excitability as a response
to loss of Foxpl, we hypothesized that reduction of
Foxpl would lead to an altered USV phenotype similar
to that seen in Foxp2 mutant mice (Shu et al. 2005). To
test this hypothesis, we examined USVs in a maternal sep-
aration paradigm. Paralleling what has previously been
seen in Foxp2*/~ mice (Shu et al. 2005), we observed a sig-
nificant decrease in both the number of times a Foxp1*/~
mouse pup called (“bouts”) (Fig. 4A) and the total number
of calls (Fig. 4B) compared with littermate controls at P4
and P7 (see the Materials and Methods; Supplemental
Fig. 4A for analysis details). Additionally, as a trend, the
call bouts and total number of calls produced by the
Foxp1*/~ mouse pups are reduced across all days (Fig.
4A,B). We also observed a significant decrease in the
mean call frequency, as a trend across all days, in the
Foxp1*/~ mouse pups (Fig. 4C). Other parameters, such
as average call duration and the fraction of calls with
jumps, were not altered (Fig. 4D,E). Interestingly, we ob-
served that the average slope of a call was significantly de-
creased in Foxp1*/~ mice compared with controls (Fig. 4F).
This result is the opposite of the increase in call slope ex-
hibited by humanized Foxp2 mice (Enard et al. 2009).
Differences in weight gain have been proposed to ex-
plain some variation seen in the postnatal USVs of trans-
genic mouse models (Scattoni et al. 2009). However, there
were no significant differences in the weight gain of
Foxp1*/~ mice compared with controls (Supplemental
Fig. 4B). To assess whether the vocalization deficits ob-
served in the Foxp1*/~ mice are secondary to a generalized
impairment in striatal-mediated behaviors, we assessed
locomotion in the open field test as well as rotorod
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Figure 3. D," MSNs of Foxp1*/~ mice have increased excitability. (A) Example image of a recorded GFP* (D,*) neuron. (B) Example record-
ings depicting spiking in response to a 125-pA current step in control and Foxp1*/~ MSNs. (C) Firing rate versus input curves is signifi-
cantly increased in Foxp1*/~ MSNs. Data are represented as means + SEM. n = 18 wild-type cells and 29 Foxp1*/~ cells. (*) P =0.040,
two-way ANOVA with repeated measures for current step, compared between genotypes. (D) Input resistance is significantly increased
Foxp1*/~ MSNs. Data are represented as means + SEM. 11 = 19 wild-type cells and 30 Foxp1*/~ cells. (***] P = 0.0004, Student’s t-test, com-
pared between genotypes. (E) The minimum, threshold current required for evoking an action potential is significantly decreased in
Foxp1*/~ MSNs. Data are represented as means = SEM. n = 19 wild-type cells and 30 Foxp1*/~ cells. (*] P = 0.049, Student’s t-test, compared
between genotypes. (F] Resting potential is not significantly changed in Foxpl*/~ MSNs. Data are represented as means = SEM. 11= 19
wild-type cells and 30 Foxp1*/~ cells. P=0.53, Student’s t-test, compared between genotypes. (G) Action potential width is not signifi-
cantly altered in FoxpI*/~ MSNs. Data are represented as means + SEM. n = 19 wild-type cells and 30 Foxp1*/~ cells. P =0.57, Student’s
t-test, compared between genotypes. (H) Spontaneous EPSC frequency is not significantly changed in Foxp1*/~ MSNs. Data are represent-
ed as means = SEM. 11 = 17 wild-type cells and 25 Foxp1*/~ cells. P = 0.091, Student’s t-test, compared between genotypes. (I) Spontaneous
EPSC amplitude is significantly decreased in Foxp1*/~ MSNs. Data are represented as means = SEM. nn = 17 wild-type cells and 25 Foxp1*/~
cells. (**) P =0.004, Student’s t-test, compared between genotypes.

performance, forelimb and hindlimb grip strength, nest
building, and grooming behaviors in these animals (Sup-
plemental Fig. 5). We also performed postnatal righting
reflexes as part of an abbreviated SHIRPA battery to eval-
uate overall neurological function in these mice (see the
Materials and Methods; Supplemental Figs. 5A, 6). In
summary, we found that FoxpI*/~ mice display no differ-
ences in either the SHIRPA test, righting reflexes, nest
building, rotorod performance, or grooming behaviors. In-
terestingly, Foxp1*/~ mice do display hyperactivity in the
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open field test and decreased performance in the forelimb
and hindlimb grip test. Together, these data suggest that
wild-type levels of Foxpl expression are important for nor-
mal mouse vocal behavior but are not required for most
striatal-based behaviors.

FOXP1 gene regulation in human neural cells

In order to identify FoxP1 target genes that are most re-
levant to human brain development and ASD, we
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characterized the FOXPI1 target genes in hNPs, which
demonstrate a higher fidelity with in vivo brain transcrip-
tomic data than either human embryonic stem cells or in-
duced pluripotent stem cells (Konopka et al. 2012; Stein
etal. 2014) and are genetically tractable using lentiviruses
(Konopka et al. 2009). As undifferentiated hNPs do not ex-
press FOXP1 endogenously and given the current paucity
of chromatin immunoprecipitation (ChIP)-grade antibod-
ies against FoxP1, we ascertained direct FOXP1 targets
by transducing hNPs with a lentivirus containing Flag-
tagged FOXP1 or a GFP control virus (Fig. 5A). Forced ex-
pression of FOXP1 was limited to the nucleus (Fig. 5D).
To identify genome-wide direct targets of FOXP1, we
conducted both RNA-seq and ChIP followed by DNA se-
quencing (ChIP-seq) in hNPs overexpressing FOXP1. Us-
ing the Flag tag on FOXP1, we identified >600 genes
enriched for FOXP1 binding (Fig. 5B,E; Supplemental Ta-
ble 1). These directly bound targets are enriched for fork-
head motifs (Supplemental Fig. 7; Stroud et al. 2006).
Again, using RNA-seq, an FDR of <0.05, and an absolute
log fold of >0.3, we uncovered >1500 DEGs within this
cellular paradigm (Fig. 5E; Supplemental Table 1). These
DEGs are significantly enriched for gene ontology (GO)
categories such as axon guidance, neuronal development,
and neuronal differentiation, and the overlap between
both ChIP and RN A-seq data represents directly regulated
FOXP1 targets in hNPs (Supplemental Table 3). RNA-seq

and ChIP-seq genes significantly overlap (Fig. 5E); howev-
er, because this overlap is significant yet small, these re-
sults suggest that the majority of gene regulation by
FOXP1 occurs through indirect effects on signaling cas-
cades, as might be expected for a transcription factor.

FOXP1 regulates ASD-relevant genes in hNPs

To further characterize the identified hNP FOXP1 targets
with respect to ASD etiology, we again compared the list
of FOXP1 DEGs to the current list of annotated ASD genes
in the SFARI database. We observed a significant overlap
of FOXP1 targets and ASD genes (Fig. 5F). When we over-
lapped the list of hNP DEGs with the curated list of ASD
genes (i.e., not including genes in categories #5 or #6), we
also obtained a significant overlap (48 genes, P = 0.023, hy-
pergeometric test) (data not shown). hNP DEGs that over-
lapped with the SFARI gene database were selected and
confirmed within an independent hINP cell line using an
independent measure of expression: qRT-PCR (Fig. 5G).
Previous work suggested that the members of the Foxp
subfamily of forkhead transcription factors are primarily
transcriptional repressors (Wang et al. 2003). However,
we showed that the related transcription factor FOXP2
is also able to activate transcription (Spiteri et al. 2007).
In line with those data, we found an almost equal re-
presentation of activated and repressed FOXP1 targets
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Figure 5. Gene regulation by FOXP1 in human neural cells. (A) Representative immunoblot depicting overexpression of FOXP-Flag signal
in hNPs transduced with a FOXP1-Flag expression construct (hNPFOX!) but not in hNPs with a GFP expression construct (hNPSFP).
B-Tubulin was used as a loading control. (B) Representative immunoblot confirming expression of FOXP1-Flag in input samples and en-
richment of FOXP1-Flag during the immunoprecipitation (IP) portion of ChIP from hNPFOXP! lysates. (C,D) Representative images of
hNPSFP and hNPFOXP! demonstrate that FOXP1 expression (red) in hNPFOXP! is restricted to the nucleus (DAPI, blue) and that FOXP1
is not expressed within neurites (Tujl, green) and is absent in hNPS™Y, (E) Significant overlap between gene targets from RNA-seq and
ChIP-seq (ChIP followed by DNA sequencing) performed on hNPFO*P! (92 genes between hNPFOXP! RNA-seq and hNPFOXP! ChiP-seq
[P=4.43 x 107°, hypergeometric test]). (F) Significant overlap among RNA-seq DEGs, ASD genes, and FMRP targets (102 genes between
hNPFOXPI RNA-seq and ASD genes [P = 0.013], 122 genes between hNPFOXP! RN A-seq and FMRP genes [P = 0.023], and 125 genes between
ASD and FMRP genes [P =1.34 x 1072°], hypergeometric test [P-values were adjusted using Benjamini-Hochberg FDR procedure]). (G)
gqRT-PCR confirmation of a subset of these overlapping genes in independent hNPO*! samples. Data are represented as means =
SEM. nn = 4 samples per treatment. All qRT-PCR values displayed are significant at P < 0.05 (Student’s t-test, compared with hNPS levels
normalized to actin). (H) DEGs from these overlaps are equally represented among repressed and activated genes. (I, left panel) Human
genome browser view showing the ChIP-seq result of enrichment of FOXP1 binding compared with GFP control. (Right panel) ChIP-
PCR confirmation of enriched binding of DPP10 by FOXP1 in hNPFOX! compared with hNPS™ using two separate primer pairs
(DPP10 primers A and B) compared with control primers. Quantified data are represented as means + SEM, four samples per treatment.
All QRT-PCR values displayed are significant at P < 0.05 (Student’s t-test, compared with hNPS levels normalized to actin). (J) DPP10
is repressed with FOXP1 overexpression in hNPFOXF! samples. Quantified data are represented as means = SEM, four samples per treat-
ment. All qRT-PCR values displayed are significant at P < 0.05 (Student’s t-test, compared with hNPS™" levels normalized to actin).
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that overlap with ChIP-seq and ASD lists (Fig. 5H). Addi-
tionally, we also confirmed that FOXP1 directly binds
within the first intron of DPP10 and represses its expres-
sion in hNPs overexpressing FOXP1 (Fig. 51,]). Together
with the results from the Foxp1*/~ mice (Fig. 1F), this in-
dicates that Dpp10 is a conserved direct repressed target
of FoxP1. Moreover, many genes overlapped with direc-
tional consistency between striatum and hNPs (12%)
(Supplemental Table 1).

Using WGCNA again, we uncovered nine modules with
first principal components correlating to FOXP1 ex-
pression (hNPM2, M3, M4, M6, M7, M13, M16, M20,
and M21) (Supplemental Fig. 8). We then compared the
hNPFOXPL RNA-seq data to recently reported coexpres-
sion modules derived from in vivo developing human
brains (Parikshak et al. 2013). We found a significant over-
lap of DEGs in the hNPFOXP! data set with this report’s
M17 module (Supplemental Table 1). The M17 module
is one of three modules previously identified to contain
a significant overlap with known ASD genes. We also
compared the hNPFO*P! RNA-seq data with two other co-
expression modules: asdM12 and asdM16 (derived from
human brain tissue samples from ASD cases and con-
trols), which were highly correlated with ASD disease sta-
tus (Supplemental Table 1; Voineagu et al. 2011). We
found that many genes within these two modules were
also found within the modules correlating to FOXP1 ex-
pression. Interestingly, DPP10 is also present in asdM12,
which further emphasizes its relevance to ASD etiology.
Thus, the data from manipulation of FOXP1 expression
in the in vitro system recapitulate identified genomic rela-
tionships from in vivo human brain data.

Conserved regulation of FoxP1 targets within
the striatum

To further demonstrate the relevance of the Foxpl*/~
mouse data with human biology and disease, we per-
formed an analysis of module preservation (Langfelder
etal. 2011) between either the Foxp1*/~ mouse hippocam-
pal or striatal WGCNA data and the hNP WGCNA data.
This approach allows one to determine how conserved
gene coexpression relationships are between the two spe-
cies. Interestingly, we found that there was significantly
greater preservation of modules between the Foxpl*/~
mouse striatal modules and the hNP modules than be-
tween the Foxpl*/~ mouse hippocampal modules and
the hNP modules (Fig. 6A). To examine whether any of
the preserved human coexpression modules contain spe-
cific transcription factor-binding motifs, we used the
ChIP enrichment analysis (ChEA) database, which con-
tains experimental ChIP and ENCODE data sets (Lach-
mann et al. 2010). We found enrichment of FOXP2
motifs as well as other autism-related transcription factors
(Fig. 6B). Finally, we used a recently developed tool—cell-
specific expression analysis (Xu et al. 2014)—to examine
within which brain regions and cellular populations
the conserved FoxP1 targets are enriched. We found
that DEGs down-regulated with loss of Foxpl and up-reg-
ulated with overexpression of FOXP1 are enriched for

FoxP1 regulates autism-relevant genes

striatal genes (Fig. 6C). In contrast, genes up-regulated
with loss of Foxpl and down-regulated with overexpres-
sion of FOXPI are enriched for neocortical genes (Fig.
6D). Together, these data suggest that FoxP1 regulates con-
served pathways in both humans and mice that are impor-
tant in preserving MSN identity.

Discussion

Using unbiased genome-wide approaches in a patient-rel-
evant Foxp1*/~ mouse model and human neural cells, we
uncovered a role for FoxP1 regulation of ASD-relevant
genes. We observed that Foxpl regulates gene expression
in a region-specific manner within the brain, with the hip-
pocampus and the striatum of Foxpl*/~ mice containing
DEGs enriched for distinct ontological categories. We
also uncovered altered neuronal excitability in distinct
populations of MSNs as well as gross alterations in the
postnatal USVs of Foxpl*/~ mice. Last, we provide evi-
dence that FoxP1 regulates evolutionarily conserved neu-
ronal pathways within the striatum, which are important
for striatal identity.

The inclusion of FMRP target genes within FoxP1-cor-
related modules suggests overarching brain mechanisms
at risk in ASD pathophysiology. FMRP is an RNA-binding
protein that is expressed throughout the brain and is in-
volved in dendritic morphology and plasticity through
the translational regulation of numerous genes that func-
tion at the synapse (Darnell and Klann 2013). Deletions
and mutations of the FMR1 gene can lead to FXS, which
is characterized by autistic traits and intellectual disabil-
ity (Hernandez et al. 2009). We found an enrichment of
genes encoding ion channels altered in both the human
and rodent FoxPl models. For example, DPP10 is an
ASD gene that is a conserved FoxP1 target (Figs. 1F, 51]).
DPP10 functions to traffic surface expression of the
KCND2 and KCND3 (or Kv4.2 and Kv4.3, respectively)
potassium channels in neurons. We also uncovered acti-
vation of Kcnd?2 by FoxP1 (Fig. 1F). Moreover, KCND2 is
also an FMRP target (Kim et al. 2005); rare variants and
genetic association of KCND2 have been reported in au-
tism (Klassen et al. 2011; Lee et al. 2014), and impaired
KCND?2 function has been implicated in FXS (Gross
etal. 2011). This convergence of Foxpl downstream genes
with FMRP-related genes suggests potential converging
transcriptional and translational dysregulation in these
disorders.

Relative to the entire brain, Foxp1 is among the top 100
enriched genes in the striatum (Heiman et al. 2008). This
striatal enrichment of Foxpl in the brain is greater than
the comparative relative striatal expression of Foxp2. We
showed significant overlaps between Foxpl and Foxp2
gene targets in the striatum (in particular, D;* MSN en-
riched genes) (Fig. 2A,D) and increased D,” MSN excita-
bility in Foxpl*/~ mice (Fig. 3). Given that Foxp2 is
preferentially expressed in D;" MSNs (Vernes et al.
2011), we hypothesize that Foxpl and Foxp2 may work
in concert to differentially regulate neuronal excitability
in these two populations of MSNs and therefore con-
trol striatal-based vocalizations. Therefore, the lack of
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Figure 6. Coexpression network preservation between mouse and human data sets. (A) Module preservation analysis revealed that sig-
nificantly more hNP modules are preserved in the striatum compared with the hippocampus. Zsummary scores >4 are well preserved, and
those <2 are poorly preserved. (B) Genes in modules shared between humans and mice contain conserved binding sites for ASD-associated
transcription factors, including FoxP2. (C) Genes down-regulated by loss of Foxp1 in mice and up-regulated by overexpression of FOXP1 in
hNPs are enriched for striatal-associated genes. (D) Genes up-regulated by loss of Foxpl in mice and down-regulated by overexpression of
FOXP1 in hNPs are enriched for cortical genes. Briefly, hexagons are scaled to the stringency values of the specificity index thresholds
(pSI), which ranks the region-specific enriched transcript gene lists from least specific to highly specific transcripts; i.e., outer hexagons
represent larger, less specific lists (pSI of 0.05), while inner hexagons represent shorter, highly specific lists (pSI of 0.001). Bonferroni-Hoch-

berg (BH)-corrected P-values are shown.

alteration of D;* MSN excitability in FoxpI*/~ mice might
be due to compensation by Foxp2, as supported by the
overlapping target genes of Foxpl and Foxp2 among D"
MSN enriched genes. The identification of Foxp1l-specific
targets that are known to be involved in neuronal excit-
ability within D,” MSNs also supports the idea that differ-
ential gene regulation by Foxpl in specific MSN
subpopulations governs the observed neuronal and organ-
ismal phenotypes. For instance, Foxpl may operate as a
master regulator of genes important for overall neuronal
function and activity in the striatum, with Foxp2 acting
as a limiting factor for shared targets involved in vocaliza-
tions. This idea is bolstered by previous findings that
Fmr1 and Foxp2 mutant mice exhibit increased striatal
GABAergic transmission from and increased long-term
depression in MSNs as well as decreased striatal volumes
and deficits in postnatal USVs (Shu et al. 2005; Centonze
et al. 2008; Enard et al. 2009; Roy et al. 2012; Ellegood
et al. 2015). In addition, Foxp2 levels are unchanged in
the striatum of Foxpl*/~ mice (Supplemental Table 1)
and do not appear to be significantly altered in either
MSN population specifically (data not shown), further
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suggesting that alterations in Foxp2/Foxpl stoichiometry
in D;" MSNs could be driving our findings. Finally, the sig-
nificant gene coexpression module preservation between
the mouse striatal and hNP gene expression data supports
the relevance of these mouse data to a human disorder
such as ASD. Given the evolutionary distance between
these two species and the developmental differences be-
tween hNPs and the adult mouse striatum, it is remark-
able that these correlations were found. Therefore, such
a finding is evidence for the robustness and relevance of
these gene coexpression networks with respect to FoxP1
expression and function.

These data suggest a role for Foxpl in regulating ASD
risk genes in a region-specific manner within the brain.
In particular, we demonstrate that Foxpl plays an impor-
tant role in regulating genes involved in striatal develop-
ment and function. In this study, we also provide the
first evidence that Foxpl specifically contributes to vocal
communication. It will be important to determine how
these changes occur throughout development in further
experiments. Since the FoxpI*/~ mice used in this study
were whole-body knockouts and because Foxpl has been



shown to regulate the development of a host of organ sys-
tems (Wang et al. 2004; Hu et al. 2006; Shu et al. 2007;
Dasen et al. 2008; Rousso et al. 2008), it cannot be entirely
ruled out that the behavioral phenotypes displayed by
these mice are secondary to the peripheral consequences
of the knockout. Additionally, it should be noted that oth-
er brain regions besides the striatum, such as the neocor-
tex, are known to both express Foxpl and contribute to
the production of USVs (Hisaoka et al. 2010; Sia et al.
2013). Moreover, while this study focused on a patient-rel-
evant model of FOXP1 function (namely, haploinsuffi-
ciency), at least one study has demonstrated increased
FOXP1 expression in lymphoblastoid cell lines from
ASD patients (Chien et al. 2013). Therefore, the regional
contribution and dosage relevance of FoxP1 to the behav-
ioral manifestations presented in this study remain to be
determined.

Materials and methods

Mice

Foxp1 heterozygous knockout (FoxpI*/~) mice were backcrossed
with C57BL/6] mice for at least 10 generations to obtain congenic
animals. Drdla-tdTomato line 6 and Drd2-GFP reporter mice
were generously provided by Dr. Craig Powell and maintained
on a C57BL/6] background. Mice were kept in the barrier facili-
ties of the University of Texas Southwestern Medical Center un-
der a 12 h light-dark cycle and given ad libitum access to water
and food. All studies with mice were approved by the Univers-
ity of Texas Southwestern Institutional Animal Care and Use
Committee.

hNP cultures

hNP cultures were purchased from Lonza and maintained as
previously described (Konopka et al. 2012). hNPs were transduced
with lentiviruses containing pLUGIP-FOXP1-3XFlag or pLUGIP-
GFP (control) and harvested 3 d after transduction for down-
stream applications, including immunoblotting, qRT-PCR,
RNA-seq, and ChIP-seq.

RNA harvesting and real-time RT-PCR

RNA was purified from either hNPs or tissues dissected out
from P47 male Foxpl*/~ mice and littermate controls using an
mRNeasy minikit (Qiagen) following the manufacturer’s recom-
mendations. QqRT-PCR was performed as previously described
(Spiteri et al. 2007). All primer sequences are available on request.

RNA-seq

mRNA was isolated from total RNA samples using polyA selec-
tion. Four independent samples from each brain region or cell
type per genotype were included for a total of 24 mouse samples
and eight human samples. Samples were randomized, and bar-
coded libraries were generated following the manufacturer’s
instructions (Illumina). RNA-seq was performed by the McDer-
mott Sequencing Core at the University of Texas Southwestern
Medical Center on an Illumina HiSeq 2000 sequencer (l1lumina).
Stranded, single-end 50-base-pair (bp) reads were generated for the
hNP data, and stranded, paired-end 100-bp reads were generated
for the mouse data.
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RNA-seq data analysis

Reads were aligned to either hg19 or mm10 using TopHat (Trap-
nell et al. 2009) and Bowtie (Langmead et al. 2009). To obtain the
gene counts, we used the HTSeq package (Anders et al. 2014), and
the reads were normalized using the RPKM (reads per kilobase per
million mapped reads) method (Mortazavi et al. 2008) imple-
mented in the RSeQC package (Wang et al. 2012). For further
analysis, we performed a sample-specific RPKM filtering consid-
ering genes with RPKM values of 0.5 in treatments or controls.
EdgeR (Robinson et al. 2010) was used to detect the DEGs in
each species. We applied a filter of FDR of <0.05 and absolute
log fold change of >0.3 for both the human and mouse data sets.
We then reconstructed the human and mouse coexpression net-
works using the R package WGCNA (Langfelder and Horvath
2008). Modules were characterized using the biweight midcorre-
lation followed by signed network topology for both human and
mouse data. Modules containing >30 genes were included in
our analyses. For module visualization, we used the publically
available VisANT software (Hu et al. 2013). To determine the re-
liability of the WGCNA module characterization and the DEGs,
we performed a permutation test randomizing 1000 times the ex-
pression data associated with each gene, calculated the DEGs,
and then applied the same module characterization. None of
the permuted data showed similar module detection or different
expression profiles compared with the observed data. We then
considered the detected modules, the detected DEGs, and the
further gene overlaps significantly different from random expec-
tation (permutation test, P=0.001). To infer the significance of
the potential overlaps, we adapted a hypergeometric test. The re-
sultant P-values were adjusted using the Benjamini-Hochberg
FDR method (Benjamini and Hochberg 1995).

Foxp2 microarray analysis

Data from project GSE13588 (Enard et al. 2009) were downloaded
from Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih
.gov/geo). Only Foxp2 heterozygous and matching control sam-
ples were selected for further analysis. Microarrays were analyzed
using the R programming language and Bioconductor packages.
We determined gene expression levels (robust multichip average
[RMA] values) and MAS5 detection P-values from the probes us-
ing the “affy” library (Gautier et al. 2004). We considered the
probe sets detected in at least one sample for a P < 0.05. Differen-
tially expressed probe sets were then determined adapting the
f-test function implemented in the “multtest” library (Pollard
et al. 2005). The resulting P-values were then adjusted with the
Benjamini-Hochberg method. Probe sets were considered differ-
entially expressed for an adjusted P < 0.05.

GO analysis

GO analysis was carried out using DAVID (http://david.abcc
.nciferf.gov). A category containing at least three genes and a cor-
rected P-value of <0.05 (Benjamini-Hochberg method) was con-
sidered significant.

Antibodies

The following antibodies were used for immunoblotting (IB), im-
munoprecipitation (IP), or immunocytochemistry (ICC): anti-
B-tubulin (rabbit, 1:10,000; abcam, 6046 [IB]), anti-Flag (mouse,
1:10,000 [IB/ICC], 10 pg [IP]; Sigma, F1804), anti-Foxp1 (rabbit,
1:5000 [IB], 1:1000 [ICC]) (Spiteri et al. 2007), anti-Gapdh (mouse,
1:5000; Millipore [IB]), and anti-Tujl (mouse, 1:1000 [ICC]|; Cova-
nce, MMS-435P).
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ChIP-seq

Fifty-million hNPs were used per experimental condition. Cells
were fixed in 1% methanol-free formaldehyde for 10 min at
room temperature and then quenched with glycine (125 mM fi-
nal). Cells were washed twice in 1x cold PBS, resuspended in
10 mL of lysis buffer (50 mM HEPES-KOH at pH 7.5, 140 mM
NaCl, 1 mM EDTA, 10% glycerol, 0.5% IGEPAL-CAG630,
0.25% TritonX-100, 10 pL/mL protease inhibitor [PI] cocktail
[Sigma], 7 pL/mL PMSF), and incubated for 10 min on ice. Pel-
leted cell nuclei were then resuspended in 1 mL of nucleus lysis
buffer (200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 10 mM
Tris-HCl at pH 8.0, 10 pL/mL PI, 7 pL/mL PMSF) and incubated
for 10 min on ice. Samples were sonicated in 300 pL of shearing
buffer (1 mM EDTA, 0.5 mM EGTA, 10 mM Tris-HCI at pH 8.0,
0.1% SDS, 10 pL/mL PI, 7 nL/mL PMSF) using a Bioruptor (Dia-
genode) at 3-min intervals for a total of 12 min. Ten percent of
volume from each sample was collected for input controls. One-
hundred micrograms of precleared sheared chromatin and 1 pg
of msFlag antibody were incubated overnight at 4°C while rotat-
ing. Magnetic IgG Dynabeads (Invitrogen) were washed three
times with 5 mg/mL BSA solution in PBS and then incubated
with sheared chromatin/antibody solution for 2 h at 4°C. Mag-
nets were applied to samples at 4°C, and beads were washed
with 500 pL of each of the following solutions supplemented
with PI and rotated for 5 min at 4°C followed by magnetic sep-
aration: (1) low-salt wash buffer (0.1% SDS, 1% TritonX-100, 2
mM EDTA, 20 mM Tris-HCI at pH 8.0, 150 mM NaCl), (2)
high-salt wash buffer (0.1% SDS, 1% TritonX-100, 2 mM
EDTA, 20 mM Tris-HCI at pH 8.0, 500 mM NacCl), (3) LiCl
wash buffer (0.25 M LiCl, 1% IGEPAL-CA630, 1% deoxycholic
acid, 1 mM EDTA, 10 mM Tris-HCI at pH 8.0), and (4) TE buff-
er. After washes, beads were resuspended in elution buffer (50
mM Tris-HCl, 10 mM EDTA, 1% SDS) and incubated for 15
min at 65°C with vortexing every 2 min. Beads were magnetical-
ly separated, supernatant was collected, and cross-linking of all
samples and inputs was reversed overnight at 65°C. DNA was
purified using Qiagen MinElute columns and quantified using
a Qubit Fluorometer. Sequencing was performed by the Univer-
sity of Texas Southwestern Medical Center McDermott Se-
quencing Core.

ChIP-seq data analysis

Reads were mapped to the human genome (hg19) using TopHat
(Trapnell et al. 2009) and Bowtie (Langmead et al. 2009). The
aligned reads were subsequently downsampled according to the
lowest number of reads detected, whereas the potential dupli-
cated reads were removed using the Picard package (http://
broadinstitute.github.io/picard). The uniquely mapped reads
were then analyzed using MACS (Zhang et al. 2008) for the detec-
tion of potential peaks. PeakSplitter (Salmon-Divon et al. 2010)
was used to subdivide the larger peaks into smaller, more precise
peaks using a height filtering of 0.7. The FOXP1 peaks were fur-
ther compared with the GFP peaks applying a tag density ratio
(TDR). For further analysis, we considered FOXP1 peaks with a
TDR >2.0. The uncovered peaks were then annotated using the
annotatePeaks function implemented in the HOMER package
(Heinz et al. 2010).

Immunoblotting

Cellular lysates were obtained using lysis buffer containing 0.5%
Nonidet P-40,1 mM PMSE, 0.1 mM NasVO,, 50 mM NaF, 1 uM
DTT, 2 pg/mL pepstatin, and 1 ng/mL leupeptin. Tissue samples
were lysed in buffer containing 1% Igepal, 1 mM PMSF, 0.1 mM
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NazVOy, 2 png/mL pepstatin, and 1 pg/mL leupeptin. Protein con-
centrations were determined using a Bradford assay (Bio-Rad). A
total of 35-45 pg of each sample was run and processed following
standard protocols for both HRP-conjugated and fluorescent sec-
ondary antibodies.

Immunocytochemistry

hNPs were grown on glass coverslips and fixed with 4% PFA in
PBS for 15 min and then washed with TBS at room temperature.
Cells were permeabilized with TBS-T (0.4% Triton-X) for 15 min
at room temperature and then washed with TBS at room temper-
ature. Cells were treated with a blocking solution made of 3%
normal donkey serum in TBS-T (0.2% Triton-X) for 30 min at
room temperature. Cells were then incubated with primary anti-
bodies diluted in blocking solution overnight at 4°C. Afterward,
cells were rinsed with TBS, treated with secondary antibodies di-
luted in blocking solution for 1 h, and then rinsed with TBS, all at
room temperature. Slides were imaged using a Zeiss Observer.Z1
inverted microscope and ZEN 2011 software.

Electrophysiology methods

Electrophysiology Acute brain slices were prepared from
Foxp1*/~ and Foxp1*/* mice crossed with either Drd1a-tdTomato
or Drd2-GFP reporter mice (P17-P20) with the following proce-
dure. Mice were anesthetized with 125 mg/kg ketamine and 25
mg/kg xylazine, and the brains were removed. Thalamocortical
slices (Agmon and Connors 1991) 300 nm thick were cut at ~4°
C in dissection buffer, placed in ACSF for 30 min at 35°C, and
slowly cooled over the next 30 min to 21°C. Whole-cell re-
cordings were performed in the dorsal striatum, and cells were
targeted with IR-DIC optics in an Olympus FV300 confocal mi-
croscope. Recordings were performed at 21°C. Data were collect-
ed with a 10-kHz sampling rate and a 3-kHz Bessel filter. Striatal
neurons were identified by GFP or tdTomato fluorescence using
confocal microscopy.

Electrophysiology solutions ACSF contained 126 mM NaCl,
3 mM KCl, 1.25 mM NaH,PO,, 2 mM MgSO,, 26 mM NaHCO,,
25 mM dextrose, and 2 mM CaCl,. All slices were prepared in the
following dissection buffer: 75 mM sucrose, 837 mM NaCl, 3 mM
KCl, 1.25 mM NaH,PO,, 7 mM MgSO,, 26 mM NaHCO3, 20 mM
dextrose, 0.5 mM CaCl,, and 1 mM kynurenate. All solutions
were pH 7.4. ACSF was saturated with 95% O,/5% CO,. Unless
stated otherwise, the pipette solution consisted of 130 mM K-
Gluconate, 6 mM KCl, 3 mM NaCl, 10 mM HEPES, 0.2 mM
EGTA, 4 mM ATP-Mg, 0.3 mM GTP-Tris, 14 mM phosphocrea-
tine-Tris, and 10 mM sucrose. This was adjusted to pH 7.25 and
290 mOsm. The junction potential was ~10 mV and was not
corrected.

Ultrasonic vocalization recordings

Acquisition and processing USVs were recorded from pups iso-
lated from their dams at P4, P7, and P10. Pups were placed
into clean plastic containers inside soundproof styrofoam
boxes and recorded for 3 min. Recordings were acquired using
an UltraSoundGate condenser microphone (Avisoft Bioacoustics,
CM16) positioned at a fixed height of 20 cm above the pups and
were amplified and digitized (~20 dB gain, sampled at 16 bits,
250 kHz) using UltraSoundGate 416H hardware and Avisoft
RECORDER software (Avisoft Bioacoustics). Sound spectro-
grams were prepared in MATLAB (50% overlapping, 512-point
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Hamming windows), resulting in 1.024-msec temporal resolution
and 488.3-Hz spectral resolution. Spectrograms were band-pass
filtered to 20-120 kHz and filtered for white noise. Positions of ul-
trasonic calls were determined automatically using a previously
published method (Holy and Guo 2005).

Spectral and temporal measurements Vocalization behavior
occured in spurts of activity (“bouts”) separated by longer pauses.
To quantify bouts of vocalization, spectrograms were segmented
using a pause length of >0.25 sec, which was chosen based on the
empirical distribution of pause times between calls. All intercall
pauses <0.25 sec represent constituents of the same bout of vocal-
ization. The means of the dominant frequency (“mean frequen-
cy”) as well as the duration time of individual calls were
averaged over all calls by animal. The presence of instantaneous
pitch jumps in calls was determined by a previously published
method (Holy and Guo 2005), and the fraction of all calls contain-
ing such jumps was determined for each animal. The trend slope
(in hertz per millisecond) of calls lacking instantaneous pitch
jumps was determined by linear regression, and slopes were aver-
aged over all calls by animal.

Statistics Differences between genotypes on all measured fea-
tures of vocalization were assessed using two-way analysis of var-
iance, testing for main effects of genotype, day, and interaction of
genotype by day. Post-hoc multiple comparisons were assessed
using Sidak’s procedure. Features of vocalization were considered
independently.

Postnatal righting reflexes

Righting reflexes were assessed in P4, P7, and P10 Foxp1*/~ and
littermate control pups. In brief, pups were placed in a supine po-
sition on a clean, unobstructed surface, and the time taken to
right onto all fours was measured using a stopwatch. A pup failed
the test if its time to right exceeded 1 min. In such cases, the time
was scored as 60 sec. Each pup received one trial at each postnatal
time point.

Open field test

The open field assay was performed on adult Foxp1*/~ and litter-
mate control mice by individually placing each animal in a
16-in x 16-in Plexiglass box and allowing them to explore the are-
na for 5 min. Videos of each mouse were obtained and scored for
average velocity of movement and total distance moved using the
EthoVision XT software package (Noldus).

Rotorod test

Adult mice were placed on a textured drum within individual
lanes of a Series 8 IITC Life Science rotorod. The drum was pro-
gramed to accelerate from 4 to 40 rpm within a maximum time
frame of 300 sec. Each mouse was positioned forward on the
drum, and sensors detected the latency to fall, maximum revolu-
tions per minute at fall, and total distance travelled for each
mouse. Sensors were manually activated whenever a mouse
made a full rotation holding onto the drum. Mice were tested for
three consecutive days with four trials per day, separated by 20-
min intervals.

Grip strength test

Forelimb and hindlimb grip strength was measured on adult mice
using Chatillon Force Measurement equipment. Forelimbs or
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hindlimbs of each mouse were placed on a mesh wire meter and
pulled away from the wire at constant force. Five consecutive mea-
surements were recorded for both hindlimbs and forelimbs and
averaged for a final grip strength measurement for each mouse.

Nesting behavior

Mouse nesting behavior was analyzed using a previously de-
scribed approach (Deacon 2006). Briefly, adult mice were singly
housed overnight with 3 g of intact nestlet material in a clean
cage. After 16-18 h, the amount of unused nestlet material was
weighed, and the nests formed were assessed to generate a nest
quality score of 1-5 for each mouse.

Grooming behavior

Grooming behavior was assessed in adult mice by individually
placing each mouse in a clean cage without nesting material
and allowing them to habituate for 10 min. Afterward, grooming
behaviors were recorded using an HDR-CX535 Handycam video
camera (Sony), and videos were then manually scored based on
the number of grooming bouts and total time spent grooming
for 10 min.

SHIRPA

A modified SHIRPA behavioral screen from Rogers et al. (1997)
was performed on adult mice. First, mice were individually placed
in a viewing jar for 5 min. During this time, mice were scored for
(1) body position (inactive [0], active [1], or excessive activity [2]),
(2) tremors (absent [0] or present [1]), (3) palpebral closure (open
[0] or closed [1]), (4) coat appearance (tidy and well-groomed coat
[0] or irregularities/piloerection [1]), (5) skin color (blanched [0],
pink [1], or deep red [2]), (6) whiskers (absent [1] or present [0]),
(7) lacrimation (absent [0] or present [1]), (8) defecation (absent
[0] or present [1]), (9) gait (fluid with 3-mm pelvic elevation [0] or
lack of fluidity [1]), (10) tail elevation (dragging [0], horizontal ele-
vation [1], or elevated tail [2]), and (11) startle response (none (0],
Preyer reflex [1], or reaction in addition to Preyer reflex [2]). Mice
were then transferred to a clean cage, and the following behaviors
were recorded in or above this arena: (12) touch escape (no re-
sponse [0], response to touch [1], or flees prior to touch [2]), (13)
trunk curl (absent [0] or present [1]), (14) limb grasping (absent
[0] or present [1]), (15) pinna reflex (absent [0] or present [1]), (16)
corneal reflex (absent [0] or present [1]), (17) contact righting reflex
(absent [0] or present [1]), (18) evidence of biting (none [0] or biting
in response to handling[1]), (19) vocalizations (nonvocal [0] or au-
dible in response to handling [1]), (20) positional passivity (strug-
gles when held by tail [0], when held by neck [1], or laid supine
[2] or no struggle [3]). Both pinna and corneal reflexes were tested
with a 0.15-mm-diameter nylon filament from Touch Test Sen-
sory Evaluators (Semmes-Weinstein Monofilaments).

Other statistics

P-values were calculated with Student’s t-test (two-tailed, type 2).
F-values were calculated with two-way ANOVA followed by a
Tukey post-hoc test for multiway comparison. Data were as-
sumed to be normally distributed. P-values for overlaps were cal-
culated with a hypergeometric test using a custom-made R script.
We obtained an independent background for population size (for
humans, human protein-coding genes [20,389 genes] and Brain-
Span-expressed genes [15,585 genes] [Kang et al. 2011], and
for mice, Allen brain-expressed genes [13,600 genes]| [Lein et al.
2007]). We used the protein-coding genes for background in the
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hypergeometric test used in Figure 5E. We used the BrainSpan-ex-
pressed genes for background in the hypergeometric test used in
Figure 5F and Supplemental Figure 8. We used the Allen brain-ex-
pressed genes for background in the hypergeometric test used for
Figure 1C and 2, A and D, and Supplemental Figure 2A. P-values
were adjusted for multiple comparisons using the Benjamini-
Hochberg FDR procedure when required. A two-way permutation
test of 1000 was adapted to validate the overlaps. First, we ran-
domized the external gene sets (for example, ASD or FMRP) by
randomly selecting the same number of genes from an indepen-
dent brain-expressed gene list (for humans, BrainSpan-expressed
gene list; for mice Allen-expressed gene list) and subsequently
calculating the overlap P-values. The second approach random-
ized the internal gene sets (for example, STR_DEG or hNP_DEG)
by randomly selecting the same number of genes from RNA-seq-
expressed genes and subsequently calculating the overlap P-val-
ues. Moreover, we adapted a permutation test to evaluate the de-
tected DEGs, randomizing 1000 times the RNA-seq data and
recalculating the DEGs. Analysis for RNA-seq, ChIP-seq, and mi-
croarrays were performed using custom-made R scripts imple-
menting functions and adapting statistical designs comprised in
the libraries used.

Accession Numbers

The NCBI GEO accession number for the next-generation se-
quencing data reported in this study is GSE62718.
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