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Abstract

Adenocarcinoma, a type of non-small-cell lung cancer (NSCLC), is the most frequently diagnosed 

lung cancer and the leading cause of lung cancer mortality in the United States. It is well 

documented that biochemical changes occur early in the transition from normal to cancer cells, but 

the extent to which these alterations affect tumorigenesis in adenocarcinoma remains largely 

unknown. Herein we describe the application of mass spectrometry and multivariate statistical 

analysis in one of the largest biomarker research studies to date aimed at distinguishing metabolic 

differences between malignant and non-malignant lung tissue. Gas chromatography time-of-flight 

mass spectrometry was used to measure 462 metabolites in 39 malignant and non-malignant lung 

tissue pairs from current or former smokers with early stage (Stage IA–IB) adenocarcinoma. 

Statistical mixed effects models, orthogonal partial least squares discriminant analysis and 

network integration, were used to identify key cancer-associated metabolic perturbations in 

adenocarcinoma compared to non-malignant tissue. Cancer-associated biochemical alterations 

were characterized by: 1) decreased glucose levels, consistent with the Warburg effect, 2) changes 

in cellular redox status highlighted by elevations in cysteine and antioxidants, alpha- and gamma-

tocopherol, 3) elevations in nucleotide metabolites 5,6-dihydrouracil and xanthine suggestive of 

#Corresponding Author: Suzanne Miyamoto, Division of Hematology and Oncology, Department of Internal Medicine, 4501 X Street, 
Suite 3016, Sacramento, CA 95817, smiyamoto@ucdavis.edu.
‡Contributed equally to this work

Conflict-of-Interest: The authors declare no conflict-of-interest.

HHS Public Access
Author manuscript
Cancer Prev Res (Phila). Author manuscript; available in PMC 2016 May 01.

Published in final edited form as:
Cancer Prev Res (Phila). 2015 May ; 8(5): 410–418. doi:10.1158/1940-6207.CAPR-14-0329.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increased dihydropyrimidine dehydrogenase and xanthine oxidoreductase activity, 4) increased 5'-

deoxy-5'-methylthioadenosine levels indicative of reduced purine salvage and increased de novo 

purine synthesis and 5) coordinated elevations in glutamate and UDP-N-acetylglucosamine 

suggesting increased protein glycosylation. The present study revealed distinct metabolic 

perturbations associated with early stage lung adenocarcinoma which may provide candidate 

molecular targets for personalizing therapeutic interventions and treatment efficacy monitoring.
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INTRODUCTION

Lung cancer has been the leading cause of cancer death in the United States and worldwide 

for many decades. Low dose spiral computerized tomography (LDCT) is likely to become 

the first approved screening and early detection test in the upcoming year but it is plagued 

by a high false positive rate (1). There is a need to develop complimentary screening and 

early detection tools. A blood-based “lung cancer” signature is an attractive solution. Given 

that our knowledge of the molecular biology of smoking-induced lung cancer has 

dramatically increased over the past few years, this approach is plausible. To date this effort 

has been focused on the identification of genomic and proteomic signatures with limited 

success. A broader strategy that incorporates additional cancer traits is needed. It is well-

recognized that wide coverage of cellular metabolism in cancer could help provide valuable 

diagnostic biomarkers and potentially identify molecular drivers of tumorigenesis. Recent 

advances in mass spectrometry have enabled comprehensive metabolomic analyses of lipids, 

carbohydrates, amino acids, and nucleotides within a variety of biological matrices. Early 

evidence from metabolomic investigation of cancer (2) have identified many altered 

biochemical profiles. However, to date, there have been few investigations of lung cancer, 

and most studies have looked at blood plasma or were limited by small sample sizes with 

mixed histologies (3–6).

In the current investigation, gas chromatography time-of-flight mass spectrometry (GC-

TOF) was used to measure 462 lipid, carbohydrate, amino acid, organic acid and nucleotide 

metabolites in 39 malignant and non-malignant lung tissue pairs from current or former 

smokers with early stage adenocarcinoma. This study cohort represents patient 

characteristics and tumor histology most likely to be detected with LDCT screening. We 

hypothesize that identification of cancer induced cellular and tissue level biochemical 

changes can offer a robust method for identification of candidate circulating biomarkers and 

improve our understanding of biochemical changes involved in adenocarcinoma 

tumorigenesis.
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MATERIALS AND METHODS

Sample Acquisition

De-identified malignant and adjacent non-malignant lung tissue was obtained from the New 

York University biorespository. Residual tumor and adjacent non-malignant tissue was 

harvested from the resected lung after routine pathological protocols were completed, 

following an approved IRB protocol with patient consent. Two to three tissue pieces were 

aliquoted into 1.5 ml Nunc vials, and then immediately placed in liquid nitrogen. After 

transport in liquid nitrogen, each vial was barcoded, and stored at −80°C until analyzed. All 

specimens were clinically annotated for age, gender, race, histology, smoking status, pack-

years and stage of disease. For this clinical study, samples were selected that came from 

patients who met the following criteria: a) current or former smokers, b) adenocarcinoma 

histology, c) pathological stage IA or IB, and d) had understood and signed the IRB consent 

form.

Tissue Sample Preparation

Each tissue sample was weighed to approximately 5mg, and samples were kept frozen while 

weighing. After weighing, the samples were placed in a 2mL round bottom Eppendorf tube 

and stored at −20°C. Two small stainless steel grinding balls and 1mL of −20°C extraction 

solution (3:1 methanol:nano-pure water), degassed by sonication, were added to the 

samples. The tubes containing lung tissue, grinding balls, and extraction solution were 

placed in a −80°C freezer for one hour. The samples were then placed in a GenoGrinder 

2010 for 5 minutes at 1000 RCF. Next the samples were placed into a −20°C freezer for 30 

minutes to precipitate protein. Upon removal from −20°C samples were vortexed for 20 

seconds and centrifuged at 16,100 RCF for 10 minutes. The supernatant was transferred to a 

clean 1.5mL Eppendorf tube, which was immediately centrifuged for 10 minutes at 16,100 

RCF. All supernatant was transferred to a new 1.5mL Eppendorf tube and dried to 

completeness using a Labconco Centrivap.

Samples were derivatized by methoximation followed by silylation for GC-TOF-MS 

analysis. Once dried 10µL of methoxyamine hydrochloride (Aldrich: Cat. No. 226904) 

dissolved in pyridine (Acros Organics Cat. No. 270970) (40mg/mL) was added to the 

samples. Samples were shaken at maximum speed for 1.5 hours at 30°C. 50µL N-Methyl-N-

(trimethylsilyl)trifluoroacetamide) (MSTFA) (Aldrich: Cat. No. 394866) spiked with 

internal standard mixture of fatty-acid methyl esters (FAMEs) was added and samples were 

shaken at maximum speed for 30 minutes at 37°C. Samples were then placed in the 

autosampler and 0.5µL of derivatized sample was injected on the GC-TOF.

GC-TOF Data Collection and Analysis

Samples were analyzed using GC-TOF mass spectrometry. The study design was entered 

into the MiniX database (7). A Gerstel MPS2 automatic liner exchange system (ALEX) was 

used to eliminate cross-contamination from sample matrix occurring between sample runs. 

0.5 microliter of sample was injected at 50°C (ramped to 250°C) in splitless mode with a 25 

sec splitless time. An Agilent 6890 gas chromatograph (Santa Clara, CA) was used with a 30 

m long, 0.25 mm i.d. Rtx5Sil-MS column with 0.25 µm 5% diphenyl film; an additional 10 
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m integrated guard column was used (Restek, Bellefonte PA) (8–10). Chromatography was 

performed at a constant flow of 1 ml/min, ramping the oven temperature from 50°C for to 

330°C over 22 min. Mass spectrometry used a Leco Pegasus IV time of flight mass (TOF) 

spectrometer with 280°C transfer line temperature, electron ionization at −70 V and an ion 

source temperature of 250°C. Mass spectra were acquired from m/z 85–500 at 17 spectra/sec 

and 1850 V detector voltage.

Result files were exported to our servers and further processed by our metabolomics 

BinBase database. All database entries in BinBase were matched against the Fiehn mass 

spectral library of 1,200 authentic metabolite spectra using retention index and mass 

spectrum information or the NIST11 commercial library. Identified metabolites were 

reported if present in at least 50% of the samples per study design group (as defined in the 

MiniX database); output results were exported to the BinBase database and filtered by 

multiple parameters to exclude noisy or inconsistent peaks (10). Quantification was reported 

as peak height using the unique ion as default (11). Missing values were replaced using the 

raw data netCDF files from the quantification ion traces at the target retention times, 

subtracting local background noise (7). The unit norm normalization (12) was carried out on 

a sample specific basis to correct for analytical variance in total tissue mass analyzed. 

Briefly, sample-wise metabolite intensities were expressed as a ratio to the total ion intensity 

for all annotated analytes. This is a simple and powerful normalization approach, which in 

the absence of appropriate analytical surrogates, can account for a variety of analytical 

sources of variance (e.g. extraction or derivatization), but can also affect biological 

interpretation (13) and should be evaluated on a study specific basis. Daily quality controls, 

standard plasma obtained from NIST and evaluation of signal intensities for FAME internal 

standards were used to monitor instrument performance over the length of the data 

acquisition.

Data Analysis

Statistical analysis was implemented on log2 transformed metabolite values using mixed 

effects models to identify differentially-regulated metabolites between adenocarcinoma and 

normal tissues. Mixed effects models were generated for observed metabolite values given 

patient age, gender, pack-years of smoking history and cancer status with patient identifiers 

included as a random factor to account for the correlation of measurements from the same 

patient. A chi-squared test was used to assess the significance of metabolic differences 

through comparison of the full model to a reduced model not including a cancer term. The 

significance levels (i.e. p-values) were adjusted for multiple hypothesis testing according to 

Benjamini and Hochberg (14) at a false discovery rate (FDR) of 5% (abbreviated pFDR 

<0.05).

Multivariate Modeling was carried out using orthogonal signal correction partial least 

squares discriminant analysis (O-PLS-DA) (15) to identify robust predictors of metabolic 

changes in adenocarcinoma tumor compared to non-malignant lung tissue. O-PLS-DA 

modeling was conducted on covariate adjusted (gender, age and packs of cigarettes smoked 

per year), log2 transformed and autoscaled data. The 39 patients’, tumor and control tissue 

pairs, were split between 2/3 training and 1/3 test data sets. The training set was used to 
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carry out feature selection and model optimization, and the final model performance was 

determined by predicting the class labels (tumor or control) for the held out test set. Model 

latent variable (LV) number and orthogonal LV (OLV) number was selected using leave-

one-out cross-validation. A preliminary 2 OLV (2 total LV) model was developed and used 

to carry out feature selection. Feature selection was implemented to identify the top ~10% 

(42 out of 462) of all metabolic predictors for cancer. The full variable set was filtered to 

retain metabolites which displayed significant correlation with model scores (Spearman’s 

pFDR ≤ 0.05) (16) and model loadings on OLV1 in the top 90th quantile in magnitude (17).

The top 10% feature model was evaluated using Monte Carlo training and testing cross-

validation and permutation testing (18). Internal training and testing was done by further 

splitting the training set into 2/3 pseudo-training and 1/3 pseudo-test sets, while preserving 

individual patients’ tumor and control tissue pairs. This was randomly repeated 100 times 

and used to estimate the distributions for the O-PLS-DA model performance statistics: the 

model fit to the training data (Q2) and root mean squared error of prediction for the test data 

(RMSEP). The probability of achieving the model's predictive performance was estimated 

through comparison of Q2 and RMSEP distributions to 100 randomly permuted models 

(random class labels), calculated by replicating the internal training and testing procedures 

described above. The described approach was also used to determine model performance for 

the excluded (bottom 90%) feature set (n=420).

Optimized model classification performance was validated through prediction of class labels 

for the originally held out test set, and are reported as sensitivity, specificity and the area 

under the receiver operator characteristic curve.

Network analysis was used to investigate statistical and multivariate modeling results within 

a biochemical context and to help estimate functional roles for structurally unknown 

metabolites. A biochemical and chemical similarity network (19) was developed for all 

measured metabolites with KEGG (20) and PubChem CIDs (21) identifiers (n = 178). 

Enzymatic interactions were determined based on product-precursor relationships defined in 

the KEGG RPAIR database. Molecules not directly participating in biochemical 

transformations, but sharing many structural properties, based on PubChem Substructure 

Fingerprints (22), were connected at a threshold of Tanimoto similarity ≥ 0.7.

A partial correlation network was calculated to analyze empirical dependencies among 

metabolic discriminants between adenocarcinoma tumor and non-malignant lung tissues. 

Partial correlations were calculated between covariate adjusted data (gender, age and packs 

of cigarettes smoked per year) for all structurally identified O-PLS-DA selected features 

(top 10% feature set). Metabolite relationships were determined based on significant FDR 

adjusted (14) partial correlations (pFDR ≤ 0.05).

A mass spectral similarity and partial correlation network was used to estimate relationships 

between covariate adjusted annotated and structurally unknown O-PLS-DA selected 

features. Mass spectral similarities were calculated based on cosine correlations ≥0.75 of 

annotated and unknown metabolites electron ionization mass spectral profiles (23). Partial 
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correlations were calculated between all known and unknown species and limited two 

connections per unknown (pFDR≤0.05).

Network mapping was used in Cytoscape (24) to encode statistical and multivariate 

modeling results through network edge and node attributes.

RESULTS

Paired tissue samples were obtained from 39 patients with adenocarcinoma histology (Table 

1). The majority of patients were elderly white female former smokers. The average age was 

72 with a mean of 36 pack years; all patients were diagnosed with Stage IA or IB disease.

Metabolomic profiling was performed after extraction and derivatization using gas 

chromatography time-of-flight (GC-TOF) mass spectrometry. A total of 462 compounds 

were measured, and 183 of these were annotated with known molecular structures. 

Additional metabolite information: retention time, mass spectra, etc. and the proportion and 

percentage of patient-matched comparisons in which metabolite levels were increased in 

tumors compared to normal tissue are reported in Table S4. A large number of differences 

were found between normal and malignant tissue. Mixed effects models were used to 

identify 70 significantly different metabolites between non-malignant and adenocarcinoma 

tissues after adjusting for the false discovery rate (pFDR < 0.05) (Table 2). The compounds 

were equally divided, with 35 increasing and 35 decreasing in tumor, compared with control 

tissue. A metabolomic network was calculated to display enzymatic transformations and 

structural similarities among the 183 structurally identified compounds in the context of 

their relative changes between adenocarcinoma tumor and non-malignant tissue (Figure 1). 

In addition to the classical statistical approach, O-PLS-DA multivariate classification 

modeling was used to select the top 10% multivariate discriminants between cancer and 

control tissues. Monte Carlo cross-validation and permutation testing were used to validate 

the models predictive performance for classification of cancer vs. control tissues (Table S3). 

The top metabolic changes between tumor and control tissues were comprised of 20 

annotated (Table 2) and 22 structurally unknown metabolites (Table S2). Prediction of 

cancer or control class labels for an originally held out test set (1/3 of the data) was used to 

confirm that an O-PLS-DA model calculated from the selected features (top 10%) displayed 

improved predictive performance (area under the curve (AUC) 88.5%; sensitivity, 92.3%; 

specificity, 84.6%) compared to a model constructed from all excluded features (bottom 

90%) (AUC, 80.77%; sensitivity, 76.92%; specificity, 84.62%) (Supplemental Table S3) 

(see methods for details of calculations).

Partial correlations and combined with mass spectral similarity networks were used to 

analyze empirical relationships among all annotated and structurally unknown O-PLS-DA 

selected features (Figure S1 and Table S2).

Polyamine pathway-related compounds were altered in tumor compared to non-malignant 

tissue. 5'-deoxy-5'-methylthioadenosine (MTA) was elevated 1.8-fold in cancer compared 

with normal (pFDR = 6.27 × 10−5) tissue, and this change was significantly correlated with 

2.1- and 2.7-fold increases in the carbohydrates fucose/rhamnose and nucleotide xanthine, 
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respectively (Figure 2 and Table 2). The polyamine spermidine, and related urea cycle 

intermediates, ornithine and citrulline, showed concerted decreases in cancer compared to 

control tissue (Figure 2), while another polyamine, putrescine was unchanged (Table S1). 

Additionally decreases in four other structurally unknown metabolites were also 

significantly correlated with changes in spermidine and ornithine (Figure S1).

Many compounds associated with purine and pyrimidine biosynthesis were significantly 

increased in tumor compared to control tissue (Table 2). Of these metabolites, 5,6-

dihydrouracil was significantly elevated by 2.4-fold in cancer compared to control tissue 

(Table 2), and constituted the single best multivariate predictor for cancer. The cancer-

dependent increase in, 5,6-dihydrouracil, an oxidation product of uracil was also positively 

correlated with similar changes in MTA, xanthine and 4-hydroxybutyric acid (Figure 2).

Carbohydrates showed variable changes in cancer compared to non-malignant tissue (Table 

2). Glucose was significantly reduced by 0.5-fold in cancer compared to control tissue 

(Table 2), and this change was positively correlated with a decrease in ornithine and the 

increase in 5,6-dihydrouracil (Figure 2). Conversely, ribitol and arabitol showed correlated 

elevations in cancer compared to control tissue which were unrelated other O-PLS-DA 

selected discriminants for cancer.

There were significant differences in lipid profiles between cancer and non-malignant 

tissues (Table 2). Particularly striking was that the majority of fatty acids were all 

significantly decreased in cancer relative to non-malignant tissue (Figure 1 and Table 2) 

with the exception of arachidonic acid which was elevated by 1.5-fold. The correlated 

decreases in caprylic acid and 1-monostearin (Table 2) were also positively correlated with 

reductions in lysine and spermidine, and (through cysteine) negatively correlated with the 

elevation in 5,6-dihydrouracil (Figure 2). Both of the vitamin E-related compounds, α- and 

γ-tocopherol, were significantly elevated in adenocarcinoma (Table 2). The 2.2-fold increase 

in α-tocopherol was also correlated with the decrease in ornithine (Figure 2).

Similar to carbohydrates, amino acids showed variable changes in cancer (Table 2). In 

contrast to the noted decreases ornithine, citrulline and lysine, glutamate was significantly 

elevated by 1.4-fold in cancer compared to control tissue (Table 2). The increase in 

glutamate was positively correlated with increases in adenine, adenosine-5-phosphate 

(AMP) and uridine diphosphate N-acetylglucosamine (UDP GlcNAc) (Figure 2).

DISCUSSION

We report one of the largest clinical studies of lung cancer tissue to date to demonstrate a 

differential metabolomic signature between patient-matched lung adenocarcinoma and non-

malignant tissues. One limitation of this study, and others like it, is the potential for tissue 

microheterogeneity at the sub-biopsy level. Previously, Hori and coauthors evaluated seven 

lung cancer and non-cancer tissues, of which 4 were adenocarcinoma and GC-MS analysis 

was used to identify significant changes in 48 metabolites (5). More recently, Kami and 

colleagues used capillary electrophoresis time-of-flight MS to evaluate 9 tumor and normal 

lung tissue pairs; three adenocarcinoma samples were evaluated with general increases in 
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amino acids (n=19) in lung tumors compared to normal tissues (25). However these studies 

were not designed to specifically investigate biochemical perturbations in early stage 

adenocarcinoma and due to the pathological heterogeneity of the samples in the earlier 

studies, a detailed comparison to the current investigation is not possible. Here we present 

the most comprehensive analysis to date of metabolic differences between early stage 

adenocarcinoma and non-malignant tissue.

Compared to non-malignant tissue, adenocarcinoma displayed significant elevations in 

ribitol, arabitol, and fucose/rhamnose and a reduction in glucose (Table 2 and Figures 1&2). 

The observed 2-fold reduction in glucose in adenocarcinoma relative to normal tissue is 

consistent with the Warburg effect, wherein a high rate of aerobic glycolysis is linked to 

cytosolic lactic acid fermentation, rather than mitochondrial pyruvate oxidation (26). While 

glucose was reduced, other members of the glucuronate and pentose interconversion 

pathway (KEGG (20)), arabitol, ribitol, UDP-GlcNAc and xylitol, all showed significant 

elevations in cancer compared to non-malignant tissue (Table 2). These observations suggest 

that compared to control, adenocarcinoma displays increased pentose phosphate metabolism 

and an elevated glucuronidation status. The pentose phosphate pathway is involved in 

nucleotide synthesis for DNA replication and is used to provide reducing equivalents for a 

variety cellular reactions (27).

We observed a direct correlation between the noted reduction in glucose and a 2.4-fold 

elevation in 5,6-dihydrouracil, which constituted the single best discriminant of 

adenocarcinoma compared to non-malignant tissue (Table 2). 5,6-dihydrouracil is an 

oxidation product of the nucleotide uracil, and may provide a stable marker of altered 

nucleotide metabolism in adenocarcinoma compared to non-malignant tissue. In humans, 

catabolism of uracil to 5,6-dihydrouracil is mediated by dihydropyrimidine dehydrogenase 

(DPD). Both DPD activity and expression have been shown to be increased in lung 

adenocarcinoma compared to control tissue (28). The degree of patients’ DPD activity has 

also been related to improved efficacy of cytotoxic effects from common postoperative 

adjuvant therapy for non-small cell lung cancer (NSCLC) anti-cancer drug, 5-fluorouracil 

and its derivatives (28, 29). Given our data and the supporting literature, we hypothesize that 

monitoring the ratio between 5,6-dihydrouracil and uracil in patients with NSCLC may 

provide a personalized diagnostic to identify cohorts of patients with high DPD activity who 

may particularly benefit from anti-cancer therapy with DPD inhibitors.

The cancer-dependent elevation in 5,6-dihydrouracil was also positively correlated with an 

increase in xanthine (Figure 2). The degradation of hypoxanthine to xanthine followed by 

the conversion of xanthine to uric acid, also elevated in adenocarcinoma (Table 2), is 

mediated by xanthine oxidoreductase (XOR) (30). XOR, a key enzyme in the metabolism of 

purine nucleotides, has also been linked to the production of reactive oxygen species (ROS) 

(30, 31). Assessment of XOR activity has been suggested as a diagnostic for NSCLC (32). 

In particular, reduced XOR expression was associated with shortened survival times (30, 

32), while XOR-induced ROS products have been linked with an increased risk for 

developing various forms of cancer, including NSCLC (30, 33–35). Given this evidence, 

assessment of xanthine and uric acid levels may provide novel indicators of XOR activity 

and serve as diagnostic marker of tumorigenesis.
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Cancer dependent elevations in cysteine (Table 2) were positively correlated with changes in 

5,6-dihydrouracil (Figure 2). This observation may reflect an increase in glutathione 

synthesis in response to elevated ROS production in cancer compared to control tissue. 

Previously, Krepela and coauthors identified significant elevations of cysteine in squamous 

cell lung tumor compared to non-involved tumor tissue (36). Cysteine, an important 

precursor in glutathione production (37), has been shown to be elevated in various types of 

cancer including: breast, ovarian, head and neck, brain and lung cancer (37). Consistent with 

the evidence of increased oxidative stress in adenocarcinoma, we also observed cancer-

associated elevations in the vitamin E isoforms α-tocopherol and γ-tocopherol (Table 2). 

These well-known anti-oxidants have been extensively studied as chemopreventive agents; 

however, the relationship between serum levels of tocopherols and lung cancer have yielded 

conflicting results (38). To date there appears to be little, if any, data on tocopherol levels in 

solid tumors or cancer cells. However their observed elevation in adenocarcinoma compared 

to non-malignant tissue is in line with other observations supporting an increase in 

compensatory mechanisms to deal with oxidative stress in tumors. Furthermore, the CARET 

study suggested that antioxidant supplementation does not help in preventing lung cancer 

(39).

Related to the previously noted increases in nucleotide metabolites (Figure 2), and directly 

correlated with changes in xanthine (Figure 2), 5'-deoxy-5'-methylthioadenosine (MTA) was 

1.8-fold elevated in cancer compared with non-tumorous tissue (Table 2). MTA, through the 

action of 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP), is involved in S-

adenosylmethionine (AdoMet) salvage, purine salvage and spermidine synthesis (40). 

MTAP activity has been shown to be reduced in a wide variety of tumor types including 

NSCLC (41). Tumors with reduced in MTAP expression or activity, instead of purine 

salvage (42), are highly dependent on de novo purine synthesis for production of DNA, 

RNA and purine containing energy molecules (e.g. ATP). Consequently, the use of de novo 

purine synthesis inhibitors as anti-cancer therapy for MTAP-deficient tumors (42) has 

gained considerable attention. The observed increase in MTA in lung adenocarcinoma 

suggests a decrease in MTAP-dependent purine salvage and an increased reliance on de 

novo purine synthesis. This is further supported by the observed 3.5-fold increase in 

inosine-5-monophosphate (IMP), an important component in de novo purine synthesis (43), 

in malignant compared to control tissue (Table 2). In addition to de novo purine synthesis, 

MTA is also involved in polyamine synthesis.

Two polyamine-related metabolites, ornithine and spermidine, were reduced in cancer 

compared to control tissue (Table 2). This is somewhat surprising given previous reports of 

increased polyamines in various types of cancers including breast (44) and colorectal cancer 

(45). However, it has also been previously shown that increased levels of MTA can inhibit 

MTAP activity, and lead to decreased levels of polyamines in non-small cell lung carcinoma 

(40). In addition to the previously-noted evidence for decreased MTAP activity, cancer-

associated reduction in ornithine may also contribute to the observed decrease in spermidine 

in adenocarcinoma compared to non-malignant tissue (Table 2). Ornithine, an important 

intermediate in nitrogen disposal through conversion to citrulline, is involved in proline 

synthesis (46). Compared to normal tissue, adenocarcinoma displayed a significant 
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reduction in citrulline and an elevation in proline. This evidence supports the hypothesis that 

in adenocarcinoma, ornithine may be diverted away from citrulline and spermidine synthesis 

toward proline production.

Adenine, which can be produced from the cleavage of MTA by MTAP, and its metabolite 

adenosine-5-monophosphate (AMP) were increased in adenocarcinoma compared to control 

tissue (Figure 2 and Table 2). Given previous evidence of reduced MTAP activity, we 

expect that adenine originates from plasma or surrounding tissues (47). Furthermore, we did 

not see a direct correlation between MTA and adenosine levels (Figure 2), but instead both 

adenine and AMP were significantly correlated with a 1.4-fold cancer-dependent elevation 

in glutamate (Table 2 and Figure 2). During de novo purine synthesis, glutamine 

(unchanged, Table S1) acts as an amido donor through phosphoribosyl pyrophosphate 

(PRPP) to produce ribosylamine-5-phosphate and glutamate (48). PRPP can participate in 

both de novo purine synthesis or salvage pathways and lead to production of IMP and AMP 

(48). While we observed a significant positive correlation between glutamate and AMP 

(Figure 2), both glutamate and AMP showed a far stronger relationship with UDP-N-

acetylglucosamine (UDP-GlcNAc) (Figure 2).

Known cancer related perturbations in hexosamine biosynthesis (49) may explain the 

observed correlation between glutamate and a 2.3-fold increase in UDP-GlcNAc in 

adenocarcinoma compared with non-malignant tissue (Table 2 and Figure 2). Glutamate is a 

byproduct UDP-GlcNAc synthesis, which can be converted to N-acetyl mannosamine, 

which was also increased by 1.5-fold in adenocarcinoma (Table 2). Previous investigations 

have suggested that increases in protein glycosylation with GlcNAc are common aspects of 

cancer cells and tumors (50). O-GlcNAc protein glycosylation is suggested to be a 

protective response, and increase the tolerance of cells to a variety of sources of stress (49). 

If the increase in UDP-GlcNAc is a marker of increased protein glycosylation in cancer, 

then monitoring the levels of this molecule may provide a marker of changes in cellular 

protein function in adenocarcinoma compared with non-malignant tissue. For example, the 

activity of protein kinase C (PKC), implicated in tumorigenesis, has been shown to be up-

regulated by increased flux through the hexosamine biosynthetic pathway (51). The PKC-

alpha isoform is highly expressed in NSCLC and preferentially increased in adenocarcinoma 

compared with squamous cell carcinoma (52). Together, these observations suggest the need 

to combine proteomic, glycomic and metabolomic analyses in order to fully understand 

molecular mechanisms of protein glycosylation in tumorigenesis.

Lastly, we also observed adenocarcinoma-dependent elevations in 2-hydroxyglutarate. 2-

hydroxyglutarate has recently been found to be an “oncometabolite”, resulting from 

mutation of the enzyme isocitrate dehydrogenase 1 and 2 (IDH1, IDH2) in cancer cells, 

modifying its catalytic function to produce 2-hydroxyglutarate from the substrate isocitrate 

instead of the normal alpha-ketoglutarate product (53, 54). Increased levels of 2-

hydroxyglutarate have been found in leukemia (55), glioma (56), thyroid carcinoma (57). 

The finding of elevated 2-hydroxyglutarate suggests that lung adenocarcinoma tissue should 

be examined for IDH1 and IDH2 mutations, a question that we plan to investigate in future 

studies.
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The observed perturbations of molecular mechanisms and biochemical pathways in 

adenocarcinoma compared to non-malignant tissue were consistent with known cancer-

dependent increases in energy utilization and proliferation. The current investigation 

identified new biochemical pathways altered in adenocarcinoma, which may aid the 

development of diagnostic markers for cancer screening, early detection and treatment 

efficacy monitoring as shown by the validated performance of the multivariate classification 

model (AUC, 88.5%; sensitivity, 92.3%; specificity, 84.6%). This study suggests that 

measuring the ratios of 5,6-dihydrouracil/uracil and xanthine/uric acid may serve as valuable 

new biomarkers for tumorigenesis in lung cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Metabolomic network of biochemical differences between adenocarcinoma and non-

malignant lung tissue. Edge color and width denote the type (enzymatic, purple; structural 

similarity, gray) and strength of relationships between metabolites. Node color displays 

significance (mixed effects model, pFDR ≤ 0.05) and direction of the change in tumor 

relative to non-malignant tissue (green, decrease; red, increase; gray, insignificant change) 

(Table 2 and Table S1). Node size displays O-PLS-DA loadings (empirical importance), and 

thick borders indicate O-PLS-DA selected discriminants for adenocarcinoma (Table 2). See 
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metabolite O-PLS-DA model loading in Table S4 for quantitative differences in metabolites 

and corresponding node sizes. Node shape denotes the biochemical super class of each 

molecule.
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Figure 2. 
Partial correlation network displaying conditionally independent relationships between O-

PLS-DA selected discriminants for adenocarcinoma (Table 2). Edge color and width denote 

the direction and magnitude of partial correlations (pFDR≤0.05). Node color displays the 

direction of the change in tumor relative to non-malignant tissue (green, decrease; red, 

increase; pFDR ≤ 0.05). Node size displays the metabolite loading (empirical importance) in 

the O-PLS-DA model and shape denotes the biochemical super class of each molecule. See 

metabolite O-PLS-DA model loading in Table S4 for quantitative differences in metabolites 

and corresponding node sizes. Node inset boxplots summarize differences in z-scaled 

measurements between tumor and non-malignant tissue.
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Table 1

Patient characteristics.

Variable Lung Cancer patients

Total sample size, N 39

Age, mean (± SD) 72.33 (± 8.78)

Pack/Year, mean (± SD) 35.91 (± 26.05)

Female, No. (%) 24 (61.54%)

Current Smoker, No. (%) 5 (12.82%)
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Table 2

Significantly altered metabolites and key discriminants of biochemical changes in adenocarcinoma compared 

to non-malignant tissue.

Name Fold
changea

Directionb pFDRc Rankd

Amino Acids and Derivatives

ornithine 0.5 DOWN 9.61E-06 2

citrulline 0.7 DOWN 0.003944 4

lysine 0.4 DOWN 6.49E-05 5

cysteine 1.6 UP 0.002516 6

spermidine 0.7 DOWN 0.001625 8

glutamate 1.4 UP 0.001694 12

trans-4-hydroxyproline 1.3 UP 0.007531

proline 1.4 UP 0.008061

methionine sulfoxide 0.6 DOWN 0.045096

isothreonic acid 1.3 UP 0.007637

glyceric acid 1.4 UP 0.017117

alanine 1.2 UP 0.013497

histidine 0.6 DOWN 0.012104

Organic Acids

4-hydroxybutyric acid 1.3 UP 0.004333 9

malic acid 1.3 UP 0.045285

citric acid 0.6 DOWN 0.007308

2-hydroxyglutaric acid 1.7 UP 0.003292

Carbohydrates and Related Compounds

ribitol 1.8 UP 6.64E-07 3

glucose 0.5 DOWN 0.000366 16

Fucose + rhamnose 2.1 UP 0.000177 18

arabitol 1.4 UP 0.003463 20

xylitol 1.4 UP 0.000939

tagatose 0.8 DOWN 0.022467

mannitol 0.7 DOWN 0.016961

glycerol-3-galactoside 2.2 UP 0.003224

glycerol 1.2 UP 0.018636

fucose 1.5 UP 0.007527

erythronic acid lactone 0.6 DOWN 0.006205

erythronic acid 1.2 UP 0.048138

arabinose 1.3 UP 0.000454

1,5-anhydroglucitol 0.8 DOWN 0.037117

Monoglycerols
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Name Fold
changea

Directionb pFDRc Rankd

1-monopalmitin 1.1 UP 0.047396

1-monostearin 0.8 DOWN 0.047268 11

Tocopherols

alpha-tocopherol 2.2 UP 4.12E-07 13

gamma-tocopherol 1.2 UP 0.010335

Fatty Acids

arachidonic acid 1.5 UP 0.006889

capric acid 0.8 DOWN 0.004333

caprylic acid 0.8 DOWN 0.001644 19

lauric acid 0.9 DOWN 0.034948

palmitic acid 0.9 DOWN 0.027453

pelargonic acid 0.8 DOWN 0.033083

pentadecanoic acid 0.8 DOWN 0.014977

stearic acid 0.8 DOWN 0.047396

Miscellaneous Lipids

dihydrosphingosine 0.6 DOWN 0.000544

dodecanol 0.8 DOWN 0.00205

gluconic acid 0.5 DOWN 0.000381

triethanolamine 0.7 DOWN 0.002243

3-phosphoglycerate 0.4 DOWN 0.001049

Purines and Pyrimidines

5,6-dihydrouracil 2.4 UP 2.42E-07 1

xanthine 2.7 UP 0.000381 10

5'-deoxy-5'-methylthioadenosine 1.8 UP 6.49E-05 14

adenine 1.5 UP 0.000366 15

adenosine-5-phosphate 2.5 UP 0.00132 17

uridine 0.7 DOWN 0.002044

uracil 1.4 UP 0.036508

inositol-4-monophosphate 0.7 DOWN 0.020452

inosine 5'-monophosphate 3.5 UP 0.00085

cytidine-5-monophosphate 1.8 UP 0.001397

allantoic acid 0.6 DOWN 0.005247

Miscellaneous Metabolites

UDP GlcNAc 2.3 UP 2.24E-05 7

uric acid 1.4 UP 0.019398

UDP-glucuronic acid 1.2 UP 0.00667

quinic acid 0.8 DOWN 0.020487

nicotinamide 1.4 UP 0.006078

N-acetyl-D-mannosamine 1.5 UP 0.000333
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Name Fold
changea

Directionb pFDRc Rankd

hydroxylamine 0.8 DOWN 0.013145

creatinine 1.4 UP 0.01111

biuret 0.6 DOWN 0.002136

benzoic acid 0.9 DOWN 0.038501

aminomalonic acid 1.3 UP 0.030249

a
ratio of means relative to control

b
direction of change in means relative to control

c
false discovery rate adjusted mixed effects model p-value

d
importance of metabolic change based on O-PLS-DA model loading
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