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Abstract

An experimental unit is an opportunity to randomly apply or withhold a treatment. There is 

interference between units if the application of the treatment to one unit may also affect other 

units. In cognitive neuroscience, a common form of experiment presents a sequence of stimuli or 

requests for cognitive activity at random to each experimental subject and measures biological 

aspects of brain activity that follow these requests. Each subject is then many experimental units, 

and interference between units within an experimental subject is likely, in part because the stimuli 

follow one another quickly and in part because human subjects learn or become experienced or 

primed or bored as the experiment proceeds. We use a recent fMRI experiment concerned with the 

inhibition of motor activity to illustrate and further develop recently proposed methodology for 

inference in the presence of interference. A simulation evaluates the power of competing 

procedures.
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1 Introduction: An Application of Inference with Interference

1.1 What is interference between units?

If treatment effects are defined as comparisons of the two potential responses that an 

experimental unit would exhibit under treatment or under control (Neyman 1923, Welch 

1937, Rubin 1974, Lindquist and Sobel 2011), then an implicit premise of this definition is 

“no interference between units,” as discussed by Cox (1958, p. 19): “There is no 

‘interference’ between different units if the observation on one unit [is] unaffected by the 

particular assignment of treatments to the other units;” see also Rubin (1986). For instance, 

widespread use of a vaccine may benefit unvaccinated individuals because they are less 

likely to encounter an infected individual, a form of interference known as herd immunity; 

see Hudgens and Halloran (2008). In agriculture, the treatment applied to one plot may also 
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affect adjacent plots; see David and Kempton (1996). In social experiments, people talk, and 

changing the treatment applied to one person may change what she says to someone else, 

altering his response to treatment; see Sobel (2006).

In some contexts, interference is of central interest in itself — this can be true of herd 

immunity or of social interaction, for example — but in many if not most contexts, 

interference is principally an inconvenience, depriving us of both independent observations 

and a familiar definition of treatment effects. We apply and extend a recent, general 

approach to inference with interference (Rosenbaum 2007a) in the context of a cognitive 

neuroscience experiment in which the brains of a moderate number of subjects are studied 

using fMRI while faced with a rapid fire sequence of randomized stimuli. In this context, 

interference is likely to be widespread and difficult to model with precision. The goal is a 

simple, sturdy, valid method of inference whose conclusions about the magnitude of 

treatment effects are intelligible when the interference may be complex in form.

1.2 Three themes: randomization inference, confidence intervals with interference, 
ineffective trials

In this case-study, we reanalyze a randomized experiment in cognitive neuroscience with a 

view to illustrating three ideas, one very old idea, one somewhat new idea, and one idea that 

has evolved gradually over more than half a century. In many cognitive neuroscience 

experiments, a moderate number of subjects are repeatedly exposed to many randomly 

selected stimuli intended to elicit cognitive activity of a specific type together with its 

characteristic neurological activity visible with, say, fMRI. Three dilemmas arise in these 

experiments. First, because a few thoughtful, complex human subjects are observed many 

times performing simple repetitive tasks, subjects become familiar with the tasks, perhaps 

increasingly bored or skillful or distracted or fatigued or aware of the purpose of the 

experiment, so the situation is unlike a study of a single response elicited from each of many 

separated, unrelated subjects, and also unlike a stationary time series or a repeated measures 

model with dependence within subjects represented by additive subject parameters. In such a 

context, one might wish to draw inferences about treatment effects on many brain regions 

without relying on a model fitted to just a few people. Second, for reasons both biological 

and cognitive, rapid-fire stimuli are likely to interfere with one another, in part because the 

neurological response to one stimulus is expected to last well beyond the presentation of the 

next stimulus, and in part because learning and boredom and surprise are global cognitive 

responses to long segments of a sequence of stimuli not responses to a single stimulus. If 

100 treatment/control tasks are presented to one subject in ten minutes, then it is unrealistic 

to characterize the effect of the treatment versus control in terms of response to single trials, 

because the response to each trial is affected by many previous trials. We need to 

characterize the differing responses to treated and control stimuli without assuming the mind 

and brain are born anew after each stimulus. Third, the experimenter controls the stimuli, the 

requests for cognitive activity, but requests for cognitive activity may not produce the 

requested activity, and hence not produce the neurological activity characteristic of that 

cognitive activity. This is familiar from conversation, as when a speaker asks a question 

only to receive the reply: “Would you repeat that? I wasn’t listening.” If a statistical test is 

used that expects every stimulus to elicit its intended cognitive activity, the test may have 
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much less power to detect actual activity than a test which acknowledges distraction and 

boredom and error in addition to the requested activity.

The old idea, due to Sir Ronald Fisher (1935), is that randomization can form the “reasoned 

basis for inference” in randomized experiments, creating without modeling assumptions all 

of the probability distributions needed to test the null hypothesis of no treatment effect. In 

his introduction of randomized experimentation, Fisher (1935, Chapter 2) pointedly used a 

single-subject randomized experiment — the famed lady tasting tea — precisely because 

modeling and sampling assumptions seemed so inadequate to describe a single-subject 

experiment. In particular, there was no need to model the lady’s evolving cognitive activity 

to test the null hypothesis that she could not discern whether milk or tea had first been added 

to the cup. Although it sometimes receives less emphasis in the statistics curriculum of 

2011, Fisher’s theory of randomization inference was viewed as one of the field’s celebrated 

results. This method of using random assignment to replace modelling assumptions was 

described by Jerzy Neyman (1942, p. 311) as “a very brilliant one due to Fisher,” and in 

retrospect Neyman (1967, p. 1459) wrote: “Without randomization there is no guarantee that 

the experimental data will be free from a bias that no test of significance can detect.” In a 

similar vein, John Tukey (1986, p. 72) recommended: “using randomization to ensure 

validity — leaving to assumptions the task of helping with stringency.” (Stringency is 

decent power in difficult situations, in the spirit of the formal notion of a most stringent test 

which minimizes the maximum power loss over a class of alternatives.)

The newer idea addresses a limitation of Fisher’s method when used in the presence of 

interference. Fisher’s method yields a valid test of the null hypothesis of no effect. If a 

treatment effect has a simple form, say an additive constant effect or shift, then it is possible 

to invert Fisher’s test of no effect to yield a confidence statement for the magnitude of this 

constant effect (e.g., Lehmann 1975); however, by its nature, interference precludes such a 

simple form for an effect. The newer idea is to invert the randomization test of no effect to 

yield a confidence interval for an attributable effect in the presence of interference that 

contrasts the results seen with an active treatment to the results that would have been seen in 

an experiment of identical design but with no active treatment, a so-called “uniformity trial” 

common in the early years of randomized agricultural experimentation (Rosenbaum 2007a). 

This newer idea is applicable with distribution-free statistics whose distribution in the 

uniformity trial is known without conducting the uniformity trial. The classes of 

distribution-free statistics and of rank statistics overlap substantially but are not the same, 

and it is the distribution-free property that is needed here.

The third, gradually evolving idea made a first appearance in a paper by Lehmann (1953) 

concerned with the power of rank tests. After showing that Wilcoxon’s test was the locally 

most powerful rank test for a constant, additive effect in the presence of logistic errors, 

Lehmann went on to show that it was also locally most powerful against a very specific 

mixture alternative in which only a fraction of subjects respond to treatment. Conover and 

Salsburg (1988) generalized the mixture alternative and derived the form of the 

corresponding locally most powerful test; this was no longer Wilcoxon’s test, but rather a 

test that gave greater emphasis to larger responses. Although they substantially increase 

power when some trials fail to elicit the intended effect, the ranks used by Conover and 
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Salsburg have no obvious interpretation, so they cannot be used as the basis for an 

attributable effect. It turns out, however, that Conover and Salsburg’s ranks are almost the 

same as ranks proposed by Stephenson (1981); see also related work by Deshpande and 

Kochar (1980) and Stephenson and Gosh (1985). Using Stephenson’s ranks, a confidence 

interval for attributable effects becomes available (Rosenbaum 2007b), thereby permitting 

inference about the magnitude of the effect in the presence of interference.

Although the main goal is to illustrate these three ideas in the context of an fMRI 

experiment, along the way a technical issue arises. The experiment is not a perfectly 

balanced design, and for unbalanced designs the attributable effect has a more natural 

interpretation if it is not formulated in terms of a linear rank statistic, but rather in terms of a 

linear placement statistic in the sense of Orban and Wolfe (1982), which is a form of 

nonlinear rank statistic. Because perfect balance is difficult to achieve in cognitive 

neuroscience experiments, we develop the formalities in terms of the placement statistics 

that are most likely to be useful in practice.

1.3 A randomized experiment in the cognitive neuroscience of motor inhibition

In the experiment by Duann, Ide, Luo and Li (2009), each of 58 experimental subjects was 

observed in four experimental sessions that were each about ten minutes in length. At 

random times during a session, a trial began, with a median of 97 trials per session. With 

probability , the trial was a “go trial:” a dot was presented on a screen, and after a interval 

of time of random length, the dot became a circle signifying that the subject was to quickly 

press a button. With probability , the trial was a “stop trial:” the trial began as a go trial, but 

briefly after the circle appeared it was replaced by an X signifying “do not press the button.” 

In a stop trial, the subject is instructed to do something, and then the instruction is cancelled. 

Here, an experimental unit is a trial, with stop trials called ‘treatment’ and go trials called 

‘control.’ During an experimental session, brain activity was recorded using fMRI at two 

second intervals. The experiment sought to determine how the brain reacted differently to go 

and stop trials, where stop trials call for inhibition of a previously requested motor response 

from the subject.

Figure 1 shows one session for one subject. The vertical grey lines are go trials. The vertical 

black lines are stop trials. Based on fMRI, Figure 1 shows activity in the subthalamic 

nucleus (STN). Aron and Poldrack (2006) and Li et al. (2008) suggested that the STN plays 

an important role in response inhibition. In the lower portion of Figure 1, the STN activity is 

filtered without use of the stop/go distinction. The filter is a high-pass filter of 128s: it 

removes slow, low frequency drifts, leaving behind the high frequency ups and downs 

thought to reflect brain activity. The effects of the filter are somewhat visible in Figure 1. 

For the STN, we analyze unfiltered and filtered data in parallel, obtaining similar 

conclusions. In effect, the experiment produces 58 × 4 = 232 figures analogous to Figure 1, 

one for each subject in each session, and does this for many regions of the brain.

The assumption of “no interference between units” is not at all plausible in Figure 1. A 

typical session has about a hundred trials or experimental units in about 600 seconds. There 

is interference if the response of a subject at a given trial is affected by treatments at other 

trials. Interference is likely for at least two reasons. First, the brain has a measurable 
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response to a stimulus for many seconds after the stimulus has been withdrawn, so a subject 

is still responding to one trial when the next trial begins. Second, the response to a stop trial 

preceded by a long string of go trials may be different from the response to a stop trial 

preceded by another stop trial. In addition, as time goes by, subjects are experiencing the 

normal responses people have when performing a repetitive task: they become familiar with 

the task, or bored by the task, or less distracted by the recording equipment and more 

focused on the task, or distracted by something else, and each of these is a response to their 

entire past experience. The 22,440 trials in this experiment are nothing like a randomized 

clinical trial with 22,440 unrelated people who do not interfere with each other. It is, 

nonetheless, a randomized trial and randomization can form the basis for inference, as it did 

in Fisher’s (1935, §2) prototype trial of one lady tasting eight cups of tea.

The trial has a second important feature. Not all trials are “successful.” In the first instance, 

in a stop trial, the subject is instructed first to “go” — press the button — and then the 

instruction is cancelled. In a stop trial, if the random time between the circle and the X is 

longer than usual and the subject is quicker than most, then she may press the button before 

the instruction is cancelled. In this case, even though the trial is randomized to be a stop or 

treated trial, her brain should exhibit the response typical under the control condition, 

because nothing she experienced distinguished the trial from a go trial. In addition to the 

situation just described, it may also happen that the subject is unambiguously told to press 

the button but does not do so, or is unambiguously told not to press the button but does so 

anyway, perhaps because the subject is momentarily distracted. Also, a subject may exhibit 

correct behavior with erroneous thoughts, say failing to press the button because of 

distraction or fatigue rather than inhibition. Expressed differently, whether or not a trial is 

successful is not generally a visible property of the trial, yet we are con dent that human 

subjects do not always think the thoughts an experimenter requests. If a trial is not 

successful in any of these senses, then the requested cognitive activity may not take place, so 

there may not be the change in blood oxygenation that would typically accompany the 

requested cognitive activity. Although a stimulus asks for a cognition, we cannot tell 

whether the cognition took place or not, because we see only behavior and neurological 

response, but it is unlikely that every stimulus elicits its intended cognition. We might think 

of responses as a mixture of successful and unsuccessful trials, where successful trials 

produce a specific pattern of fMRI response. Salsburg (1986), Conover and Salsburg (1988) 

and Rosenbaum (2007b) consider rank tests that are particularly effective when only a 

subset of experimental units respond to treatment. These rank tests score the ranks in such a 

way that little weight is given to lower ranks. In the current paper, a similar approach is 

taken in studies with interference between units.

When a region of the brain is stimulated to activity, the change in blood oxygenation 

measured by fMRI is not immediate. There is a brief delay, perhaps a dip, for about 2 

seconds, followed by a sharp rise, a sharp fall to slightly below baseline, followed by a 

gradual return to baseline; see Lindquist (2008, Figure 3). This curve is known as the 

hemodynamic response function (HRF). We use the form developed by Friston et al. (1998), 

specifically a weighted difference of two gamma densities, γ(x;ω, ϑ) = ϑωxω−1 

exp(−ϑx)/Γ(ω), both with parameter ϑ = 1/16, and with shape parameters ω1 = 6 and ω2 = 
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16, specifically the function hrf (x) = γ(16x;6, 1/16) − γ(16x;16, 1/16)/6 where x is in 

seconds. Although we do not report these results, we tried a second form for the HRF with a 

similar shape but built from inverse logit functions (Lindquist and Wager 2007), obtaining 

qualitatively similar results in a table parallel to Table 2.

Recall that the measurements in Figure 1 occur at two second intervals. Evaluating the 

hemodynamic response function, hrf (x), at two-second intervals, we computed 17 weights 

for 17 two-second intervals that follow each trial, that is, for the 2 × 17 = 34 seconds that 

follow a trial. These weights sum to one. The first weight is zero, the third and fourth 

weights are the largest (.375 and .385), and beginning at the eighth the weights turn slightly 

negative (weight eight is −0.031) gradually returning to zero (weight 17 is −0.0001). At the 

end of a session, if fewer than 17 two-second intervals remained, we used the remaining 

intervals and renormalized the weights so that they again summed to one. For a region such 

as STN in Figure 1, after each trial, we computed the sum of the HRF weights multiplied by 

the fMRI measurements. If a region of a subject’s brain has become unusually active, we 

expect this weighted average to become unusually large. Figure 2 is a pair of boxplots of this 

weighted average for the one session and one subject in Figure 1. In Figure 2, there is some 

indication that the responses in the stop or treated trials in Figure 1 are elevated.

Although the analysis uses the responses in Figure 2 weighted by the hrf (x) function, the 

method is applicable with any method of scoring the trials that produces one number per 

trial. For instance, a response that is sometimes used is the correlation between the hrf (x) 

function and the sequence of responses that immediately follow a trial.

1.4 Outline

Section 2 reviews notation from Rosenbaum (2007a) for treatment effects when interference 

may be present. In §3.1, a nonlinear rank statistic TZ is proposed for a randomized block 

design with blocks of unequal block sizes; in particular, TZ is intended to perform well when 

not all treated trials are successful in eliciting the intended cognitive activity. Under the null 

hypothesis of no treatment effect there is, of necessity, no interference among the treatment 

effects, and §3.2 uses ideas from Orban and Wolfe (1982) to obtain the null randomization 

distribution of the test statistic TZ. A confidence statement about the magnitude of effect 

with interference is then obtained by a pivotal argument in §3.3: it measures the magnitude 

of the difference between the actual trial and the uniformity trial. In §4, the method of §3.3 

is applied to activation of the subthalamic nucleus in §1.3. A simulation in §5 evaluates the 

power of TZ in experiments with interference using a mixture model in which not all trials 

elicit the intended cognitive activity.

2 Notation: The Randomized Trial and the Uniformity Trial

2.1 Blocked randomized trial with interference between units

There are B ≥ 1 blocks, b = 1, …, B, and Nb ≥ 2 units bi in block b, i = 1, …, Nb, with N = 

ΣNb units in total. In §1, there are B = 58 × 4 = 232 blocks consisting of the four sessions for 

each of 58 subjects, N = 22,440 units or trials in total, with 87 ≤ Nb ≤ 104 and a median Nb 

of 97. In block b, nb units are picked at random for treatment, 1 ≤ nb < Nb, the remaining mb 

= Nb − nb ≥ 1 units receive control. In §1, the probability that a unit was a “stop trial” was , 
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resulting in 13 ≤ nb ≤ 37 and a median nb of 24. If unit i in block b was assigned to 

treatment, write Zbi = 1, and if this unit was assigned to control write Zbi = 0, and let Z = 

(Z11, Z12, …, ZB,NB)T be the N-dimensional vector in the lexical order. For a finite set A, 

write |A| for the number of elements of A. Write Ω for the set containing the 

 possible values z of Z, so z ∈ Ω if and only if zbi = 0 or zbi = 1 and 

 for b = 1, …, B. Write n = (n1, …, nB)T and m = (m1, …, mB)T.

Write rbiz for the response that the ith unit in block b would have if the treatment assignment 

Z equalled z for z ∈ Ω. In §1.3, for trial i of subject/session b, the response rbiz is the HRF 

weighting of either the un filtered or filtered activity in the subthalamic nucleus (STN). Each 

unit has |Ω| potential responses, only one of which is observed, namely rbiZ. Figure 2 plots 

rbiZ for Zbi = 0 and Zbi = 1 for one b and i = 1, …, Nb.

Unlike the notation of Neyman (1923) and Rubin (1974), the response of the ith unit in 

block b may depend on the treatments Z assigned to all the units; that is, this notation 

permits interference (Rosenbaum 2007a). In §1, it is quite plausible that a previous treatment 

for one subject may affect later responses of this same subject. Indeed, it is possible that 

interference extends across the four blocks or sessions for a given subject. Write  for the 

unobservable array with N rows and |Ω| columns having entries rbiz. The unobservable 

describes what would happen under all possible treatment assignments z ∈ Ω, but  does 

not change when actual randomized treatment assignment Z is selected. In contrast, the 

observable responses rbiZ are one column of , and which one column that is does, of 

course, depend upon the randomized treatment assignment, Z. Fisher’s (1935) sharp null 

hypothesis H0 of no treatment effect asserts that rbiz = rbiz′ for all z, z′ ∈ Ω and all b, i, so 

within each row bi of  all |Ω| columns have the same value for rbiz.

No interference between units means that rbiz = rbiz′ whenever , that is, the response 

in block b at trial i depends on the treatment zbi assigned in block b at trial i, but it does not 

depend on the treatments z assigned at other trials. As discussed in §1.3, no interference 

between units is not plausible in Figure 1, and because of the overlapping of HRF functions 

is virtually impossible in Figure 2 if H0 is false.

By a randomized block experiment, we mean that

(1)

In §1, the timing of trials and hence also the number Nb of trials was determined by a 

random process; then, with probability  the trial was a “stop trial” and with probability  the 

trial was a “go trial;” hence, n and m were random variables, but the conditional 

probabilities given , n, m of particular patterns of stop or go trials was completely 

randomized within each block in the sense that (1) was true. Importantly, (1) says treatment 

assignments were determined by a truly randomized mechanism that ensured the 
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unobservable potential responses  were not predictive of treatment assignment Z; this is, 

of course, the essential element of randomized treatment assignment. In a randomized 

experiment, any association between treatment assignment Z and the observed responses, 

rbiZ, is due to an effect caused by the treatment expressed in ; because of (1), an 

association between Z and rbiZ cannot result from biased selection into treated and control 

groups if the treatment has no effect, that is if Fisher’s H0 is true.

2.2 The uniformity trial

As mentioned previously, in the absence of interference, it is natural to ask how a unit would 

have responded if that one unit had received the treatment and or if that one unit had 

received the control and to define the effect of the treatment on this unit as a comparison of 

these two potential responses; see Neyman (1923), Welch (1937) and Rubin (1974) for 

discussion of this standard way of defining treatment effects in randomized experiments. 

This formulation does not work when there is interference between units because a unit may 

be affected by treatments applied to or withheld from other units. Some definition of the 

treatment effect with interference is needed if a randomization test of the null hypothesis of 

no effect is to be inverted to obtain a confidence interval for the magnitude of effect. In 

principle, the treatment effect is characterized by the N × |Ω| array , where 

; however, that array is mostly not observed, and it is so large and 

detailed that it would be beyond human comprehension even if it were observed. We would 

like to define the treatment effect as a summary of , but in such a way that the summary is 

intelligible and usable in inference.

We define the treatment effect with reference to a uniformity trial of the type that, in a 

certain era, was commonly used as an aid to designing experiments; see Cochran (1937). For 

instance, uniformity trials were once used to study the performance of competing 

experimental designs, such as complete randomization or randomized blocks or randomized 

Latin squares. In a uniformity trial, treatment assignment Z is randomized as if an actual 

experiment were about to be performed, but instead Z is ignored and the standard treatment 

is applied in all cases. In its original use, a uniformity trial divides a farm into plots, assigns 

plots to a new treatment or a standard control at random, ignores the random assignment Z 
and applies in all cases the standard fertilizer, insecticide, etc., and ultimately harvests the 

crops recording yields in each plot. Essentially, the farmer cooperated in setting up an 

experiment and recording results, but he worked the farm in the usual way, harvesting the 

usual crops for sale. This produced a simulated experiment with real crops in which the null 

hypothesis of no treatment effect is known to be true. For instance, by comparing two 

uniformity trials, perhaps at the same farm, one might discover that the estimated standard 

error is smaller from a uniformity trial designed as a Latin square than another uniformity 

trial designed as randomized blocks. In a certain era, statisticians did this, so in our era it is 

easy to imagine something that was once actually done.

We define the treatment effect with interference with reference to a uniformity trial. Stated 

informally, the effect a treatment with interference is a comparison of what happened in the 

actual experiment with its active treatment to what would have happened in a uniformity 
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trial with the same treatment assignment Z but no active treatment. As in an era gone by, it 

is a comparison of two whole experiments, rather than a comparison of a treated and a 

control group. With interference, both treated and control units are affected by treatments 

applied to other units, so a comparison of a treated and a control group is not a comparison 

of a treated and an untreated situation. A comparison of an experiment with an active 

treatment and a uniformity trial is a comparison of a treated and an untreated situation. In 

§1.3, this is a comparison of an experiment with randomized stop and go trials and an 

experiment of identical structure with only go trials. Conveniently, using a few technical 

tools in §3.3 that were not available in 1937, we can make inferences about a uniformity 

trial that was never performed with the aid of a distribution-free pivotal quantity.

Write r̃bi for the response of unit i in block b in the uniformity trial. There is only one such 

r̃bi, not one for each z ∈ Ω, because the realized treatment assignment Z that was recorded in 

an office has no way to affect the biological response of unit i in block b. Because the 

uniformity trial was not actually performed, none of the r̃bi are observed. Generally, r̃bi need 

not equal any of rbiz, z ∈ Ω. If there were no interference between units, then r̃bi would equal 

rbiz for every z ∈ Ω with zbi = 0, because without interference the response of unit bi 

depends only on the treatment zbi assigned to bi; however, with interference, it can happen 

that r̃bi ≠ rbiz for every z ∈ Ω Write r̃ = (r̃11, …, r̃B,NB)T.

In the presence of interference between units, the magnitude of the treatment effect is 

understood not as a comparison of treated and control groups both of which are affected by 

the treatment, but as a comparison of the actual experiment and the uniformity trial.

3 Inference with Interference

3.1 Preliminaries: a nonlinear rank statistic; testing no treatment effect

Fix an integer k ≥ 2, with k ≤ minb∈{1,…,B} mb + 1. As will be seen, the familiar choice is k = 

2, and it yields the Mann-Whitney U-statistic, but there are reasons to prefer a larger value 

of k when only some treated units respond to treatment. Ties among responses are not an 

issue in the fMRI experiment of §1.3, where blood oxygenation is recorded to many digits. 

We assume no ties in the discussion that follows.

The technical material that follows is not difficult but does require a certain amount of 

notation. To simplify, the reader may consider the special case of a single block (B = 1) with 

the parameter k set to k = 2; then, one is considering a single-subject completely randomized 

trial, like the lady tasting tea, using the Mann-Whitney-Wilcoxon statistic, which happens to 

be the only linear placement statistic that is also a linear rank statistic (Orban and Wolfe 

1982).

For a specific treatment assignment, z ∈ Ω, consider a subset  = {i1,…, ik} of k units from 

the same block b with one treated unit, zbi1 = 1, and k − 1 control units, zbij = 0, j = 2, …, k. 

Write  for the collection of all  such subsets  for block b, so  ∈  if and 

only if  ⊆ {1, … , Nb} with |  | = k and 1 =  zbi.
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The set  compares one treated unit to k−1 control units. Write v ( ) = 1 if the treated unit, 

say i1, in  = {i1, …, ik} has the largest response under assignment z, that is, if rbi1z > 

maxj∈{i2,…,ik}rbjz, and write v ( ) = 0 otherwise For k = 2, the set  = {i1, i2} has one 

treated unit and one control and v ( ) = 1 if the treated unit has a higher response than the 

control under assignment z. Also, let wb be a weight to be attached to block b where wb is a 

function of n and m. In the current paper, wb = 1 for all b, but another reasonable definition 

of wb will be given in a moment. For this treatment assignment z, the quantity 

 is a weighted count of the number of sets  such that the 

treated unit had a higher response than k − 1 controls. With wb = 1, the quantity Tz is a 

count, and a count is reasonable if the Nb and nb do not vary much, as is true in §1.3. If the 

nb and mb varied greatly with b, then wb given by  makes Tz the 

unweighted average over the B blocks, b = 1, …, B, of the proportion of sets  ∈  in 

which the treated unit had a higher response than k − 1 controls, v ( ) = 1. For most z, the 

quantity Tz depends upon parts of  that are not observed, so Tz cannot be computed from 

the observed data.

If the randomized treatment assignment Z replaces the specific treatment assignment z, then 

needed parts of  are observed, and TZ is a statistic that can be computed from the data. 

Indeed, if B = 1, k = 2, and w1 = 1, then TZ is the Mann-Whitney U-statistic and is linearly 

related to Wilcoxon’s rank sum statistic. More generally, for k = 2 and B > 2, TZ is a 

weighted sum of B Mann-Whitney statistics; see Lehmann (1975, §3.3) and Puri (1965) who 

discuss weights intended to increase power against shift alternatives in the absence of 

interference.

For k ≥ 2, if nb = 1 and Nb = N/B does not vary with b, then TZ is the statistic discussed in 

Rosenbaum (2007b). Taking k > 2 tends to increase power when only a subset of treated 

units respond to treatment, as seems likely here for reasons discussed in §1.3. Indeed, with k 

> 2, the ranks are scored in a manner that closely approximates Conover and Salsburg’s 

(1988) locally most powerful ranks for an alternative in which only a fraction of treated 

units respond, and the scores are identical to those proposed by Stephenson (1981).

In these special cases of the two previous paragraphs, TZ is a stratified linear rank statistic. 

In general, TZ is a function of the ranks, but not a linear function; however, it is a sum of B 

linear functions of the placements within blocks in the sense of Orban and Wolfe (1982). 

For B = 1, the statistic with k ≥ 2 has been discussed by Deshpande and Kochar (1980) and 

Stephenson and Gosh (1985) as an instance of Hoeffding’s (1948) U-statistics under 

independent sampling of two distributions. Because interference precludes independent 

observations, inferences must be based on the random assignment of treatments, and for this 

the combinatorial development in Orban and Wolfe (1982) is particularly helpful.

Orban and Wolfe (1982) define the placement mbUbj of the jth treated unit in block b to be 

the number of controls in block b who have a response less than or equal to the response of 

this treated unit. A linear placement statistic for one block b is then of the form 
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 for some function ϕnb,mb (·). If there are no ties among responses within 

blocks, then taking  expresses  as 

a sum of linear functions of placements of the treated units, , 

where  is defined to equal zero for ℓ < k − 1.

Consider testing Fisher’s null hypothesis H0 of no effect which asserts that rbiz = rbiz′ for all 

z, z′ ∈ Ω and all b, i. If H0 were true, then the observed response rbiZ is the same no matter 

what Z ∈ Ω is randomly selected, so  is known and the distribution of Pr (TZ ≥ t| , n, m) 

is determined by the known fixed  and the randomized treatment assignment (1). Indeed, 

in part because no effect entails no interference in effects, testing no effect H0 is a 

straightforward application of randomization inference. Orban and Wolfe (1982, §2) 

determine the null distribution of their linear placement statistic  under 

independent sampling from a continuous distribution; however, their argument is entirely 

combinatorial, and it is easily seen that if responses with blocks are not tied then their 

argument and results give the exact null randomization distribution of . 

Moreover, given , n, m, under H0 and (1), TZ is the sum of B conditionally independent 

terms each with the known null distribution in Orban and Wolfe (1982, §2). Importantly, in 

the absence of ties, this null distribution of TZ depends upon n, m, but not on .

3.2 The distribution of the test statistic in the uniformity trial

In the uniformity trial of §2.2, the null hypothesis of no effect on r̃bi is known to be true 

because, following a concealed randomization Z, no treatment was applied. Let T̃
z be the 

value of the statistic of §3.1 computed from the r̃bi in the uniformity trial when Z = z ∈ Ω, 

with value T̃
Z under the realized random assignment Z. Specifically, write ṽ( )= 1 if the 

treated unit, say i1, in  = {i1, …, ik} has the largest response under assignment z, that is, if 

r̃bi1 > maxj∈{i2,…,ik} r̃bj, and write ṽ( ) = 0 otherwise, so that 

. Even though r̃bi is not affected by the treatment 

assignment Z, the statistic T̃
Z is generally a nondegenerate random variable because the 

value of the statistic depends jointly on the responses of units, r̃bi, which do not fluctuate, 

and on the treatments they receive, Zbi, which are random.

In point of fact, neither T̃
Z nor T̃

z can be computed from observed data, because the 

uniformity trial was not performed and none of the r̃bi are observed. Nonetheless, in the 

absence of ties, the distribution of T̃
Z is known, because the null distribution in §3.1 depends 

upon n and m but not on ; specifically, it is the convolution of B random variables whose 

exact distributions are given by Orban and Wolfe (1982, Theorem 2.1, and expressions (2.1) 

and (2.2)), with expectation and variance
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moreover, for reasonable choices of weights, wb, as B → ∞,

(2)

where Φ(·) is the standard Normal cumulative distribution. To emphasize, because the null 

hypothesis of no effect is known to be true in the uniformity experiment, and because the 

null distribution of T̃
Z depends upon n and m but not on the r̃bi’s, it follows that we know 

the distribution of T̃
Z in the uniformity trial even though we did not perform the uniformity 

trial and even if the treatment did have an effect with interference in the actual randomized 

experiment. This fact turns out to be useful with the aid of the concept of attributable effects 

(Rosenbaum 2001, 2007a, 2007b).

3.3 Attributable effects

Consider a specific treatment assignment z ∈ Ω and the specific comparison  = {i1, …, ik} 

∈  of one treated unit, say i1 with zbi1 = 1, and k − 1 control units, ij with zbij = 0 for j = 2, 

…, k. If rbi1z > maxj∈{i2,…,ik} rbjz then i1 had the highest response in this comparison, 

contributing a 1 rather than a 0 to Tz; however, this might or might not be an effect caused 

by the treatment, because even under the null hypothesis of no effect H0, one of the k units 

will have the highest response among the k units. If rbi1z > maxj∈{i2,…,ik} rbjz but r̃bi1 ≤ 

maxj∈{i2,…,ik} r̃bj then treatment assignment z in the actual experiment does cause unit i1 in 

block b to have a higher response than units {i2, … , ik} in block b in the sense that unit i1 in 

block b would not have had the highest response in this comparison in the uniformity trial of 

§2.2 in which no unit was treated. In §1.3, this would mean that in block b, stop trial i1 

caused activity in the STN region to exceed the level in go trials i2, … , ik in the sense that 

the activity was higher in the actual experiment and would not have been higher in the 

uniformity trial. Conversely, if rbi1z ≤ maxj∈{i2,…,ik} rbjz but r̃bi1 > maxj∈{i2,…,ik} r̃bj then 

treatment assignment z in the actual experiment prevented treated unit i1 from having the 

highest response in , in the sense that i1 would have had the highest response in the 

uniformity trial but did not have the highest response in the actual experiment. The third 

possibility is that treatment assignment z does not alter whether or not i1 has the highest 

response in . Concisely, these three situations are: (i) v ( ) = 1 and ṽ( ) = 0, (ii) v( ) 

= 0 and ṽ( ) = 1, and (iii) v ( ) = ṽ( ).

For treatment assignment z ∈ Ω, the attributable effect
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is the net increase in the number of times (weighted by wb) that a treated response in the 

actual experiment exceeded k − 1 control responses because of effects caused by using 

treatment assignment z. So Az is a real valued function of z, r̃ and . In contrast, AZ is the 

attributable effect for the Z randomly chosen according to (1), so AZ is the difference 

between an observed statistic, TZ, that describes the actual experiment, and an unobservable 

random variable T̃
Z that describes the uniformity trial in §2.2; however, the distribution of 

T̃
Z is known, as discussed in §3.2. In brief, AZ is an unknown random quantity which 

provides a reasonable measure of the effects of the treatment despite the presence of 

interference between units. More precisely, AZ compares the aggregate effects of the 

treatment in the presence of interference to the pattern that would be exhibited in the 

uniformity trial in which no one is treated. If Fisher’s null hypothesis of no effect H0 is true, 

then E (AZ) = 0. For discussion of attributable effects in randomized experiments without 

interference, see Rosenbaum (2001).

Let t̃α be the smallest value such that Pr(T̃
Z ≤ t̃α| , n, m) ≥ 1 − α. From (2), for large B, we 

may approximate t̃α as

The following fact parallels a result in Rosenbaum (2007a) for a different family of 

statistics. In particular, Proposition 1 yields a one-sided 1 − α confidence interval for the 

unobserved random variable AZ in terms of the observed random variable TZ and the known 

quantity t̃α. See Weiss (1955) for general discussion of confidence intervals for 

unobservable random variables.

Proposition 1—In a randomized experiment with interference in which (1) holds and there 

are no ties,

The proof of Proposition 1 is immediate:

The attributable effect AZ depends upon the sample sizes, n and m, and the choice of k. 

Dividing AZ by E(T̃
Z) can aid interpretation. Then 100 × AZ/E(T̃

Z) is the (weighted) percent 
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increase above chance in the number of times a treated unit had a higher response than k − 1 

controls due to effects caused by the treatment, and with confidence 1 − α , the unobserved 

100 × AZ/E(T̃
Z)is at least 100 × (TZ−t̃α)/E(T̃

Z).

We are suggesting that the unobservable random variable AZ/E(T̃
Z) is a useful measure of 

the magnitude of the treatment effect when interference may be present; however, it is a new 

measure, and its magnitude is unfamiliar. To build some intuition about magnitudes of 

AZ/E(T̃
Z), consider its behavior in a familiar context, namely a single block, B = 1, 

independent observations without interference and a treatment effect that is an additive shift, 

δ. In this case, as n1 → ∞ and m1 → ∞, the quantity  converges in 

probability to the probability that a treated response exceeds k − 1 control responses and 

AZ/E(T̃
Z)converges in probability the percent increase in this probability above the chance 

level of 1/k. Table 1 evaluates these limits for the standard Normal distribution and the t-

distribution with 2 degrees of freedom. For instance, with a shift δ in a Normal that equals a 

full standard deviation, δ = 1, the probability that a treated response exceeds nine control 

responses in 0.341 which is 241% above the chance level of 0.1 for δ = 1. The quantity 

AZ/E(T̃
Z) has the advantage that it continues to be meaningful with interference where shift 

models are inapplicable.

Proposition 1 refers to an analysis of responses, but it is possible in a randomized 

experiment to use the same approach with residuals from a robust covariance adjustment 

which controls for measured disturbing covariates such as head motion. See Rosenbaum 

(2002) for general discussion of randomization inference for covariance adjustment in 

randomized experiments, and see Rosenbaum (2007a, §6) for its application with 

interference. This procedure is illustrated in §4 in Table 4.

4 To what extent do stop trials activate the subthalamic nucleus?

Is activity in the subthalamic nucleus (STN) elevated following stop trials? Figures 1 and 2 

depict STN activity for one subject in one session, but there are 58 subjects, each with 4 

sessions, making 58 × 4 = 232 blocks, with a total of N = 22, 440 randomized go-or-stop 

trials.

Table 2 performs the analysis in §3 three times, for k = 2, 5 and 10. Recall that for k = 2, the 

statistic TZ is the sum of 232 Mann-Whitney-Wilcoxon statistics. The deviates for testing 

the null hypothesis of no effect H0 are extremely large, particularly for the filtered data with 

k = 5 or k = 10. In the uniformity trial, we expect that when comparing a treated unit to nine 

controls, one time in ten the treated unit will have the highest response. For filtered STN, k = 

10, the point estimate of AZ/E(T̃
Z) suggests a 53.0% increase above this chance expectation 

due to effects caused by the treatment, but we are 95% confident of only a 46.4% increase. 

Again, in the presence of arbitrary interference between units, these are correct statements 

about the relationship between the actual trial, with its unobserved attributable effect AZ, 

and the uniformity trial that was not actually performed.
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In addition to the subthalamic nucleus, other regions of the brain are suspected to be 

involved in motor response inhibition, including the right inferior frontal cortex (or rIFC, see 

Fortsmann, et al. 2008) and the presupplementary motor area (or preSMA, see Simmonds, 

Pekar and Mostofsky 2008). In analyses parallel to Table 2, we found smaller but signi 

cantly elevated activity in both the rIFC and preSMA. Using filtered data for rIFC with k = 

5, we obtained a P-value testing no effect of 0.0030, a point estimate for AZ/E(T̃
Z) of 0.059 

and a 95% confidence interval of AZ/E(T̃
Z) ≥ 0.024. Using filtered data for preSMA with k = 

5, we obtained a P-value testing no effect of 0.000053, a point estimate for AZ/E(T̃
Z) of 

0.084 and a 95% confidence interval of AZ/E(T̃
Z) ≥ 0.048. Although the point estimates of 

5.9% above chance for rIFC and 8.4% above chance for preSMA are significantly larger 

than zero, they are substantially smaller than the point estimate of 29.5% above chance for 

filtered STN with k = 5 in Table 2.

For k > 2, the statistic TZ and unmeasurable attributable effect AZ handle the treated and 

control groups in different ways: one treated unit is compared to k − 1 controls. If one 

expected successful stop trials to suppress rather than elevate activity, one needs to apply TZ 

to −rbiZ rather than to rbiZ. For instance, we might expect reduced activity in the primary 

motor cortex (M1) during stop trials, because motor activity is not requested in a stop trial. 

Applying TZ to −rbiZ for filtered data from M1 with k = 5, we obtain a P-value testing no 

effect of 0.000011, a point estimate for AZ/E(T̃
Z) of 0.092 and a 95% confidence interval of 

AZ/E(T̃
Z) ≥ 0.056, consistent with reduced activity in M1 in stop trials.

The inferences just described are appropriate in the presence of interference of arbitrary 

form. But is there interference? Here, we look at one very simple possible form for 

interference, namely interference from the immediately previous trial. Recall that trials are 

randomly go or stop trials, where go trials occur with probability .75 and stop trials with 

probability 0.25. Aside from the first trial in a session, the remaining trials may be classified 

into four groups based on the current and previous trial as go-go with probability 0.752 = 

0.5625, stop-go with probability 0.25×0.75 = 0.1875, go-stop with probability 0.75×0.25 = 

0.1875, and stop-stop with probability 0.252 = 0.0625. If there is no interference, then the 

treatment at the current trial may have an effect, but not the treatment at the previous trial, so 

go-go should have the same effect as stop-go, and go-stop should have the same effect as 

stop-stop. Table 3 compares the two common cases, go-go to stop-go trials, ignoring other 

cases, using the same methods as in Table 2, reporting only results for filtered data. In Table 

3, a difference indicates a very specific form of interference, namely a lingering effect from 

a previous stop trial on a current go trial. There is clearly evidence in Table 3 of a lingering 

effect of a previous stop trial, but the magnitudes of effect are much smaller than in Table 2 

for the effect of the treatment in the current trial. Importantly, the inferences in Table 3 are 

appropriate for comparing go-go and stop-go trials even if other forms of interference are 

also present.

Head movements during the experiment may distort fMRI readings. As discussed and 

illustrated in Rosenbaum (2007, §6), instead of studying the attributable effect for the 

responses themselves, the method in Rosenbaum (2002) may be used as the basis for 

randomization inference about the attributable effect on residuals from a robust covariance 

adjustment. Table 4 applies the method of Table 2 to residuals of STN levels after 
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adjustment for six covariates describing translation and rotation of the head as estimated 

from three-dimensional images of each session, the residuals being obtaining using the 

default settings of the R function rlm which implements Huber’s m-estimation. Table 4 is 

generally similar to Table 2, so covariance adjustment for head motion did not greatly alter 

the results.

5 A Simulation of the Size and Power of Competing Tests in the Presence 

of Interference Between Units

5.1 Description of the simulation

Tables 5 and 6 report a simulation study of power with and without interference between 

units. Both tables refer to a completely randomized experiment; that is, there is a single 

block, B = 1. In Table 5, there are N = 250 trials, whereas in Table 6 there are N = 1000 

trials. Each trial is randomly assigned to be a treated trial or a control trial with probability . 

As in the actual experiment in §1.3, only some treated trials elicit the intended cognitive 

activity and brain response. In Table 5, λ = 50% of treated trials are successful, whereas in 

Table 6, λ = 10% of treated trials are successful. A control trial yields a response drawn 

from a distribution F (·), and in Tables 5 and 6 this distribution F (·) is either the standard 

Normal distribution or the t-distribution on 2 degrees of freedom. In the absence of 

interference, a successful treated trial yields a response from Fν (·) and an unsuccessful trial 

yields a response from Fν (·), so an unsuccessful treated trial looks like a control trial, but a 

successful treated trial looks like the maximum of ν independent control trials; see Lehmann 

(1953), Salzburg (1986) and Conover and Salzburg (1988) for discussion and history of this 

mixture model. Formally, in the absence of interference, the Salzburg model yields control 

responses from F (·) and treated responses from (1 − ·) F (·) + λFν(·), where Lehmann had 

considered ν = 2, and Conover and Salzburg had determined the locally most powerful ranks 

as λ → 0, which are essentially Wilcoxon’s ranks for ν = 2. In this mixture model, 

successful treated trials are from Fν(·) and unsuccessful treated trials are from F (·), but trials 

are not labeled as successful or unsuccessful. We introduce interference into this model by 

assuming that a successful trial samples from Fν (·) rather than F (·) only if certain 

additional conditions hold defined in terms of treatments assigned to the previous few trials.

In Table 5, ν = 10, but in Table 6, ν = 20; that is, a larger ν in Table 6 offsets a smaller λ so 

that the power remains in an interesting range. The maximum of ν = 10 independent 

observations from a Normal distribution will often be smaller and more stable than the 

maximum of ν = 10 observations from a t-distribution with 2 degrees of freedom, and this 

may affect different tests in different ways.

Four types of interference were simulated. With interference of type A, a successful treated 

trial that immediately follows a control trial has a response drawn from Fν (·), but all 

unsuccessful trials and all treated trials that immediately follow other treated trials have 

responses drawn from F (·). With interference of type B, a successful treated trial that 

immediately follows a treated trial has a response drawn from Fν (·), but all unsuccessful 

trials and all treated trials that immediately follow control trials have responses drawn from 

F (·). Interference C and D resemble interference A, except that in C a successful treated 
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trial only has a response drawn from Fν(·) if it follows 2 or more control trials, and in D if it 

follows 3 or more control trials.

Interference between units creates one type of dependence over successive trials, but there 

can also be other types of dependence that are present in the absence of interference, indeed 

present in the absence of any treatment effect. The upper half of Tables 5 and 6 is dependent 

over successive trials only due to interference. In the lower half of Tables 5 and 6, the 

responses above are added to stationary autoregressive errors with standard Normal 

marginal distributions and autocorrelation 0.5.

Each situation was simulated 5000 times, so the simulated power has a standard error of at 

most .

5.2 Results of the simulation

Tables 5 and 6 contrast the size and power of four test statistics, namely the conventional 

pooled variance t-statistic and TZ for three values of k, k = 2, k = 5, and k = 10. Recall that k 

= 2 corresponds with the Mann-Whitney-Wilcoxon statistic, and k = 5 is similar to the 

suggestion of Salzburg (1986) and Conover and Salzburg (1988).

The case of ν = 1 in Tables 5 and 6 is the null hypothesis: it suggests that all four tests have 

size close to their nominal level of 0.05 in all sampling situations. This is expected for TZ 

because it is a randomization test applied under the null hypothesis of no effect in a 

randomized experiment. For related results about the randomization distribution of statistics 

such as the t-statistic, see Welch (1937). Notice that, because this is a randomization test in a 

randomized experiment, it has the correct level even in the case of autocorrelated errors. In 

brief, because all four tests appear to be valid, falsely rejecting true hypotheses at the 

nominal rate of 5%, it is reasonable to contrast the tests in terms of power.

In the non-null cases, ν > 1, the test with the highest power is in bold. No one test is 

uniformly best in the situations considered in Tables 5 and 6, but the t-test and the Mann-

Whitney-Wilcoxon test are never much better than k = 5 and are often much worse. The 

statistic with k = 10 performs well only in Table 6 where successful trials occur only 10% of 

the time. The permutational t-statistic performs well only when both F (·) and the 

autoregressive errors are Normal, and it performs poorly when the F (·) is the t-distribution 

with 2 df. When F (·) is Normal and there are no autoregressive errors, the permutational t-

statistic typically had less power than k = 5.

Tables 5 and 6 exhibit many patterns. It is not surprising that the addition of Gaussian 

autoregressive errors reduces power: the power in the top half of Tables 5 and 6 is typically 

quite a bit higher than the corresponding power in the lower half of the tables. Both types of 

interference, A and B, reduce power when compared with no interference, but in Tables 5 

and 6 interference A and B had similar effects on power. Interference patterns C and D 

reduce the number of responses that differ from control, so they reduce power relative to 

case A, but the suggestion of Conover and Salsburg, namely k = 5, exhibits decent relative 

performance in most if not all cases.
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5.3 Comparison with SPM

A common approach to the analysis of fMRI data is the statistical parametric map (SPM) 

approach of Friston et al. (1995). Using responses convolved with a hemodynamic response 

function (HRF) as in Figure 2, the SPM approach entails testing a hypothesis of the equality 

of two regression coefficients in a generalized least squares analysis. We simulated this 

analysis with and without interference, with and without autoregressive errors, and with 

mixtures of successful and unsuccessful trials. The SPM approach uses a parametric model 

and is not a randomization inference, so there is no reason to expect that it will have the 

correct level when there is no treatment effect but the parametric model is false. Indeed, in 

nominal 0.05 level tests in our simulation, true null hypotheses of no effect were rejected 

more often than 5% of the time, in some cases with probabilities as high as 30%. In light of 

this, a power comparison is not appropriate. It is not a fault of the SPM method that it does 

not control the type one error rate when the null hypothesis of no effect is true but the model 

itself is false; that type of error control is not expected from standard parametric inference. 

Presumably, a careful user of the SPM approach would check for model failures using 

residuals and diagnostics, and alter the parametric model in appropriate ways. Nonetheless, 

it is convenient that the randomization inferences in §3 do control the type one error rate at 

5% in the presence of autocorrelation, interference between units, unsuccessful trials and 

error distributions (such as the t-distribution with 2 degrees of freedom) that lack a finite 

variance.

5.4 Alternative designs and power

The simulation has compared the power of different statistics in given situations with 

interference. Another potential source of increased power entails alternative experimental 

designs which alter the degree of interference by altering the time interval between trials. In 

the absence of interference, we generally expect more power with more trials, so naively we 

might expect increased power from ever more trials ever more rapidly paced. However, in 

cross-over designs, it is also commonly said that interference should be reduced by allowing 

time for a wash-out period between trials. In particular, it is possible that fewer trials with 

more time between them would yield less interference and fMRI activity that is more 

sharply distinct following treatment or control. If one were using a statistic that is valid only 

in the absence of interference, then the power in these two situation could not be compared, 

because a broader range of validity is being weighed against possibly reduced power. In 

contrast, using the randomization distribution of TZ to test H0, the test is valid, with correct 

level, for both rapid-fire designs with many trials and widely-spaced designs with fewer 

trials, and a comparison of power is possible. For instance, a smaller number of trials with 

more successful trials and less interference (N = 250, λ = .5, case A in Table 3) yields 

greater power than more trials with fewer successful trials and more interference (N = 1000, 

λ = .1, case D in Table 4), so it is clear that increasing the number of trials must be weighed 

against potential harms from increasing the pace at which trials are conducted.

6 Summary

Randomized experiments in cognitive neuroscience of the type described in §1.3 have three 

attributes that were important in the current discussion. First, with about 100 randomized 
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stimuli for a single brain in a session of 600 seconds, interference is likely: the stimulus 

applied in one trial is likely to affect the response measured for other trials. Interference that 

is local in time is almost inevitable because the measurable response to one stimulus lasts for 

more than six seconds, but additionally as the trial progresses a subject is growing more 

familiar and experienced with the tasks and equipment, so interference may have a complex 

form that can extend across different sessions for the same subject. The use of the HRF 

function in passing from Figure 1 to Figure 2 is a standard attempt to pick out the response 

to a particular stimulus, and useful though this is, it is at best an approximation. Second, 

with rapid fire trials of this sort, not every trial will be successful in eliciting the intended 

cognitive activity. This is quite evident in the experiment in §1.3, because subjects 

responded inappropriately to some go or stop trials, but inattention, distraction or confusion 

can also occur without visible evidence. Some exposures to a stimulus stimulate the 

intended thought process, some don t. Third, because this is a randomized experiment, 

randomization can form the basis for inference, thereby avoiding assumptions of 

independence and non-interference. Within this context, we have proposed and illustrated a 

straightforward, robust methodology that (i) yields a confidence interval for the magnitude 

of effect despite interference between units, and (ii) often has greater power than procedures 

based on Wilcoxon’s statistic when only some treated trials are successful.
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Figure 1. 
One session of the experiment for one subject. Unfiltered and filtered activity in the 

subthalamic nucleus is depicted every two seconds for roughly ten minutes. With probability 

¾, the next trial is a go trial (grey) and with probability ¼ it is a stop trial (black).
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Figure 2. 
Hemodynamic response function (HRF) for the subthalamic nucleus after each trial for one 

subject in one session.
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Table 2

Randomization test of no treatment effect H0 and randomization-based confidence interval for the attributable 

effect AZ in the presence of interference between units.

Test of No Effect Fractional Increase AZ/E(T̃Z)

Deviate Testing H0 
Point Estimate 95% CI 

k Unfiltered STN

k = 2 8.427 0.076 0.061

k = 5 8.874 0.192 0.156

k = 10 8.161 0.327 0.261

Filtered STN

k = 2 11.000 0.099 0.084

k = 5 13.630 0.295 0.259

k = 10 13.219 0.530 0.464
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Table 3

Testing for a simple form of interference: comparison of go-go trials and stop-go trials for STN.

Test of No Lingering Effect Fractional Increase AZ/E(T̃Z)

Deviate Point Estimate 95% CI

Filtered

k = 2 2.906 0.031 0.013

k = 5 3.151 0.085 0.040

k = 10 3.095 0.201 0.094
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Table 4

Comparison of STN activity with robust covariance adjustment for head movement.

Test of No Effect H0 Fractional Increase AZ/E(T̃Z)

Deviate Point Estimate 95% CI

Filtered

k=2 10.974 0.099 0.084

k=5 12.528 0.271 0.235

k=10 11.103 0.445 0.379
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Table 5

Simulated power with interference in a randomized experiment in a single block, B = 1, of size N = 250, when 

50% of trials are successful, λ = 0.5. The case ν = 1 is the null hypothesis of no effect and hence no 

interference among effects, so the simulation is estimating the true size of a test with nominal level 0.05. The 

statistic k = 2 is the Mann-Whitney-Wilcoxon statistic. The highest power in a non-null row is in bold.

λ = 0.5, N = 250

No Autoregressive Errors Added

F(.) is Normal

t-test k = 2 k = 5 k = 10

ν = 1, No effect 0.0434 0.0462 0.0432 0.0412

ν = 10, No interference 0.9992 0.9998 1.0000 0.9856

ν = 10, Interference A 0.8028 0.8014 0.8928 0.7328

ν = 10, Interference B 0.8006 0.7968 0.8810 0.7274

ν = 10, Interference C 0.3056 0.2830 0.3704 0.2806

ν = 10, Interference D 0.1174 0.1060 0.1238 0.0896

F(.) is the t-distribution, 2 df

t-test k = 2 k = 5 k = 10

ν = 1, No effect 0.0410 0.0448 0.0430 0.0436

ν = 10, No interference 0.9542 1.0000 1.0000 0.9854

ν = 10, Interference A 0.6610 0.8130 0.9004 0.7392

ν = 10, Interference B 0.6510 0.7998 0.8892 0.7316

ν = 10, Interference C 0.2464 0.2838 0.3652 0.2704

ν = 10, Interference D 0.0966 0.1188 0.1302 0.0984

Autoregressive Errors Added

F(.) is Normal

t-test k = 2 k = 5 k = 10

ν = 1, No effect 0.0494 0.0518 0.0458 0.0476

ν = 10, No interference 0.9714 0.9744 0.9454 0.7670

ν = 10, Interference A 0.4868 0.4824 0.4528 0.2976

ν = 10, Interference B 0.4874 0.4772 0.4572 0.3002

ν = 10, Interference C 0.1622 0.1562 0.1498 0.0892

ν = 10, Interference D 0.0786 0.0746 0.0726 0.0524

F(.) is the t-distribution, 2 df

t-test k = 2 k = 5 k = 10

ν = 1, No effect 0.0442 0.0524 0.0476 0.0476

ν = 10, No interference 0.9506 0.9968 0.9976 0.9670

ν = 10, Interference A 0.5826 0.6602 0.7494 0.6184

ν = 10, Interference B 0.5810 0.6534 0.7316 0.5926
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λ = 0.5, N = 250

No Autoregressive Errors Added

ν = 10, Interference C 0.1996 0.2218 0.2502 0.1826

ν = 10, Interference D 0.0866 0.0928 0.0950 0.0704

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Luo et al. Page 29

Table 6

Simulated power with interference in a randomized experiment in a single block, B = 1, of size N = 1000, 

when 10% of trials are successful, λ = 0.1. The case ν = 1 is the null hypothesis of no effect and hence no 

interference among effects, so the simulation is estimating the true size of a test with nominal level 0.05. The 

statistic k = 2 is the Mann-Whitney-Wilcoxon statistic.

λ = 0.1, N = 1000

No Autoregressive Errors Added

F(.) is Normal

t-test k = 2 k = 5 k = 10

ν = 1, No effect 0.0506 0.0518 0.0484 0.0498

ν = 20, No interference 0.8020 0.7050 0.9416 0.9710

ν = 20, Interference A 0.3044 0.2366 0.4294 0.5052

ν = 20, Interference B 0.3110 0.2466 0.4266 0.5052

ν = 20, Interference C 0.1094 0.0914 0.1414 0.1598

ν = 20, Interference D 0.0672 0.0652 0.0714 0.0654

F(.) is the t-distribution, 2 df

t-test k = 2 k = 5 k = 10

ν = 1, No effect 0.0452 0.0544 0.0506 0.0500

ν = 20, No interference 0.6992 0.6938 0.9316 0.9658

ν = 20, Interference A 0.2788 0.2476 0.4292 0.4996

ν = 20, Interference B 0.2624 0.2354 0.4278 0.4956

ν = 20, Interference C 0.1024 0.0934 0.1364 0.1576

ν = 20, Interference D 0.0636 0.0646 0.0698 0.0712

Autoregressive Errors Added

F(.) is Normal

t-test k = 2 k = 5 k = 10

ν = 1, No effect 0.0480 0.0486 0.0474 0.0434

ν = 20, No interference 0.4634 0.4254 0.5342 0.5034

ν = 20, Interference A 0.1600 0.1472 0.1810 0.1604

ν = 20, Interference B 0.1646 0.1494 0.1852 0.1672

ν = 20, Interference C 0.0760 0.0736 0.0764 0.0714

ν = 20, Interference D 0.0500 0.0496 0.0538 0.0516

F(.) is the t-distribution, 2 df

t-test k = 2 k = 5 k = 10

ν = 1, No effect 0.0450 0.0474 0.0460 0.0486

ν = 20, No interference 0.6610 0.6270 0.8600 0.9030

ν = 20, Interference A 0.2462 0.2052 0.3372 0.3938

ν = 20, Interference B 0.2408 0.2000 0.3398 0.3914
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λ = 0.1, N = 1000

No Autoregressive Errors Added

ν = 20, Interference C 0.0978 0.0828 0.1128 0.1274

ν = 20, Interference D 0.0620 0.0608 0.0648 0.0658

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 24.


