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Abstract

As the leading cause of cancer death worldwide, lung cancer continues to impose a major burden 

on healthcare systems and cause significant challenges for clinicians and patients. Most patients 

present with advanced disease at the time of diagnosis and have a poor prognosis, with the vast 

majority surviving less than 5 years. Although new therapies have been introduced in recent years 

that target molecular disease drivers present in a subset of patients, there is a significant need for 

treatments able to improve response and extend survival while minimizing effects on quality of 

life. Recent evidence of clinical efficacy for immunotherapeutic approaches for lung cancer 

suggests that they will become the next major therapeutic advance for this disease. Non–small cell 

lung cancer (NSCLC), which accounts for around 85% of lung cancer cases, has historically been 

considered a nonimmunogenic disease; however, as with several other malignancies, recent data 

show that much of this lack of immune responsiveness is functional rather than structural (ie, 

possible to overcome therapeutically). This review explores the key elements of the immune 

system involved in NSCLC and briefly examines immunotherapeutic strategies in development to 

shift the balance of immune activity away from a tumor-induced immune-suppressive state toward 

an active antitumor immune response.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related death worldwide, claiming an estimated 

1.59 million lives in 2012.1 Non–small cell lung cancer (NSCLC) is the predominant form 

of the disease, accounting for approximately 85% of cases.2 The majority of patients present 

with locally advanced or metastatic disease, and many do not survive more than 5 years 

beyond diagnosis.2,3 While targeted therapy has produced real benefit for specific molecular 

subtypes of NSCLC, traditional chemotherapy, which usually provides short-lived benefit, 

remains the only option for most patients. Consequently, there remains a major need for 

therapy that significantly extends patient survival without compromising quality of life.

In recent years, there has been an increasing recognition of the role of the immune system in 

cancer development and progression,4–6 with a corresponding focus on utilizing 

immunotherapy in the clinic and regulatory approvals of immunotherapy for renal cell 

cancer (interleukin [IL]-2 and interferon-α7), prostate cancer (sipuleucel-T8), and melanoma 

(ipilimumab,9 nivolumab,10 pembrolizumab11). Although NSCLC has historically been 

considered a nonimmunogenic disease, emerging evidence has demonstrated that the lack of 

an effective immune response is in fact often the result of specific, active immune-evasive 

mechanisms, which if understood can be overcome therapeutically with significant clinical 

efficacy. Harnessing this potential has therefore become a primary area of clinical 

interest.12–14 Given the increasing understanding of the role of immunology in oncology, 

this article examines the key elements of the immune system involved in cancer in general 

and in NSCLC specifically, and briefly outlines some of the immunotherapeutic strategies 

currently being developed to improve patient outcomes.

THE IMMUNE SYSTEM AND CANCER

The Antitumor Immune Response

The immune system is now recognized to have the potential to destroy cancer cells and 

inhibit tumor growth through responses elicited by its innate and adaptive arms.15 Innate 

immune responses are antigen nonspecific, develop quickly, and are mediated by various 

effector cells (natural killer [NK] cells, polymorphonuclear leukocytes, and mast cells, as 

well as antigen-presenting cells [APCs] such as macrophages and dendritic cells [DCs]), 

which lead to the secretion of interferon gamma (IFN-γ) and perforin, as well as 

inflammatory cytokines, that induce apoptosis of tumor cells.4 In contrast, adaptive immune 

responses are antigen specific, develop more slowly, offer immune memory, and comprise 

both humoral and cellular immunity mediated by B and T cells, respectively.15,16 In this 

respect, adaptive rather than innate immunity offers the greatest potential for durable, robust 

anticancer immune responses. Of note, some of the cells involved in innate immunity, such 

as DCs, macrophages, and NK cells, also play a role in adaptive immunity.4

The adaptive anticancer immune response is initiated by immature DCs, which are found in 

most human tumors and are capable of capturing antigens released from cancer cells (Fig. 

1).17,18 After maturation (activation), DCs present tumor antigens within major 

histocompatibility complex (MHC) molecules to naive T cells in the tumor-draining lymph 

nodes, triggering a protective T-cell response composed of specific CD4+ helper T (Th) 
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cells and CD8+ cytotoxic T cells. T-cell activation requires interaction not only between the 

antigen-MHC complex on DCs and T-cell receptors, but also among an array of co-

stimulatory molecules, including CD80/86 on DCs and the CD28 receptor on T cells. After 

infiltrating the tumor, activated cytotoxic T cells are capable of recognizing and killing 

tumor cells directly in an MHC-restricted fashion. In addition, activated Th cells secrete 

cytokines that induce inflammation and recruit other immune cell populations to the tumor 

microenvironment to eliminate cancer cells. DCs may also induce B-cell–mediated antibody 

responses and NK cell activity.

Promotion of Tumor Growth by the Immune System

Insights into cellular and molecular immunologic processes have revealed that the immune 

system is capable of not only inhibiting but also promoting tumor growth, through either the 

selection of tumor cells that are better able to survive in an immunocompetent host or the 

creation of conditions within the tumor microenvironment that facilitate tumor growth.5,6 It 

has been proposed that this dual host-protective and tumor-promoting role results from a 

dynamic relationship between cancer cells and the immune system termed “immunoediting,” 

which consists of three distinct phases: elimination, equilibrium, and escape (Fig. 2).15 In 

the elimination phase, acute immune responses, both innate and adaptive, recognize and 

destroy cancer cells (via a process termed “immunosurveillance”) before they develop into a 

clinically detectable tumor.5,6,15 Early evidence suggested that premalignant clones 

expressing novel somatic mutant epitopes (immunogenic portions of antigens) might be 

targeted by the immune system in the initial stages of tumor development.19 Tumor clones 

that escape the elimination phase remain dormant in the subsequent equilibrium phase, 

during which tumor growth does not occur but the immunogenicity of the tumor cells 

continues to be shaped by selective immune pressure from the adaptive immune 

response.6,15 In time, changes arising in the tumor cell population caused by this selective 

pressure and/or changes in the immune system as a result of prolonged tumor-mediated 

immunosuppression may lead to immune escape and tumor growth.6,15

Tumor cells entering the immune escape phase are able to create an immunosuppressive 

state within the tumor microenvironment by subverting the same mechanisms that under 

normal conditions help regulate the immune response and prevent damage to healthy tissue.6 

Key immunosuppressive cell types found in the tumor microenvironment are regulatory T 

(Treg) cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated 

macrophages.6,17,20 Treg cells, which are positive for CD4, CD25, and the Foxp3 

transcription factor, suppress the function and proliferation of tumor-specific CD4+ and 

CD8+ T cells and NK cells, while MDSCs induce Treg cells and limit effector T-cell 

proliferation via the production of various immunosuppressive molecules.6,17 Tumor-

associated macrophages and stromal cells may also secrete cytokines that inhibit an adaptive 

immune response, such as IL-10 and transforming growth factor-β (TGF-β).16,20 In addition, 

both tumor cells and other cells present in the tumor microenvironment may express the 

immunosuppressive enzyme indoleamine-2,3-dioxygenase, which depletes the amino acid 

tryptophan (essential for T-cell function), increases local Treg populations, and induces 

tumor-specific T-cell deactivation.20
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Even if T cells can otherwise be activated, specific physiologic regulatory mechanisms, or 

“checkpoints,” which play a key role in maintaining normal self-tolerance and limiting the 

extent of immune responses to infection, can be exploited by tumors as immune resistance 

mechanisms.21 Two of the most investigated checkpoint receptors in terms of 

immunotherapeutic targets for cancer are cytotoxic T-lymphocyte antigen-4 (CTLA-4) and 

programmed death-1 (PD-1) receptor, which down-regulate T-cell activation, proliferation, 

and function via different mechanisms.

CTLA-4 is expressed on the surface of T cells after activation and shares the same ligands 

(CD80/86 expressed by APCs) as the co-stimulatory T-cell CD28 receptor, which is 

required for T-cell activation (Fig. 3A).21 By virtue of its higher affinity for these ligands, 

CTLA-4 competes with the CD28 receptor in binding to CD80/86, thereby providing an 

inhibitory signal to the T cell and serving as a negative feedback loop for T-cell activation. 

In the cancer setting, inhibiting the T-cell response via the CTLA-4 pathway favors tumor 

survival over elimination. CTLA-4 is also constitutively expressed by Treg cells and has a 

critical effect on the ability of these cells to regulate antitumor immunity.22

The PD-1 pathway is also an important mechanism by which tumors develop immune 

resistance (Fig. 3B).15,21 Upregulation of the PD-1 receptor on activated T cells and 

subsequent binding to one of its ligands, programmed death ligand-1 (PD-L1) or 

programmed death ligand-2 (PD-L2), provide an inhibitory signal during the effector phase 

of the T-cell response, reducing cytokine production, cell proliferation, and cell survival 

signaling. PD-1 is also expressed at high levels on Treg cells, enhancing their proliferation in 

the presence of a PD-1 ligand. In addition, PD-1 may be induced on activated NK cells, 

thereby limiting their lytic activity. Present on a wide variety of hematopoietic and 

nonhematopoietic cells, PD-L1 and PD-L2 are also commonly expressed on tumor 

cells.21,23 Although the clinical significance of PD-L1 expression on tumor cells is yet to be 

fully characterized, it is thought to confer a survival advantage to the tumor via the PD-1 

pathway.17 PD-L1 tumor cell expression is induced via IFN-γ secreted by infiltrating Th 

cells as part of an adaptive immune resistance mechanism.20 Recent evidence shows that the 

induction of tumor PD-L1 expression can also be up-regulated by oncogenic signaling 

intrinsic to the tumor cells themselves.24

In addition to immunosuppressive mechanisms that undermine antitumor immunity, chronic 

inflammation can paradoxically promote tumor growth.25 In fact, chronically activated 

leukocytes produce a range of molecules that can directly stimulate tumor growth, including 

epidermal growth factor, TGF-β, and TNF-α. The development of this chronic inflammatory 

environment also confers a survival advantage to tumor cells by increasing the chance of 

DNA damage and accumulation of oncogenic mutations.

ROLE OF THE IMMUNE SYSTEM IN NSCLC

The Immunosuppressive NSCLC Tumor Microenvironment

Like other tumor types, NSCLC can establish an immunosuppressive tumor 

microenvironment conducive to tumor growth.12–14 For instance, NSCLC tumors have been 

shown to contain large numbers of Treg cells that constitutively express high levels of 
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CTLA-4 on their surface and directly inhibit T-cell proliferation.26,27 In addition, in 

NSCLC, tumor-infiltrating CD8+ T cells have shown increased PD-1 expression that was 

associated with impaired immune function.28 PD-L1 expression has also been found to be 

up-regulated on NSCLC tumor cells29 and shown to correlate with the suppression of 

maturation of tumor infiltrating DCs30 and reduced tumor T-cell infiltration.31 Furthermore, 

dysfunction of the antigen-presentation apparatus appears to impair immunologic activity in 

the tumor microenvironment, as lung tumor cells can down-regulate surface expression of 

MHC class I/tumor antigen expression, thereby helping these cells to evade the immune 

system.32 Lung tumor cells may also release immune suppressive cytokines, including IL-10 

and TGF-β.33

Immune Correlates of Clinical Outcome in NSCLC

Further underscoring the involvement of the immune system in NSCLC, a number of 

immune correlates of clinical outcome in patients with NSCLC have been identified. One of 

the most remarkable pieces of clinical evidence for immune system involvement in NSCLC 

is the presence of “preformed” antitumor T cells and antibodies in the blood of patients with 

NSCLC.34,35 Moreover, tumor-infiltrating lymphocytes (TILs), composed mainly of CD8+ 

T cells, were significantly associated with improved survival and correlated with tumor 

grade, size, vascular invasion, and poor levels of differentiation among patients with 

NSCLC.36 The presence of TILs has also been linked with a better survival outcome in 

NSCLC at an early stage as well as a reduced risk of systemic recurrence.37 In separate 

studies, high levels of infiltrating CD8+ T cells, both CD8+ and CD4+ T cells, and T cells 

expressing the pan T-cell marker CD3,38–40 as well as higher densities of mature DCs in 

tertiary lymphoid structures,41 have been associated with improved survival. Conversely, the 

number of Treg cells42,43 and higher numbers of macrophages with pro-tumor functions44 in 

NSCLC tumors have been shown to be independent predictors of reduced survival. PD-L1 

expression on tumor cells also correlates with an unfavorable prognosis in patients with 

NSCLC.23,29,30 Finally, high activity levels of nuclear factor kappa-light-chain-enhancer of 

activated B cells, a transcription factor constitutively activated in many tumor types, have 

been associated with the recruitment and infiltration of antitumor T cells into tumor tissue 

and extended survival in patients with NSCLC.45

DEVELOPMENT OF IMMUNOTHERAPY FOR NSCLC

Given the clear role of the immune system in NSCLC, research efforts are being intensively 

directed toward the development of various immunotherapies for the disease, particularly 

those promoting adaptive immune responses.12–14 Cancer immunotherapy can be broadly 

divided into antigen-specific and antigen-nonspecific therapies, with the respective aims of 

stimulating specific antitumor immunity and influencing steps after the immune system has 

been previously stimulated. Examples of antigen-specific and antigen-nonspecific 

immunotherapies include cancer vaccines and immune checkpoint inhibitors, respectively. A 

number of immunotherapeutic strategies for NSCLC, including those that stimulate immune 

processes and counteract tumor immune evasion, are being investigated in clinical trials 

(Table 1).46–59
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Immune Checkpoint Inhibitors

Perhaps the most significant advances in NSCLC immunotherapy have been made by 

targeting immune checkpoint pathways to prevent or reduce tumor-mediated immune 

suppression. In particular, several monoclonal antibodies that block immune checkpoint 

pathways, such as those involving PD-1 and CTLA-4, are being investigated in clinical trials 

with NSCLC (Table 2).47–50,52–55 These immune checkpoint inhibitors offer the advantage 

of enhancing the host’s own antitumor immune response without regard to the specific 

tumor antigen, thus conferring broader clinical application than antigen-specific 

immunotherapies such as vaccines.12

Nivolumab (BMS-936558; ONO-4538), a fully human immunoglobulin G4 (IgG4) 

monoclonal antibody directed against PD-146,60 that was approved in 2014 in the United 

States61 and Japan62 for treating patients with advanced melanoma, is being investigated for 

advanced NSCLC.47 Nivolumab was approved in the United States in 2015 for treating 

patients with metastatic squamous NSCLC with progression on or after platinum-based 

chemotherapy.63 In a phase I study (Table 2) in previously treated patients with advanced 

NSCLC (n=129), nivolumab demonstrated an objective response rate (ORR) based on 

Response Evaluation Criteria In Solid Tumors (RECIST) v1.0 of 17% across all doses 

evaluated and 24% with 3 mg/kg dose given every 2 weeks (the dose selected for phase 3 

studies), with an estimated median response duration of 74 weeks both across all doses and 

at the 3 mg/kg dose.47 Across all doses, responses occurred early, with 50% of patients 

demonstrating a response at 8 weeks, and were ongoing in 45% of patients. Responses 

occurred in various NSCLC patient subpopulations, including those with squamous and 

nonsquamous cell histology (17% and 18%), who received <3 and ≥3 prior therapies (12% 

and 21%), who were <70 and ≥70 years of age (17% and 18%), and with and without tumors 

driven by epidermal growth factor receptor (EGFR) (17% and 20%) or Kristen rat sarcoma 

oncogene homolog (KRAS) mutations (14% and 25%). Across all doses, median OS was 9.9 

months, with 1- and 2-year survival rates of 42% and 24%, respectively. With the 3 mg/kg 

dose, median OS was 14.9 months, with 1- and 2-year survival rates of 56% and 45%, 

respectively.47 Although it is difficult to compare findings between trials, the survival 

results with nivolumab are promising relative to previous experience with approved 

therapies in treatment-refractory, advanced NSCLC populations (median OS, 6–8 months; 

1-year survival rate, approximately 30%).64–67 Nivolumab had a manageable safety profile, 

with the most common treatment-related adverse events (any grade) being fatigue (24%), 

decreased appetite (12%), and diarrhea (10%).47 Grade 3–4 treatment-related adverse events 

occurred in 14% of patients. In another phase I study (CheckMate 012; Table 2), nivolumab 

showed clinical activity, with a RECIST v1.1-based ORR of 30%, in chemotherapy-naïve 

patients with advanced NSCLC.48 Additionally, in the same phase I study (CheckMate 012; 

Table 2), chemotherapy-naive patients with EGFR-mutant advanced NSCLC achieved a 

RECIST v1.1-based ORR of 19% with nivolumab plus erlotinib, an EGFR tyrosine kinase 

inhibitor.49 Nivolumab also demonstrated clinical meaningful activity (RECIST v1.1-based 

ORR: 15%) in a phase II, single-arm study (CheckMate 063; Table 2) with patients having 

advanced, refractory squamous NSCLC (n = 177).50 Phase III trials are evaluating 

nivolumab monotherapy versus current standard of care as first-line therapy for squamous 

and non-squamous NSCLC (NCT02041533 [CheckMate 026]) or subsequent line of therapy 
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for non-squamous NSCLC (NCT01673867 [CheckMate 057]). A phase III study 

(NCT01642004 [CheckMate 017]) evaluating nivolumab versus docetaxel in patients with 

stage IIIB/IV squamous NSCLC with disease recurrence or progression during or after one 

prior platinum doublet-based chemotherapy regimen was stopped early because an 

assessment conducted by the independent Data Monitoring Committee found that the study 

met its primary endpoint of superior OS with nivolumab.51 It should be noted that some of 

these phase III trials did not select patients for PD-L1 expression and may thus provide an 

opportunity for its validation as a potential predictive biomarker.

Pembrolizumab (MK-3475), a humanized IgG4 monoclonal antibody directed against PD-1 

that was approved in 2014 in the United States for treating patients with advanced or 

unresectable melanoma who are no longer responding to other agents,68 is being assessed 

for NSCLC.52 In a phase I study (KEYNOTE-001; Table 2) with patients with treatment-

naïve and previously treated NSCLC (n = 262), pembrolizumab demonstrated a RECIST 

v1.1-based ORR of 21%.52 ORR was higher for patients who were treatment naïve versus 

previously treated (26% and 20%, respectively), had non-squamous versus squamous 

histology (23% versus 18%, respectively), were current or former versus never smokers 

(27% versus 9%, respectively), and had tumor with KRAS versus EGFR mutations (39% 

versus 36%, respectively). Median OS in the treatment-naïve and previously-treated cohorts 

was not reached and 8.2 months, respectively. The most common treatment-related adverse 

events (any grade) were fatigue (20%), pruritus (9%), arthralgia (8%), decreased appetite 

(8%), and diarrhea (7%). Grade 3–4 treatment-related adverse events occurred in 9% of 

patients. A phase II/III study is ongoing comparing two dose levels of pembrolizumab with 

docetaxel in pretreated patients with advanced NSCLC (NCT01905657 [KEYNOTE-010]). 

Phase III studies comparing first-line pembrolizumab monotherapy with platinum-based 

doublet chemotherapy in PD-L1–positive, advanced NSCLC are recruiting patients 

(NCT02142738 [KEYNOTE-024] and NCT02220894 [KEYNOTE-042]).

Targeting the PD-1 ligand PD-L1 may provide an alternative strategy for NSCLC. In a 

phase I study (Table 2) with patients with squamous or nonsquamous NSCLC (n=37), 

MPDL3280A, a human IgG1 monoclonal antibody directed against with an engineered 

fragment crystallizable (Fc) domain to prevent antibody-dependent cell-mediated 

cytotoxicity (ADCC) and complement-dependent cell-mediated cytotoxicity (CDCC) of 

tumor-infiltrating T cells meant to be activated,69 achieved an RECIST v1.1-based ORR of 

24%.53 ORR was greater in the former or current smokers (25%) than in never smokers 

(16%). Grade 3–4 adverse events, regardless of attribution, occurred in 34% of patients and 

included pericardial effusion (6%), dehydration (4%), dyspnea (4%), and fatigue (4%). A 

phase II study is currently examining the use of MPDL3280A in patients with PDL1-

positive advanced NSCLC (FIR study [NCT01846416]). Phase II and III studies are also 

underway comparing MPDL3280A with docetaxel among patients with advanced NSCLC 

who failed previous platinum therapy (POPLAR study [NCT01903993] and OAK study 

[NCT02008227], respectively).

MEDI4736, a fully human IgG1 monoclonal antibody directed against PD-L1 containing an 

engineered IgG1 Fc domain to prevent ADCC and CDCC of tumor-infiltrating T cells,69 

produced a RECIST v1.1-based ORR of 16% in a phase I study (Table 2) with patients with 
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NSCLC (n=155) who were mostly pretreated54 and is being further studied in phase II/III 

studies with patients with NSCLC (Lung-MAP study [NCT02154490] and ATLANTIC 

study [NCT02087423]).

Research is underway to identify biomarkers that might predict which patients respond best 

to PD-1 pathway inhibitors, the most promising of which may be the level of PD-L1 

expression in the tumor microenvironment. Considering the role of PD-L1 in tumor immune 

evasion, it is logical to assume that PD-L1 expression would be a viable biomarker.21 In 

preliminary analyses with various PD-1 pathway inhibitors, expression of PD-L1 on tumor 

cells at baseline appeared to correlate with increased efficacy.46–48,50,52,53 For example, in 

the phase II CheckMate 063 study with nivolumab in patients having advanced, refractory 

squamous NSCLC, RECIST-based ORR was greater in patients with PD-L1–positive 

tumors (≥5% tumor cells expressing PD-L1 by immunohistochemistry [IHC]) versus PD-

L1–negative tumors (24% [6/25] versus 14% [7/51], respectively).50 Similarly, among 

treatment-naïve and previously-treated patients with advanced NSCLC receiving 

pembrolizumab in the phase I KEYNOTE-001 trial, ORR by RECIST was greater in 

patients with PD-L1–positive tumors (≥1% tumor cells expressing PD-L1 by IHC) than in 

those with PD-L1–negative tumors (23% versus 9%).52 Patients in that study who were PD-

L1 strong-positive (≥50% membranous staining in tumor cells) versus PD-L1 weak-positive 

or negative demonstrated longer median OS (hazard ratio [HR], 0.59; 95% confidence 

interval [CI], 0.35–0.99) and median progression-free survival (HR, 0.52; 95% CI, 0.33–

0.80). Expression of PD-L1 on tumor-infiltrating immune cells may also be predictive of 

response with anti-PD-L1 agents, as suggested in a phase 1 study of MPDL3280A with 

NSCLC patients showing that RECIST-based ORRs were significantly associated with 

tumor-infiltrating immune cell PD-L1 expression (p = 0.015).70 PD-L1–positive tumor-

infiltrating immune cells included macrophages, DCs and T cells. In that study, responses 

occurred in 83% of patients (5/6) with an IHC score of 3 (≥10% of cells per area expressing 

PD-L1) compared with 20% (4/20), 15% (2/13), and 14% (1/7) of patients with IHC scores 

of 0 (<1% of cells), 1 (≥1% but <5% of cells), and 2 (≥5% but <10% of cells), respectively. 

The conclusions that can be drawn from these analyses, however, are limited by several 

factors, including small patient numbers due to low rate of tissue sample ascertainment, the 

use of archival (versus fresh) tumor samples, use of ORR (which may not be the optimal 

endpoint to assess the predictive role of biomarkers for immune-based therapies), the 

dynamic nature of and intra-tumor variations in PD-L1 expression, the effect of prior 

treatment on PD-L1 status, lack of standardization of IHC assays, and undefined cut-off 

values for PD-L1 positivity.23,47,50 The use of PD-L1 as a biomarker is therefore being 

further explored in larger NSCLC trials.

The fully human IgG1 monoclonal antibody ipilimumab, which is directed against CTLA-4, 

has shown antitumor activity and a survival advantage with advanced melanoma9 and may 

have potential in treating patients with advanced NSCLC.55 A phase II study (Table 2) 

compared ipilimumab plus paclitaxel and carboplatin (concurrent or phased administration) 

with paclitaxel and carboplatin alone (control) in chemotherapy-naïve patients with stage 

IIIB/IV NSCLC (n = 204).55 In that study, phased administration (pacliatxel and carboplatin 

followed by ipilimumab plus pacliatxel and carboplatin) demonstrated significantly 
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improved median immune-related progression-free survival (irPFS), the primary study end 

point, compared with paclitaxel and carboplatin alone (5.7 versus 4.6 months; HR, 0.72; p = 

0.05), with greater improvements in irPFS occurring with squamous versus non-squamous 

histology. However, concurrent administration (ipilimumab plus paclitaxel and carboplatin 

followed by paclitaxel and carboplatin) did not significantly improve irPFS versus control. 

There was a non-statistical trend toward improved median OS with phased administration 

compared with control, but not with concurrent administration. Ipilimumab did not appear to 

impact toxicities associated with paclitaxel and carboplatin. Immune-mediated adverse 

events (eg, rash, pruritus, diarrhea) occurred more frequently in the ipilimumab arms than in 

the control arm. The combination of ipilimumab with paclitaxel and carboplatin is being 

further investigated in a phase III study in patients with stage III/IV recurrent squamous 

NSCLC (NCT01285609).

Interestingly, early results of ipilimumab in combination with nivolumab in melanoma 

suggest that a two-pronged approach may provide clinical benefit based on the apparently 

complementary roles of CTLA-4 and PD-1 in negative immune regulation.71 A phase I 

study is also ongoing to evaluate this combination in treatment-naive advanced patients with 

NSCLC (NCT01454102). In addition, MEDI4736 combined with tremelimumab, an IgG2 

anti-CTLA-4 antibody, is being investigated in patients with previously-treated NSCLC in a 

phase I study (NCT02000947).72

Overall, immune checkpoint inhibitors that target the PD-1 or CTLA-4 pathways have 

manageable safety profiles (Table 2).46–50,52–55 These agents are characteristically 

associated with immune-related adverse events (eg, rash, pruritus, diarrhea, hypothyroidism, 

hepatitis), which are consistent with the their mechanism of action and can often be 

managed with protocol-specified guidelines (eg, close patient follow-up and early 

administration of systemic corticosteroids and/or other immunosuppressive 

agents).23,47,55,69

Agents that inhibit other immune checkpoint pathways may also have potential in treating 

patients with advanced NSCLC.73 For example, lirilumab (IPH2102), a fully human IgG4 

monoclonal antibody that blocks the interaction between killer-cell immunoglobulin-like 

receptors on natural killer (NK) cells with their ligands,73,74 is being assessed in 

combination with nivolumab (NCT01714739) or ipilimumab (NCT01750580) in phase I 

studies with patients with NSCLC. In addition, BMS-986016, a monoclonal antibody that 

binds to lymphocyte-activation gene 3, a CD4-related immune checkpoint receptor co-

expressed with PD-1 on tolerant tumor-infiltrating lymphocytes,74 is being evaluated in 

combination with nivolumab in patients with advanced solid tumors in a phase 1 study 

(NCT01968109).

Although durable clinical responses have been documented in patients with various tumor 

types treated with immune checkpoint inhibitors, the genetic basis for these benefits is only 

beginning to be understood. Recent research suggests that patients more likely to achieve 

meaningful responses to CTLA-4 inhibition have tumors displaying neoantigens, which 

result from specific somatic mutations harbored by the tumor and elicit an antitumor 

response augmented by CTLA-4 inhibition.75 Such tumor antigens could be immunogenic 
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and potentially function as targets of T cells activated by immune checkpoint inhibition.76,77 

Therefore, methods are being developed for predicting immunogenic tumor mutations, 

thereby identifying patients who would best benefit from immune checkpoint inhibitors and 

allowing personalized treatment.77

Cancer Vaccines

Cancer vaccines aim to stimulate the immune system to recognize and respond to one or 

more tumor antigens, which ideally show exclusive or elevated expression on cancer cells.12 

However, as most tumor antigens are closely related or identical to self-antigens and 

therefore weakly antigenic, cancer vaccines usually incorporate strong adjuvants to stimulate 

efficient DC presentation of these proteins.17 A number of cancer vaccines are currently in 

clinical trials in NSCLC, including tecemotide (liposomal BLP25),56 racotumomab,57 and 

TG4010,58 which have shown a range of responses and survival outcomes (reviewed in 

detail elsewhere).12–14 Current evidence suggests that, despite the potential for inducing 

long-lasting immune memory, vaccine therapy may be most effective in patients with a 

lower disease burden.13

Nonspecific Immune Stimulation

Nonspecific immune stimulation has been investigated therapeutically in different cancers, 

including NSCLC.12 One agent recently evaluated in NSCLC is talactoferrin alfa, a 

recombinant form of human lactoferrin and an oral DC-mediated immunotherapy that 

stimulates cytokine release in the intestine, with subsequent recruitment and activation of 

DCs. Although talactoferrin alfa did not lead to improved OS versus placebo in a phase III 

study in patients with advanced, pretreated NSCLC,59 it is now undergoing additional 

evaluation in treatment-naive patients with advanced or metastatic NSCLC.

CONCLUSIONS

Although traditionally considered a nonimmunogenic disease, NSCLC is now recognized to 

elicit an endogenous immune response. Emerging results with a range of immunotherapeutic 

agents such as immune checkpoint inhibitors indicate that this therapeutic modality could 

eventually have a significant impact upon the survival and quality of life of patients with 

NSCLC, for whom the outlook is currently bleak. Further investigation into the 

dysregulation of the immune system induced by tumor cells during development of NSCLC 

and additional results from ongoing studies will provide insight on how immunotherapy can 

be used to shift the balance of immune control away from a tumor-induced immune 

suppressive state to an active antitumor immune response.
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FIGURE 1. 
Adaptive anticancer immunity. The adaptive anticancer immune response is initiated by 

immature DCs, which capture and process tumor antigens. DCs subsequently undergo 

maturation and migrate to tumor-draining lymph nodes, where they present tumor antigens 

within MHC molecules to naïve T cells, triggering a protective T-cell response. T-cell 

activation requires interaction not only between the antigen-MHC complex on DCs and 

TCRs but also among an array of co-stimulatory molecules, including CD80/86 on DCs and 

the CD28 receptor on T cells. The adaptive anticancer immune response culminates with the 

infiltration of activated cytotoxic T cells into the tumor, killing cancer cells. DC, dendritic 

cell; MHC, major histocompatibility; TCR, T-cell receptor.
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FIGURE 2. 
Cancer immunoediting. The proposed process of cancer immunoediting consists of three 

distinct phases: elimination, equilibrium, and escape. In the elimination phase, innate and 

adaptive immune responses recognize and destroy cancer cells (immunosurveillance), 

suppressing tumor development. In the equilibrium phase, tumor clones that escape the 

elimination phase remain dormant, during which tumor growth does not occur but the 

immunogenicity of the tumor cells continues to be shaped by selective immune pressure. In 

the escape phase, tumor cell clones that are resistant to the immune system proliferate 

unchecked. Adapted with permission from: Vesely MD, Kershaw MH, Schreiber RD, et al. 

Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011;29:235–271.
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FIGURE 3. 
Immune checkpoints. A, Cytotoxic CTLA-4 is expressed on T cells after activation and 

competes with the co-stimulatory T-cell CD28 receptor for CD80/86 expressed by APCs, 

providing an inhibitory signal to the T cell. B, PD-1 receptor is up-regulated on activated T 

cells and subsequently binds to one of its ligands, PD-L1 or PD-L2, which are commonly 

expressed on tumor cells, providing an inhibitory signal to the T cell. APC, antigen-

presenting cell; MHC, major histocompatibility; TCR, T-cell receptor; CTLA-4, cytotoxic 

T-lymphocyte antigen-4; PD-L1/L2, programmed death ligand-1/ligand-2; PD-1, 

programmed death-1. Adapted with permission from: Pardoll DM. The blockade of immune 

checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252–264.
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TABLE 1

Immunotherapeutic Agents in Clinical Development for the Treatment of Advanced Non–Small Cell Lung 

Cancer

Agent Description

Checkpoint Inhibitors

Nivolumab Fully human IgG4 monoclonal antibody directed against PD-1 on T cells

Pembrolizumab (MK-3475) Humanized IgG4 monoclonal antibody directed against PD-1 on T cells

BMS-936559 Fully human IgG4 monoclonal antibody directed against PD-L1 on tumor cells

MPDL3280A Human IgG1 monoclonal antibody directed against PD-L1 on tumor cells

MEDI4736 Fully human IgG1 monoclonal antibody directed against PD-L1 on tumor cells

Ipilimumab Fully human IgG1 monoclonal antibody directed against CTLA-4 on T cells

Lirilumab (IPH2102) Fully human monoclonal antibody directed against the killer-cell immunoglobulin-like receptor on NK cells

BMS-986016 Monoclonal antibody directed against the lymphocyte-activation gene 3 on tumor infiltrating lymphocytes

Vaccines

Tecemotide (liposomal BLP25) Vaccine composed of the exposed core peptide of MUC-1

Racotumomab Patient idiotype-specific vaccine against NGg GM3

TG4010 Vaccine that uses a recombinant vaccinia virus (modified virus of Ankara) that encodes for human MUC-1 
and IL-2

Nonspecific Immune Stimulator

Talactoferrin alfa Recombinant human lactoferrin

CTLA-4, cytotoxic T lymphocyte antigen-4; IgG, immunoglobulin G; IL-2, interleukin-2; MUC-1, mucin 1; NGg, N-glycolil; NK, natural killer; 
NSCLC, non–small cell lung cancer; PD-1, programmed death-1; PD-L1, programmed death ligand-1
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