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Abstract

ModelDB (modeldb.yale.edu), a searchable repository of source code of more than 900 published 

computational neuroscience models, seeks to promote model reuse and reproducibility. Code 

sharing is a first step; however, model source code is often large and not easily understood. To aid 

users, we have developed ModelView, a web application for ModelDB that presents a graphical 

view of model structure augmented with contextual information for NEURON and NEURON-

runnable (e.g. NeuroML, PyNN) models. Web presentation provides a rich, simulator-independent 

environment for interacting with graphs. The necessary data is generated by combining manual 

curation, text-mining the source code, querying ModelDB, and simulator introspection. Key 

features of the user interface along with the data analysis, storage, and visualization algorithms are 

explained. With this tool, researchers can examine and assess the structure of hundreds of models 

in ModelDB in a standardized presentation without installing any software, downloading the 

model, or reading model source code.
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1 Introduction

The principles of the scientific method require that research results be reproducible. In vivo 

and in vitro research have to account for noisy instrumentation and biological variation that 

do not affect in silico studies. Nonetheless, in silico models are nontrivial to reproduce 

correctly. The main challenge to reproducibility lies in the complexity of fully describing the 

model: for computational models every parameter and every set of dynamics must be 

explicitly specified by the researcher; no parameters or behaviors come “for free” with the 

specification of the model organism. To address this challenge, model repositories such as 

ModelDB (modeldb.yale.edu) (Migliore et al. 2003), BioModels (www.ebi.ack.uk/

biomodels) (Le Novere et al. 2005), and Visiome (visiome.neuroinf.jp) (Usui 2003), tools 

such as Sumatra (Davison et al. 2014), and web portals for collaborative research (e.g. 

opensourcebrain.org) were created to assist researchers in sharing source code.
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Computational models also present the significant challenge of “understandability”. Modern 

models are complex and their hierarchical structure and component properties are often 

obscured by their representation as an executable program text. On ModelDB, over half of 

the approximately 900 models are distributed across ten or more files (Fig. 1A). Over half of 

the files are more than two kilobytes in length, and over one-seventh are more than ten 

kilobytes in length (Fig. 1B).

We have developed a two-phase process to facilitate the understanding of the runtime 

structure of models in ModelDB. In the analysis phase, data on the simulator state 

(parameter values, morphology, etc) after partly running a model is combined with 

information from other sources and stored in a file; this phase is run only once per model. 

The analysis process is necessarily simulator-specific. Our initial release focuses on support 

for NEURON (Hines and Carnevale 2001) models because this is the most commonly used 

simulator in ModelDB (Fig. 1C) and because NEURON can run some non-native models 

with the aid of standard formats like NeuroML (Gleeson et al 2010) and tools like 

neuroConstruct (Gleeson et al 2007) and PyNN (Davison et al 2008). In the visualization 

phase – which is completely simulator independent – a custom HTML5 web app for 

displaying hierarchically structured data loads the file generated by the analysis phase, and 

interactively presents it to the user. From the user perspective, this view into a model’s 

structure only requires pressing a button; the web app requires JavaScript support (enabled 

by default on most modern browsers), but does not require any browser plugins.

This paper begins with a description of how our scripts collect information about each 

model and ends with an explanation of ModelView’s user experience.

2 Methods

2.1 Overview

Our ModelView software consists of two key parts: (1) a backend, run in advance, that 

collects data (described in 2.2 – 2.5), and (2) a frontend web app, run on user demand, that 

displays the data (described in 2.6).

Static analysis of a model is carried out by a Python program that performs a sequence of 

steps. First it downloads and uncompresses the model zip file from ModelDB. It then 

compiles and runs the model according to a model-specific manually-curated run protocol. 

After the first time step, the run is paused. A separate script is run that combines data from 

ModelDB, static analysis of the source code, and simulator introspection to generate a 

JavaScript Object Notation (JSON) file (Crockford 2006) which stores the data. Some 

models that are not originally designed for NEURON but that either are NeuroML models 

(e.g. Vervaeke et al 2010; modeldb.yale.edu/127996) or can be converted to NeuroML, can 

be supported by manually running neuroConstruct (Gleeson et al 2007) to first convert the 

NeuroML to NEURON and then employing the same scripts used for NEURON models.

Upon user request, the ModelView web app loads the JSON file, combines it with JSONP (a 

JSON variant that allows reading data from multiple servers) obtained from a ModelDB web 

service that identifies duplicate files across ModelDB, and displays it in the browser using 
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NeuronWeb (McDougal, Flokos, Hines in preparation); NeuronWeb is a front-end under 

development in our lab to jQuery UI (jqueryui.com) – a Javascript library providing 

advanced GUI tools for the web – and other tools to facilitate the development of scientific 

web apps.

ModelView’s source code is available on ModelDB (modeldb.yale.edu/154872).

2.2 Generating the static data

The static data was generated from four sources: ModelDB, text-mining the source code, 

manual curation of run protocols, and simulator introspection. We consider each in turn.

2.2.1 ModelDB—The analysis script queries ModelDB to obtain the metadata associated 

with each model. This metadata is obtained from the main model page on ModelDB 

(ShowModel.asp); this page shows the model’s source code and metadata. To facilitate 

automatic parsing of the page, we modified this page to surround each piece of metadata 

with an HTML span tag labeled with an id attribute. The analysis script parses the HTML 

with BeautifulSoup (www.crummy.com/software/BeautifulSoup/) to extract the model title 

and zero or more paper Digital Object Identifiers (DOIs). Although every model in 

ModelDB is associated with at least one paper, some of the older papers do not have a DOI 

associated with them in our database. If no DOI is available, ModelView uses ModelDB’s 

link to the article on the journal’s website, and the analysis script displays a suggestion 

recommending additional curation.

2.2.2 Text Mining—The analysis script also downloads all of the model files and text 

mines the source code to identify information about NEURON mechanisms (channels, 

pumps, current clamps, etc…) defined in NMODL (Kohn et al. 1994). The model source 

tree is recursively searched for NMODL files, identified by their .mod extension. As such 

files are identified, they are scanned for POINT_PROCESS, SUFFIX, and USEION lines. 

The first two are used to determine the name of the mechanism, which immediately follows 

those tokens. USEION lines – there may be zero or more – are parsed with regular 

expression search patterns to locate the ionic attributes that they read or write (e.g. 

concentrations, currents, reversal potentials).

2.2.3 Manual Curation of Run Protocols—We manually curated one or more run 

protocols for each supported model. A run protocol corresponds to the set of instructions 

necessary to compile a model, launch NEURON, run a specific simulation within the model 

(some offer push buttons allowing the user to select one of many simulations), and perform 

any cleanup. Our analysis scripts run on a Linux machine using Python, so the compilation 

and cleanup instructions are written for the Linux shell, NEURON is launched in Python 

mode, and the run commands are in Python. For some models, the curation was accelerated 

by a script that scanned the source code to locate GUI control elements that potentially 

distinguish between different use cases.

2.2.4 Introspection—A script initializes and advances each model for one time step and 

then queries the simulator for information about the model’s structure. Compilation of 

mechanisms (ion channels, etc) is performed as specified in the run protocol. The NEURON 
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libraries are imported inside a new Python process. The Python exec function is used to 

execute the commands one-at-a-time in the run part of the protocol, except that right before 

the last command is executed, a callback is passed to h.CVode().extra scatter 

gather. This method, originally developed for NEURON’s recent reaction-diffusion 

extension (McDougal et al. 2013) triggers the callback after every time step. In our case, the 

callback analyzes model structure and then exits the simulation instead of allowing it to 

advance to the next time step.

NEURON possesses introspection capabilities, that is, the ability to report what sections are 

present, what mechanisms are in those sections, and each mechanism’s parameters. In 

NEURON parlance, a “section” is an unbranched stretch of neurite (e.g. axon or dendrite); it 

is composed of “segments” which are the discrete compartments used for the numerical 

simulation. Indeed, NEURON’s own ModelView tool (Hines et al. 2007) uses these 

capabilities to display its structural analysis. For many parts of our analysis tree, such as the 

sections with homogeneous parameters, we began with the data from NEURON’s built-in 

ModelView; other parts, like the parameters for the mechanisms, were constructed de novo. 

The text from the tree was augmented with associated data from the source code or 

ModelDB: for example, the file name for each mechanism is identified from the text mining 

result and a link to the source code for that mechanism is provided by locating the file in 

ModelDB.

Graphics in ModelDB’s ModelView are generated independently of NEURON’s 

ModelView graphics. For those portions of the structure tree where the text is from 

NEURON’s ModelView, the analysis script parses the text to identify what information is to 

be presented.

Every graph involving a given cell had its segments processed in a consistent order. This 

consistency allows the segments to be identified once and have their names available to all 

graphs, and it allows interaction between multiple simultaneously presented graphs of the 

same phenomenon, as is available for mechanism parameter analysis (see section 3.2). The 

segments are followed by each section’s 0 end point and then by each section’s 1 end point. 

Generally, the 0 end of each child branch connects to the 1 end of the parent. In this case, 

the parent sections’ ends are the last points to be drawn; they are therefore on top and able to 

receive mouse events.

2.3 Encoding the static data

After the static data is collected, it is encoded in JSON (Crockford 2006) and stored on 

ModelDB’s server. The JSON object contains a number of attributes: neuron, title, 

short_title, neuronviewer, tree, colorbars, and modelview_version.

The JSON is structured to allow partial interoperability between versions of the viewer that 

are both newer and older than the analysis scripts. A modelview_version attribute allows 

newer viewers to identify old data files and respond appropriately; older viewers will ignore 

unknown attributes added in later versions of the data files.
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The neuron attribute is a list of objects describing each neuron containing an identifier for 

each neuron (e.g. “root: soma”), the morphology (lists of lists of (x,y, z;d) points with a 

separate list for each NEURON segment), and a list of names for each segment. The section 

end points are included last in the morphology list to give them priority for mouse over 

events – events, such as displaying additional information, triggered when the mouse passes 

over an item, in this case the end point of a NEURON section. The neuronviewer attribute 

is a list of indices in the neuron list that are to get their own dialog; neuron indices may 

appear 0 or more times in this list.

The tree is a recursive data structure that defines a hierarchical view of the model 

structure. Each item in the tree list contains a text attribute and 0 or more optional fields: 

children, action, and noop. The children attribute stores a (sub)tree list. The action 

attribute lists objects identifying things that should be displayed when the row is selected. 

For example, action objects may call for displaying a neuron with a certain highlighting or 

rendering a 2D plot. An optional noop attribute indicates a non-selectable row.

2.4 Detecting stochastic models

The model analysis is run twice for each run protocol to detect models with stochastic 

features (e.g. random morphologies, random connections, random parameters). If the 

encoded data is not identical, a flag (“stochastic”) is set to true in the JSON. This 

ModelView web app (described in 2.6) displays an alert about stochastic features if this flag 

is set.

2.5 Generating the dynamic duplicate file data

To help place each model in context (see section 3.4), we added an automated step to 

ModelDB curation to allow the rapid identification of files reused elsewhere in the database 

and the locations of reuse. Our introduction of file duplicate checking was inspired by 

Channelpedia’s work-in-progress to mathematically classify ion channel models (Podlaski et 

al. 2014). Whenever a model is made public, currently about twice a week, a script runs that 

generates an MD5 (Rivest 1992) hash of each of the over 20,000 files in the database. i.e. 

Each file is reduced to a 128-bit number (the hash) in such a way that the same file will 

always generate the same number but that even slightly different files are likely to be 

associated with significantly different hashes. As they are generated, these hashes are stored 

in a Python dict, itself based on a hash table, where the hashes are keys and the values are 

lists of file paths with that hash. A JavaScript file is then output containing code to construct 

two associative arrays: one whose keys are file paths and values are hashes, and one whose 

keys are hashes and values are lists of files. These two associative arrays redundantly encode 

the same information, which allows O(1) lookup of both hashes and files at the cost of 

approximately doubling memory usage. This duplicate detection technique is independent of 

file type, and we have found it useful elsewhere in ModelDB, so we run it across all files for 

all models for all simulators in the database.

When ModelDB is updated, file reuse information can change. To avoid the complexities of 

modifying the JSON, file reuse data is loaded dynamically via a web service. Once loaded, 
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this data is inserted into the tree. An include attribute on a given data tree row specifies the 

URL for dynamic data.

2.6 Visualizing the data

We wrote a custom web app to visualize hierarchically structured data that combines the 

strengths of many publicly available JavaScript libraries. This web app makes no 

assumptions about the simulator used to run the model. The ModelView page displays a 

loading message while it reads the location hash from the URL to determine what data to 

present. The ModelView scripts then request the model’s data (morphology, information 

tree, etc) from the server. One or more dialogs are created to display each neuron, a dialog is 

created to contain two-dimensional plots, and a dialog is created to contain the information 

tree. When a row is selected on the tree, the corresponding action is executed. Each action 

hides all of the non-tree dialogs and optionally displays one or more after updating their 

content. Mouseover events are captured and used to select associated hover text to display, if 

any.

ModelView generates its entire interface using JavaScript calls to an early version of 

NeuronWeb, a project from our lab to facilitate displaying scientific content in a web 

browser. NeuronWeb will be described in detail in a subsequent paper, but as used by 

ModelView, it provides a JavaScript API for dynamically constructing jQuery UI widgets 

(www.jqueryui.com), Flot charts (www.flotcharts.org), and jQuery Treeviews 

(www.github.com/jzaefferer/jquery-treeview). NeuronWeb provides a Neuron Viewer 

object that takes lists of segments of (x,y, z;d) information, projects it to a selectable two 

dimensional plane, and renders it with a Flot chart. Support for touch events for 

repositioning the dialogs is provided by jQuery UI Touch Punch (touchpunch.furf.com).

3 Usage

3.1 Getting started

To access ModelView, a user first locates a supported model of interest in ModelDB. At the 

time of this writing, 323 model entries support ModelView. A user who is only interested in 

supported models may indicate this on the search page.

Opening a model displays the ShowModel page (Fig. 2). The top of the page provides 

metadata about the model as a whole. Below that section is a box labeled “Model files” 

which provides a file browser and displays the contents of the currently selected file. For 

ModelView supported models, a button labeled “ModelView” is provided. Clicking on that 

button launches the default view. The button is a stylized link, so right-clicking and 

selecting “open link in new tab” or browser-specific-equivalent also work. For those models 

with multiple associated run protocols, a down arrow appears next to the ModelView button 

(Fig. 2). Clicking this down arrow displays a drop-down list of associated run protocols; 

clicking on one of those launches Model-View for the corresponding protocol.

The ModelView web app opens to display a tree dialog inside the web browser and – if the 

number of neurons in the model is small – dialogs for each of the neurons (Fig. 3A). All 

dialogs displayed by the web app may be resized, moved, minimized or maximized within 
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the browser. Selecting entries in the tree dialog controls what is displayed in the rest of the 

web app. Some rows open, close, or change other dialogs that display corresponding 

information about the model. At all times, the row, if any, corresponding to the information 

displayed in other open dialogs is highlighted. Although the details of the rows are model-

dependent, the overall structure of the tree is independent of the specific model 

implementation; in particular, ModelView is unaffected by coding style or programming 

language (HOC or Python).

Cell-specific views of model structure are available by selecting the “1 cell with 

morphology” or – if the model contains more than one cell – “n cells with morphology” line. 

To select, simply click on the text. This action also opens a dialog for each cell, displaying 

cell morphology. Each morphology may be zoomed, panned, or viewed from a different 

angle. Hovering over a cell with the mouse pointer displays NEURON segment names (e.g. 

basal[25](0.5)) and (x,y, z) coordinates. To expand a section of the tree without changing the 

current view, click on the “+” icon to the left of the text. Once expanded, the contents may 

be collapsed by clicking on the parent header text or by clicking on the “−” icon to the left of 

the text; as before, the second approach does not affect any other dialogs currently 

displayed.

3.2 View by cell

Inside “n cell(s) with morphology”, there is a tree for each cell in the model, labeled by the 

cell “root” – typically the name of the cell’s soma (Fig. 3B). The first row lists the number 

of sections and segments in the cell.

The second row is a tree with information about the distribution of the number of segments 

(numerical compartments) per section. Selecting the first row inside that tree highlights the 

section with the greatest distance between electrical nodes and augments the mouse over text 

– text displayed when the mouse passes over a section in the tree – with information about 

the local value of dx. Other rows provide information about the number of segments relative 

to dlambda, the local electrical space constant at 100 Hz where capacitive current dominates 

the membrane current (Hines and Carnevale 2001).

Selecting the third row of “n cell(s) with morphology” – “n inserted mechanisms” – lists 

each channel or ionic accumulation model inserted into the cell. Mouseover texts on the 

morphology viewer now include information on what mechanisms are present in the region 

under the mouse cursor (Fig. 4A). Selecting a mechanism highlights the portions of the cell 

containing that mechanism. When the mechanism is defined by a file, a link to the file 

appears next to the mechanism name in parentheses. Most mechanisms have associated 

subtrees listing their parameters. Selecting a parameter colorizes the morphology by 

parameter value and opens another dialog plotting the parameter value as a function of 

distance from the root. Mousing over a point in the value vs distance plot shows the name of 

the NEURON segment and (x,y, z) location. Mousing over the morphology plot shows this 

information along with the parameter’s value. The two graphs are synchronized; hovering 

the mouse pointer over a point on one graph highlights the corresponding point in the other 

(Fig. 4C).
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The fourth row, “n sections with constant parameters”, lists regions of the cell where one or 

more parameters is fixed for multiple sections. Selecting a region highlights it on the cell; its 

subtree lists what parameters are constant and what values they take. We found this analysis 

is useful to help identify logical units within the cell (e.g. basal dendrites).

The fifth row, “n sections with unique parameters”, conversely, lists sections that contain a 

parameter value or values not found elsewhere on the cell; selecting a section highlights it 

on the cell. A section’s subtree displays the unique parameter(s) and their value(s).

3.3 View by mechanism

NEURON has two main ways of representing ion channel and pump kinetics, and these are 

listed separately in ModelView.

3.3.1 Density mechanisms—NEURON uses “density mechanisms” to represent 

biological processes whose parameters or variables are best described in “density” units (e.g. 

current, ion flux, or number of ion channels per unit area). To explore the mechanisms, 

expand the “Density Mechanisms” tree.

The first subtree lists the number of unique density mechanisms in use across all cells. When 

a mechanism is associated with a file, a link to the file is provided in parentheses next to the 

mechanism name and a further subtree displays information about what, if any, 

concentrations and currents the mechanism reads or writes. The prevalence of the 

mechanism across the sections of the model is also provided (Fig. 4B).

A mechanism parameter may be either global (value independent of spatial location) or local 

(value may vary with position; also called “range variable”). These two possibilities are 

explored in the “Homogeneous Parameters” and “Heterogeneous Parameters” subtrees. Each 

row in the “Heterogeneous Parameters” subtree lists a parameter name and the number of 

unique values. If the number of unique values is small, each value is listed along with its 

frequency in a subtree. Global parameters are necessarily constant throughout the model and 

are listed by mechanism.

“KSChan definitions for density mechanisms” lists channels created with NEURON’s 

Channel Builder tool. A subtree for each of these channels lists the equations describing 

channel kinetics with further subtrees for gating variable dynamics. This method of 

specifying channel dynamics is not currently widely used in ModelDB models. For an 

example of how this information is presented, see the ModelView for modeldb.yale.edu/

116740.

3.3.2 Point processes—Point processes are mechanisms located at specific points on the 

neuron. These are used for modeling synapses and current clamps or for fine control of the 

placement of ion channels. These are listed under the “n point processes…” tree. If n > 0; 

then each class of point process has its own subtree, headed with an instance count, the 

name of the class, and a link to the source code for user-created point processes or to 

NEURON’s help documentation for built-in classes. The subtree lists the parameters used. 

Selecting the class row highlights the location(s) of the point process on the model’s 
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neurons. Mousing over the location of the point process highlights the mouse over circle and 

displays the name of the point process and the location (Fig. 5). This allows clear 

identification of the point process locations while preserving the default mouse over 

behavior for each neuron.

3.4 Context

Expanding the “n files shared with other ModelDB models” (for n > 0) displays each file in 

the model that is used in some other model in the database. The filenames link to the file in 

the current model and head a subtree linking to the file in other models labeled by their 

ModelDB titles (left panel of Fig. 6). As of July 16, 2014, there were 2359 files repeated 

identically in the database. An A-type potassium channel model, kaprox.mod, is the most 

reused ion channel mechanism in the database, employed in 29 different published models. 

It first appeared in a model associated with Migliore et al 1999 (modeldb.yale.edu/2796).

The “References” tree provides additional context. Links are provided to each paper known 

to use the current model. By policy, every model in ModelDB is associated with at least one 

publication. A link is also provided to the main ModelDB entry. The “Run Protocol” subtree 

lists steps for compiling the model, launching NEURON, and running the model in a way 

that produces the same structure visualized in Model-View. These steps are for NEURON 

compiled with Python support.

3.5 Additional information

The ModelView tool also provides information about additional NEURON features that are 

not specific to modeling individual neurons, including NetCon objects for network models, 

artificial spiking cells, and LinearMechanism objects for modeling gap junctions, electrical 

circuits, and more. If a model is identified as potentially being temperature dependent, the 

simulation temperature is reported in degrees celsius and any MOD files (mechanisms) that 

are potentially temperature dependent are listed.

4 Discussion

To facilitate the study of computational neuroscience models on ModelDB, we have 

developed a web-based analysis tool called ModelView. A single click transports the user 

from the default code presentation to a web app that allows a graphical exploration of the 

model’s structure. ModelView graphically presents the shape of the cell(s) involved, their 

ion channel distributions, the distribution of channel parameters and more.

By making this information more accessible, ModelView facilitates many types of research. 

Without installing a simulator or reading any code, users can see if a model incorporates 

features (e.g. shape, temperature, ion channels) that their research suggest are important. 

Knowing that information helps them to decide how much significance to give to the 

model’s results, to decide if the model is suitable as a base for further research. A model that 

clearly does not include effects that are believed to be significant presents a research 

opportunity, as the researchers could explore how incorporating their data would change the 

results. Those who prefer to work in a different simulator may use the ModelView summary 

to help them reimplement a model. We have developed a script, json_to_py.py, available 

McDougal et al. Page 9

Neuroinformatics. Author manuscript; available in PMC 2016 October 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://modeldb.yale.edu/2796


on the ModelDB entry for ModelView (modeldb.yale.edu/154872) that can reconstruct 

many cells as NEURON Python implementations from their ModelView data. This script 

can be used as a template and a starting point for other automated model translators.

The json_to_py.py script also formed part of our strategy to address the question of 

validation. We took models from ModelDB and recreated models generated by the script, 

carefully applied the same experimental conditions, and compared the spike trains. Some 

care is necessary when setting up the experiments because many of the models on ModelDB 

do not have a clean separation in the code between describing the model and describing the 

experiment. Using the script and data obtained via the “Download Data” button at the 

bottom-right of the web app, interested users may conduct their own such validation tests.

Advanced users can interpret such downloaded data – it is encoded in JSON – as a form of a 

NoSQL database. It is encoded for presentation, but it is still structured, and the 

json_to_py.py script offers an example of how to extract quantitative data. We intend to 

eventually make much of the ModelView data searchable, but downloading the data 

necessarily offers at least as many exploration possibilities as we can offer. Alternatively, 

our code and in particular the list of model run protocols that we have curated can be used to 

explore the distribution of any discoverable aspect of the supported models, not just the ones 

included in ModelView.

The development of run protocols is an extension of ModelDB’s policy of including a 

mosinit.hoc file for each NEURON model to provide a standard entry point for running a 

simulation. Unlike mosinit.hoc, run protocols explicitly specify arbitrary shell-runnable 

compilation instructions. Furthermore, following the run protocol execution instructions 

requires no interaction with the NEURON GUI, which allows automated analysis of the 

supported subset of ModelDB.

The graphical exploration features of ModelView are made possible by an analysis script 

that is run when a model is first added to ModelDB. It initializes and runs the simulation for 

one time step to setup its structure. It then queries the simulator to identify morphology, 

mechanisms, parameters, etc, and augments this information with metadata from ModelDB 

and with the results of a static source code analysis.

ModelView introspects the “flat” and generally very large internal NEURON data that 

authoritatively defines a simulatable model and attempts to represent this data in as compact 

a form as feasible. Most variables are constants over large regions or even globally. For 

example, in a hundred compartment model, the hundred values for specific membrane 

capacitance are, much more often than not, a constant 1 µF/cm2 in all of the compartments. 

Parameters that vary with position on the cell are usually of particular interest and it is 

generally helpful to view these values as a function of distance from the soma. Generally, 

the compact ModelView analysis corresponds closely to the logical data hierarchies 

specified in the interpreter program and helps focus on “unusual” values whose causes can 

then be more easily determined from a targeted code inspection by normal text search. For 

example it is very common for a value to be specified early in a parameter file and then to be 
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reset to a different value later in the code sequence to define a particular variant of a 

simulation run.

The analysis script is necessarily simulator specific, but as support for multi-simulator 

descriptions (e.g. NeuroML and PyNN) increases, this will become less of an issue. We 

initially focused on NEURON support because it is the most common simulator needed for 

models in ModelDB. We have since used NeuroConstruct to convert NeuroML to 

NEURON; this pathway allows us to support NeuroML. Tools that convert models from 

other simulators into NeuroML would provide a pathway for supporting those other 

simulators. Alternatively, we are open to collaborations with others to develop more 

simulator-specific analysis tools; advanced versions of json_to_py.py could be developed 

that would use ModelView as an intermediate step to converting to NeuroML.

Unlike many web apps, ModelView’s web presentation phase uses a non-fixed interface 

with dialogs that appear, disappear, and can be moved or resized. This design simplifies the 

interface as each dialog only needs to serve one function, allows future expandability as new 

features can be added without modifying the existing interface, and it allows the user to 

choose a layout which emphasizes the important parts for an analysis of interest. This 

flexibility is especially important for network models with many cells of only a few distinct 

types as the dialogs of the repeated cells can be minimized to make space to study the 

unique types.

We intend to continue developing ModelView. Increased interaction with this new tool will 

suggest new opportunities for introspection, for text-mining the source code, and for 

integration with databases. We currently have several specific plans for future 

enhancements: for example, we would like to improve support for network models. Each 

cell can currently be examined individually, but we intend to add support for aggregating 

them by type and for examining the network topology. We want to make the ModelView 

data searchable: for example, modelers interested only in point cell models have no way of 

restricting their searches to those models even though Model-View knows for each 

individual model if it only has point cells or not.

It is our hope that ModelDB’s ModelView will promote understanding and code reuse 

within the computational neuroscience community, and we envision that our approach can 

be adapted for other domains as well.
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Information Sharing Statement

The analysis, visualization, and inversion code for ModelView is available on ModelDB 

at: modeldb.yale.edu/154872. The JSON data is available from addresses of the form 

http://senselab.med.yale.edu/modeldb/getJsonFile.asp?file=VIEW_ID.json, where 

VIEW_ID is either the model accession number or the model accession number separated 

by an underscore and then an identifier (typically a small positive integer) distinguishing 

which of many simulations is to be viewed. The analyzed models are independently 

downloadable from modeldb.yale.edu. The set of all run protocols is at http://

senselab.med.yale.edu/modeldb/run_protocols.json. These files may be downloaded 

anonymously; no login is required.
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Figure 1. 
A view of the contents of ModelDB as of July 16, 2014, when ModelDB had 901 entries. 

(A) Cumulative distribution of the number of files per model. (B) Cumulative distribution of 

file sizes in bytes. (C) The distribution of simulator types in ModelDB. The total exceeds 

901 because some models work with multiple simulators.
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Figure 2. 
To launch the ModelView web app from the file browser of a supported model, click the 

ModelView button (indicated by the oval). For models like this one with multiple run 

protocols, a down arrow appears next to the ModelView button. Clicking on the down arrow 

shows a list of the available protocols.
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Figure 3. 
(A) The initial ModelView window for the first run protocol for ModelDB entry 87284. (B) 

The information tree with “1 cell with morphology” and “root soma” expanded.
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Figure 4. 
Exploring mechanisms. (A) Selecting a cell and then selecting inserted mechanisms lists all 

the mechanisms present within the cell. Mousing over the cell displays a popup listing the 

mechanisms that are located in the corresponding segment. (C) Selecting a mechanism 

displays its associated range variables; selecting a variable displays its values on the plots. 

(B) Selecting “Density Mechanisms” instead of a single cell lists all the density mechanisms 

in the model; selecting one shows what ionic states it reads or writes.
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Figure 5. 
Selecting a type of point process highlights all of them on the neuron viewer. The exact 

location of a specific point process may be determined by hovering over the point (right). 

Parameter values are listed in the tree. For built-in point processes, a link is provided to the 

documentation; for user-created point processes, a link is provided to the source for that 

mechanism.
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Figure 6. 
Understanding context. Links are provided to models reusing some of the same files (left). 

The References section provides links to the paper or papers that use a given model, the 

corresponding ModelDB entry, and step-by-step instructions for running the model in a way 

that produces the structure visualized in ModelView (right).
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