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Abstract

Diffusion in tissue and porous media is known to be non-Gaussian and has been used for clinical 

indications of stroke and other tissue pathologies. However, when conventional NMR techniques 

are applied to biological tissues and other heterogeneous materials, the presence of multiple 

compartments (pores) with different Gaussian diffusivities will also contribute to the measurement 

of non-Gaussian behavior. Here we present Symmetrized Double PFG (sd-PFG), which can 

separate these two contributions to non-Gaussian signal decay as having distinct angular 

modulation frequencies. In contrast to prior angular d-PFG methods, sd-PFG can unambiguously 

extract kurtosis as an oscillation from samples with isotropic or uniformly oriented anisotropic 

pores, and can generally extract a combination of compartmental anisotropy and kurtosis. The 

method further fixes its sensitivity with respect to the time-dependence of the apparent diffusion 

coefficient. We experimentally demonstrate the measurement of the fourth moment (kurtosis) of 

diffusion and find it consistent with theoretical predictions. By enabling the unambiguous 

identification of contributions of compartmental kurtosis to the signal, sd-PFG has the potential to 

help identify the underlying micro-structural changes corresponding to current kurtosis based 

diagnostics and act as a novel source of contrast to better resolve tissue micro-structure.

1 Introduction

Nuclear Magnetic Resonance (NMR) has long been used as a non-invasive probe of material 

micro structure [1] with applications in medical MRI and oil well logging [2, 3, 4, 5, 6] 

through the relationship between the apparent diffusion coefficient and pore structure [2, 7]. 

In bulk fluid, the molecular diffusion displacement R is distributed in a Gaussian fashion 

log[P(R)] ∝ R2, and thus the presence of higher order terms (e.g. 4th order term, kurtosis) is 
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a reflection of restricted diffusion. In medical MRI, the experimental detection of the fourth 

moment has been used for clinical indications in diffusion kurtosis imaging (DKI) and has 

been linked to stroke [8] and other tissue pathologies [9, 10], and its direct measurement is 

desirable as a clinical diagnostic tool.

A complication arises in that sample heterogeneity can also contribute to deviations from a 

Gaussian signal decay, even in complete absence of non-Gaussian diffusion. For example, 

while diffusion in bulk fluids is Gaussian, a diffusion measurement of a water and an oil vial 

next to each other (without imaging) would still yield non-Gaussian behavior. This is simply 

due to their differing diffusion coefficients and the superposition of their signals.

In the case of imaging tissue, a single voxel can contain variety of distinct microscopic 

environments of differing size and anisotropy. As with the vial of water and oil, these 

different environments can represent independent components. Thus, while ‘free water’ in 

tissue is well-characterized by Gaussian diffusion [11], variations in the tissue can lead to a 

distribution of observed diffusivities that would still register as a fourth order decay in DKI. 

If these contributions could instead be separated from the contributions to kurtosis from 

restricted water, these different environments could be unambiguously identified.

Isolation of hidden ‘local’ features of restricted diffusion is still possible. For example, 

oscillating the gradients such that the effective encoding (‘q-vector’) is spun at the magic 

angle will average out the influence of anisotropy, both macroscopic and compartmental 

[12]. Alternatively, correlating the direction of diffusion over successive displacements with 

double pulsed field gradient techniques (d-PFG) has been shown to be effective to extract 

‘local’ features of diffusion [13, 14, 15]. For instance, the signal difference between parallel 

(0°) and anti-parallel (180°) gradients have been used to unambiguously identify restricted 

diffusion [13]. However, the multiple diffusive displacements measured in these angular 

techniques are interdependent, complicating their interpretation and design.

This work identifies mirror symmetries of diffusional motion when measured over multiple 

displacements, and formulates two corresponding independent measures (or modes) of 

stationary stochastic processes [16]. These modes lack the intrinsic interdependence found 

between measurements of 2-point displacements, greatly simplifying the design of d-PFG 

measurements. Thus, their utilization enables a new class of techniques where these 

independent modes are experimentally controlled to engineer sequences that isolate features 

of diffusion.

We introduce one particular implementation for MRI, the symmetrized double pulsed-field-

gradient (sd-PFG) experiment. By fixing the encoding strength for both diffusion modes 

while varying their physical orientations, the technique can separate Gaussian and non-

Gaussian diffusion processes as modulations of the NMR signal at different “angular 

frequencies” in isotropic and uniformly oriented anisotropic pores. Any Gaussian moment 

can only contribute to zero or 2-cycle modulations, whereas kurtosis will also produce a 

distinct 4-cycle modulation. Generally, this procedure will identify a combination of CSA 

and compartmental kurtosis. We will describe the theory and experimental verification of 

the method in a well-characterized restricted diffusion phantom and a plant specimen. We 

Paulsen et al. Page 2

NMR Biomed. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also include additional detailed proofs and simulations as a part of the supplementary 

information (SI).

2 Theory

The conventional PFG experiment uses a pair of field gradient pulses of equal duration (δ) 

and strength (but effectively in opposite directions, +g and −g) separated by a time Δ. A spin 

with a displacement of R will acquire a phase ψ = q · R in the limit of short pulse widths δ 

where q ≡ γδg (γ is the gyromagnetic ratio)[17]. The d-PFG experiment [18, 13, 14] adds a 

second and independently varied PFG pair, q2, some time τm after the first PFG pair, q1. 

The phase encoded by the d-PFG experiment is then1 ψ = q1 · R1 + q2 · R2, where R1 and 

R2 are the net displacements occurring during q1 and q2, respectively. The NMR signal 

without relaxation is then

(1)

where 〈〉 denotes the ensemble average. In this work, we only consider τm = 0 and use 

identical diffusion times Δ during q1 and q2 (Fig. 1).

In absence of flow, the second order cumulant expansion of E(q1, q2) depends only on the 

mean square of the phase,  [20]. This is a function of the mean square net 

displacements 〈R1R1
T〉 = 〈R2R2

T〉 and their correlations 〈R1R2
T〉 = 〈R2R1

T〉, where the 

equalities follow from diffusion being a stationary process and the use of the identical 

encoding times Δ [21]. The mean square displacement defines the diffusion tensor as a 

function of the diffusion time, D̄Δ = 〈RRT〉 /2Δ. The correlation tensor 〈R1R2
T〉 is also a 

function of the diffusion tensor, but for two different diffusion times, 2Δ [D̄
2Δ – D̄

Δ], as 

shown in [19] for τm = 0. With these relations, the second order moment approximation of 

the d-PFG signal is then

(2)

Using the basis with symmetric and anti-symmetric gradient waveforms as shown in (Fig. 

1b), qs ≡ (q1 + q2), and qd ≡ (q2 − q1), Eq. 2 yields

(3)

Thus, qd and qs independently encode for the apparent diffusion coefficient for two different 

diffusion times (D̄
2Δ and 2D̄

Δ – D̄
2Δ) and are the principal signal axes of the d-PFG 

experiment when Δ1 = Δ2 [16]. These independent encoding modes reflect a more general 

symmetry than what eq. 3 would imply. The qs, qd decomposition also holds for all mixing 

1This notation employs a different sign convention for q2 than [19] and corresponds to the first pulse of both q1 and q2 having 
positive effective gradient amplitudes.
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times τm [16] and represent the axes of mirror symmetry of the d-PFG signal as proved and 

simulated in the supplementary information (see SI).

By decomposing the signal equation according to these independent encoding modes, the 

task of designing a d-PFG experiment that isolates or intentionally correlates different terms 

is greatly simplified. For example, correlating the values of the apparent diffusion 

coefficient at different diffusion times is a matter of systematically varying the relative 

strengths of qs and qd [16].

Alternatively, the technique this paper introduces utilizes the qs, qd formulation to develop a 

sequence that removes terms in order to highlight higher-order effects. Specifically, by 

performing the experiment holding |qs| = |qd| = q constant, it symmetrically and consistently 

weights the underlying encoding modes. We further focus on one specific implementation,

(4)

where the angle ϕ acts as a modulation phase between the magnitude of q1 and q2. (fig. 2 

left) Note that the orientations of the PFG pulses do not vary. However, ϕ, does represent the 

physical orientation of the principal encoding modes relative to ±x̂

(5)

We title this specific sequence symmetrized double PFG (sd-PFG) because it symmetrically 

weights both the underlying encoding modes, and uniformly samples all orientations within 

the x/y plane for both encoding modes. As a consequence, sd-PFG modulations due to the 

variation in DΔ with Δ for isotropic diffusion are eliminated, where Eq. 3 evaluates to

(6)

and for anisotropic samples, sd-PFG is equally sensitive to diffusion along both directions in 

the encoding plane where

(7)

In contrast, traditional angular d-PFG based techniques [13] lack these symmetries (fig. 2 

left). In these experiments, the direction of motion between successive diffusion periods 

(instead of independent modes) is measured by fixing the magnitudes of the q1 and q2 

encoding strengths and varying their relative orientation θ.

(8)

(9)
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As a result, time dependent diffusion will generally cause a cos θ modulation for isotropic 

diffusion [13, 21],

(10)

and will produce a stronger encoding along the direction of the first gradient pulse.

(11)

sd-PFG also removes the angular d-PFG modulation present when non-negligible pulse 

widths are employed and the q1 and q2 gradient pulses overlap (see SI). Then, the angular d-

PFG signal oscillates even for isotropic time independent diffusion due to the encoding 

strength (b-value) varying [22],

(12)

whereas the sd-PFG signal remains constant (see SI)

(13)

High-order cumulants will cause interference like effects, leading to additional modulations 

with ϕ in the sd-PFG signal. The fourth moment, kurtosis, is the next higher moment in the 

cumulant expansion of the signal and will contribute to a 4-cycle modulation in the sd-PFG 

signal as the terms sin(4ϕ) and cos(4ϕ). Using the tensor notation in Ref. [21] and assuming 

the narrow gradient pulse limit, the sd-PFG signal to the fourth moment is
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(14)

where K̄ reflects the mean of the fourth power of net displacement over Δ, and the other 

tensors correlate R1, R2 between the times defined by q1 and q2. As defined in [21], these 

are

Because kurtosis will typically induce a 4-cycle modulation in the signal with respect to ϕ 

and Gaussian terms can only cause 0 and 2 cycle modulations, sd-PFG can unambiguously 

identify a combination of kurtosis and higher-order moments of the signal decay via a 

Fourier decomposition of ln[E(q, ϕ)] with respect to ϕ. These oscillations are a consequence 

of the signal equation for a tensor term of order 2n involving a product of 2n terms of sin(ϕ) 

and cos(ϕ) with sd-PFG sampling, yielding oscillations at up to 2n-cycles.

In comparison, correlating the direction of motion between subsequent times with angular d-

PFG [13] exhibits a very different signal structure. Despite the angular d-PFG terms also 

consisting of trigonometric polynomials of order 2n, due to the symmetry of the tensors and 

the |q1| = |q2| sampling, no such 4-cycle oscillations are produced for kurtosis with isotropic 

diffusion [15, 21]. Thus, sd-PFG has both the advantages of removing the additional 

modulation due to time-dependence of the diffusion coefficient and the ability to identify 

kurtosis by this Fourier analysis including the common case of isotropic diffusion which 

angular d-PFG techniques cannot. This analysis also indicates that traditional angular d-PFG 
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indicators of CSA can be contaminated by kurtosis. Kurtosis in angular d-PFG will still 

produce 2-cycle modulations for isotropic pores [21], but for anisotropic pores will also 

produce 2 and 4-cycle modulations that can be mistaken for CSA.

Typically, natural samples contain a distribution of restriction shapes and sizes, whereas the 

analysis so far has assumed a homogeneous sample with a single pore type. Given isotropic 

pores, the Fourier identification of local kurtosis is robust. In this case, the sd-PFG signal 

arising directly from the Gaussian moments of a heterogeneous distribution of pore sizes is 

simply

(15)

where f(DΔ) is the corresponding distribution of isotropic diffusion coefficients. A 

distribution f(DΔ), will cause a non-Gaussian decay of E(q, ϕ) as a function of q, but will 

maintain invariance with respect to ϕ. Thus, given isotropic pores, the observation of a 4–

cycle modulation with sd-PFG can distinguish compartmental kurtosis (CK) from the 

presence of a distribution of apparent diffusion coefficients. In contrast, s-PFG 

measurements and current d-PFG analyses cannot make this distinction. Furthermore, these 

oscillating components of the sd-PFG signal can be isolated by Fourier analysis robustly and 

could unambiguously identify far weaker non-Gaussian components than the traditional 

means of extracting kurtosis, such as fitting the second and fourth order terms from the 

signal q-decay.

There is an additional source to the 4ϕ modulation in the case of compartment shape 

anisotropy (CSA), where the individual pores are anisotropic but together have no net 

preferential orientation (see SI). Then, the 2-cycle modulations in the sd-PFG signal due to 

local Gaussian anisotropy can combine to form a 4-cycle modulation as a 4th order decay of 

the observed signal. A ‘frequency doubling’ of the oscillating terms cos(2ϕ) and sin(2ϕ) 

occurs because the observed signal is the sum of the exponent, a non-linear operation, of 

these terms for multiple orientations. Thus, in general the observation of a 4-cycle sd-PFG 

modulation in a heterogeneous sample reflects the presence of a combination of CSA and 

kurtosis as a 4th order decay.

3 Methods

We acquired sd-PFG data for a glass capillary array and a plant sample on separate 

instruments. To minimize artifacts, the sd-PFG sequence in figure 1a-b must be modified to 

include refocusing pulses, and could further utilize bi-polar gradient pulses [23]. For both 

sets of measurements, we incorporate a double spin echo, during sd-PFG encoding and use 

an appropriate acquisition scheme.

For the glass capillary array phantom (GCA) (Photonis, Sturbridge, MA), MR acquisition 

was carried out on a 7-Tesla Bruker ADVANCE III spectrometer with microimaging 

gradients (Bruker BioSpin, Germany) using a double-PFG filtered imaging sequence [24]. 

The nominal pore diameter was 10 μm with a maximum variation of 5% between capillaries. 

The sample temperature was set to 19°C. The sd-PFG parameters were: δ=3.15 ms, Δ=25 
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ms, and q/2π= 41.9 and 83.9 mm−1, respectively. The sample was placed parallel to the 

main magnetic field, which defines the z-axis. The first and second gradients were fixed 

along the x- and y-axes, respectively. For each of the q-values, a set of 37 measurements 

were performed with ϕ values increased in increments of 10°. The imaging parameters were: 

TE=12ms, TR=7s, slice thickness=0.5 mm, field of view=16×16 mm2, matrix 

size=128×128, resolution=0.125×0.125 mm2, bandwidth=50 kHz and number of 

averages=2. The signal was averaged over a large region of interest of the sd-PFG images to 

improve the signal-to-noise ratio. To fit the observed sd-PFG signal to simulation as in [24], 

a bi-compartmental model was assumed and a Levenberg-Marquardt numerical fitting 

procedure was employed to estimate the unknown parameters: S0 (signal with no diffusion-

weighting), fcyl (fraction of the restricted compartment), and the inner diameter (ID). To 

obtain the sd-PFG signal model, we employed (SI) a general theory of NMR signal for 

restricted diffusion [25], which involves the generalization of the multiple correlation 

function method originally developed by Robertson [26] and extended by others [27, 28].

For the asparagus sample, the center was cored with a 3mm NMR tube and kept at room 

temperature ≈28±1°C. Data was collected on an Oxford 1 T horizontal bore magnet with a 

Bruker ADVANCE II spectrometer and a custom double-PFG filtered CPMG sequence. The 

encoding parameters were: δ=4.0ms, Δ=120 ms, and q/2π spanned 0 to 38.2 mm−1 and ϕ 

spanned 180° in 11.25° increments omitting the angles where either q1 or q2 is exactly zero 

and fail to also act as a crusher pulse. A 16×14 array of q-values and ϕ were acquired with a 

CPMG acquisition employing TE=0.5ms, TR=6s and 8 averages. The q-values were 

incremented as an inner loop and the signal is normalized to most recent q = 0 acquisition to 

minimize the effects of temperature and other instrumental drifts.

4 Results and Discussion

4.1 Glass Capillary Array

The distinct features of sd-PFG are the absence of modulations due to time dependence in 

the apparent diffusion coefficient and a 4-cycle modulation corresponding that remains even 

for isotropic diffusion. In contrast, when correlating the direction of motion between 

diffusion periods, these conditions will yield a cosine modulation due to time dependent 

diffusion and no modulation for isotropic kurtosis.

The GCA phantom consists of aligned cylindrical pores using capillaries (10 μm ID) filled 

with water. For purely Gaussian diffusion, sd-PFG should give a constant signal as a 

function of ϕ. However, the signal will also produce an oscillation at 4 cycles (4ϕ) in the 

presence of compartmental kurtosis. This oscillation cannot arise from CSA because the 

cylindrical pores are isotropic within the x, y-plane. These modulations are clearly observed 

at high q (Fig. 3) and still observable even at lower q. This oscillation is notably absent in 

previous GCA measurements with angular d-PFG [24], in agreement with Jespersen's prior 

predictions [21], and confirms that angular d-PFG cannot isolate CK as an oscillation for 

this simple pore geometry. The 1-cycle oscillation characteristic of restricted diffusion in 

angular d-PFG (cos(θ)) is notably absent from this data in agreement with our strategy of 

symmetrization of the sd-PFG sampling and our qs, qd decomposition.
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The observed sd-PFG signal quantitatively fits the full numerical simulation of the cylinder 

model. Assuming a cylindrical geometry and a variable fraction of free fluid, the fit to the 

data yields a diameter of 9.67 μm for the 10 μm cylinders. Deviations from the fit are 

dominated by the inability to maintain constant q as a function of ϕ due to the limited digital 

resolution of the gradient electronics. The experimental gradient amplitude exhibits a 

noticeable variation (q/2π = 41.930 ± 0.124 mm−1 and 83.943 ± 0.066 mm−1).

4.2 Compartmental kurtosis in a plant sample

The utility of sd-PFG is not when there is a homogeneous system and the observation of the 

bulk properties matches ‘local’ diffusive behavior, but when there is a mixture of different 

environments obscuring local structure such as for restricted diffusion in samples of interest 

for biological and material applications. A visual analysis of the sd-PFG data, as used for the 

GCA, is not generally practical because any anisotropic regions, can contribute to large 0- 

and 2-cycle modulations and visually obscure any small 4-cycle signals. In this case, a 

harmonic decomposition by a Fourier transform of ln [E(q, ϕ)] with respect to ϕ will be 

effective to separate Gaussian and non-Gaussian behaviors. Then the signals corresponding 

to the 0- and 2ϕ modulation should largely reflect the Gaussian moments, while the signal at 

the 4ϕ modulation can contain contributions from only higher order moments (kurtosis and 

CSA). We denote these components as E0̃ for zero angular signal modulation, E2̃ for the 2ϕ 

modulation, E4̃ for the 4ϕ modulation etc, and focus on only the components corresponding 

to the cosine transform,

(16)

More generally, the oscillations of the sd-PFG signal can have non-trivial sin components 

(Eqs. 7,14). Their contributions are not shown for clarity, as their amplitudes are 

comparatively negligible for the sample. Only E2̃(q) has a significant sin component 

corresponding to time dependence in the cross term of the apparent diffusion coefficient. 

(see SI)

For the asparagus sample (Fig. 4), the constant and 2ϕ contributions dominate the signal, 

especially at small q (Left panel), and the 4ϕ modulation is not immediately identifiable 

from the raw E(q, ϕ) signal. However, in the frequency decomposition this 4ϕ modulation is 

clearly observable. As components with a nϕ modulation largely correspond to a nth or first 

non-zero higher moment, E4̃ corresponds to kurtosis and its plot forms a linear curve with 

respect to q4. Similarly, E0̃ and E2̃ correspond to Gaussian decays and form straight lines 

when plotted against q2. The positive slopes of E2̃(q) and E4̃(q) do not contradict having a 

signal decay, and instead reflect the phase of the oscillation resulting from the structure of 

the corresponding diffusion tensors. For example, the positive slope of E2̃(q) simply implies 

that DΔ,xx < DΔ,yy.

In a strict sense, the moments 2n and higher will all contribute to a coefficient E2ñ according 

to the moment analysis of the sd-PFG (eqs. 7,14). Thus, E0̃ and E2̃ will also have 

contributions from kurtosis and higher order moments, but these moments are typically 

much smaller and dominated by the lowest order term. What this relation ensures is the 
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ability to isolate the signal from typically much larger lower order moments, and so E4̃ 

isolates the far smaller component due to kurtosis from the Gaussian contributions. This still 

holds true for the case of CSA, where the superposition of signal from anisotropic Gaussian 

diffusion can lead to a 4ϕ modulation, as this nonetheless only occurs for the 4th moment of 

the total signal (see SI). The structure of this sample allows us to rule out CSA as a 

contributing factor. In general, other techniques would have to be employed to differentiate 

CK and CSA, such as Eriksson et. al's magic-angle spinning q-vector technique [12]. 

Traditional angular d-PFG CSA indicators cannot be used to make this distinction, since 

these would also be affected by kurtosis.

4.3 Generalization: Correlation of Independent Diffusion Modes

The use of principal diffusion encoding modes, as demonstrated in the design of sd-PFG 

with qs and qd, enables the systematic analysis and construction of the correlations between 

different measures of diffusion. In contrast to Mitra's initial work [13], where the relative 

direction of motion is compared between adjacent times (q1 and q2), the influence of basic 

features such as time dependent diffusion are immediately apparent and easily controlled in 

our framework. This greatly simplifies the design of d-PFG experiments to isolate terms as 

shown here or to directly correlate them as done previously [16].

The use of these modes can enable the generation of a new class of diffusion techniques. In 

particular, sd-PFG is but one modulation technique possible when fixing the encoding 

strength for the separate diffusion modes. Instead, alternative modulation schemes could 

sample all the distinct angles between qs, qd in the plane, or use different fixed strengths for 

the two different modes. For example, in a manner analogous to Jespersen's recent approach 

to angular d-PFG measurements [29], the sd-PFG experiment could be repeated varying the 

orientation of the encoding x/y-plane between measurements to obtain rotationally invariant 

measures of the signal. Finally, the distinct diffusion encoding modes qs, qd are unlikely to 

be the only unique pair and there are possibly many more independent modes. For example, 

a whole range of gradient sequences that are independent to the second moment have been 

incidentally identified to eliminate background gradient cross-terms [17]. Whether signal 

from these other sequences exhibit the same mirror symmetry in the signal as qs, qd is the 

focus of current work.

5 Conclusions

This paper describes a novel d-PFG design (sd-PFG) to directly measure compartmental 

non-Gaussian diffusion (e.g. kurtosis) through a unique 4-cycle modulation. The presence of 

a diffusion distribution and bulk anisotropy in natural materials do not affect this 

measurement as they appear as zero or 2-cycle modulations, easily distinguishable from the 

4-cycle modulation through Fourier analysis. The pulse sequence described here can be 

readily implemented in conventional NMR systems and on clinical MRI scanners, and the 

sequence parameters such as gradient strength q (up to 40 mm−1) and encoding times Δ 

(10-100 ms) are well within the range of the capability of these systems. Thus, we expect 

this technique to find applications in medical research and clinical diagnostics to examine 

tissue pathology resulting from changes in tissue microstructure. More broadly, this work 

identifies basic symmetries underlying multiple point diffusion measurements, and sd-PFG 
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represents one of a new class of multi-dimensional NMR techniques based on correlating the 

distinct modes of diffusive motion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ADC apparent diffusion coefficient

PFG Pulsed-Field-Gradient Experiment

d-PFG Double Pulsed-Field-Gradient Experiment

sd-PFG Symmetrized Double Pulsed-Field-Gradient Experiment

CK Compartmental Kurtosis
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Figure 1. 
(a) The basic d-PFG pulse sequence with zero mixing time. An initial 90° RF pulse excites 

the spins, then three gradient pulses acting as 2 PFG encoding pairs imprint and refocus the 

spatial modulation of the spin magnetization across the sample, after which the signal is 

acquired. (b) The alternate encoding axes qs and qd are linear combinations of q1 and q2 that 

divide the total encoding period into segments of 2Δ and Δ respectively and are the principal 

signal axes.
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Figure 2. 
Gradient trajectories for angular d-PFG (left) and sd-PFG (right) in qs, qd and q1, q2 

coordinates, this varies the relative magnitudes of qs and qd and so modulates the 

measurement's sensitivity to D̄
Δ and D̄

2Δ. sd-PFG modulates the relative amplitudes of q1 

and q2, but never orientation, in a manner so to fix the corresponding magnitudes of qs and 

qd for a constant relative sensitivity to D̄
Δ and D̄

2Δ
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Figure 3. 
The sd-PFG signal of a glass capillary array (GCA) consisting of 10μm ID cylinders 

oriented perpendicular to the gradient axes (gx, gy) for low (41.9 mm−1) and higher (83.9 

mm−1) q. The 4-cycle angular oscillation unambiguously indicates the presence of non-

Gaussian diffusion. The d-PFG signal modeling is confirmed by its fit to the observed signal 

where the deviations are dominated by variations in q due to gradient resolution limitations. 

The fitting results, assuming a cylindrical geometry and a free fluid component, yield a 

cylinder diameter very close to the nominal 10μm ID of the sample's fibers.
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Figure 4. 
sd-PFG signal of asparagus and the Fourier analysis. A. The raw signal as a function of ϕ for 

different gradient pulse strengths uniformly spanning q = 0 to 38.2 mm−1. B. The angular 

frequency decomposition of the signal. (i) The signal modulation as a function of angular 

frequency for two q values (stars and triangles correspond to the same values of q in A). 

Components corresponding to a nϕ oscillation in ln [E(q, ϕ)] largely correspond to a nth 

moment decay (or to the first non-zero higher order moment) and so (ii) E0̃ and (iii) E2̃, the 

0 and 2ϕ oscillations, correspond to the Gaussian decay and form a linear curve with q2. (iv) 

The plot for 4ϕ (E4̃) of ln [E(q, ϕ)] corresponds to kurtosis and forms a linear curve as a 

function of |q|4.
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