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Abstract

There is extensive evidence that accumulation of mononuclear phagocytes including microglial 

cells, monocytes and macrophages at sites of β-amyloid (Aβ) deposition in the brain is an 

important pathological feature of Alzheimer’s disease (AD) and related animal models, and the 

concentration of these cells clustered around Aβ deposits is several folds higher than in 

neighboring areas of the brain [1-5]. Microglial cells phagocytose and clear debris, pathogens and 

toxins, but they can also be activated to produce inflammatory cytokines, chemokines and 

neurotoxins [6]. Over the past decade, the roles of microglial cells in AD have begun to be 

clarified and we proposed that these cells play a dichotomous role in the pathogenesis of AD [4, 

6-11]. Microglial cells are able to clear soluble and fibrillar Aβ, but continued interactions of these 

cells with Aβ can lead to an inflammatory response resulting in neurotoxicity. Inflammasomes are 

inducible high molecular weight protein complexes that are involved in many inflammatory 

pathological processes. Recently, Aβ was found to activate the NLRP3 inflammasome in 

microglial cells in vitro and in vivo thereby defining a novel pathway that could lead to 

progression of AD [12-14]. In this manuscript we review possible steps leading to Aβ-induced 

inflammasome activation and discuss how this could contribute to the pathogenesis of AD.
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Function of microglial cells in the brain

Five to twelve percent of all cells in the mouse brain are microglial cells, depending on the 

brain region [15]. Because of their immunomodulatory function they are considered the 

resident macrophages of the brain. Using direct RNA sequencing, our group found 

important differences in receptor expression between microglial cells and peripheral 

monocytes and macrophages [16]. However, in spite of these differences, microglial cells 

share a myeloid origin and several similarities in their receptor repertoire with peripheral 

monocytes and macrophages. All three cell types also share the ability to activate several 

inflammatory pathways in response to injurious stimuli.
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In general, microglial cells constantly sense and screen the environment with their 

processes. They are able to adopt an amoeboid shape, migrate to the location of the insult 

and become activated [17]. Activated microglial cells are found in states of infection and 

trauma but also neurodegenerative diseases like Parkinson disease, prion disease and AD. 

Elevated levels of pro-inflammatory mediators have been found in all of these conditions 

[18-20]. The production of mediators such as cytokines, chemokines, reactive oxygen 

species and nitrogen monoxide [9, 21] helps to attract more microglial cells and possibly 

peripheral monocytes and ultimately could lead to the removal of pathogens and other toxic 

stimuli.

Microglia and Aβ

Microglial cells, monocytes and macrophages express receptors that promote phagocytosis 

of Aβ, and intracellular Aβ deposits have been observed in mononuclear phagocytes in AD 

brains. These cells also express Aβ degrading enzymes further contributing to Aβ clearance. 

In mouse models of AD we found that uptake of Aβ is mediated via the class A scavenger 

receptor Scara1, and deficiency in this receptor is associated with increased mortality and 

Aβ accumulation in these mice [8, 10] further supporting the paradigm that these cells play a 

neuroprotective role by promoting Aβ phagocytosis, degradation and clearance. On the other 

hand, we also found that the interaction of Aβ with a receptor complex that includes the 

pattern recognition receptor CD36 and a heterodimer composed of the Toll-like receptors 

(TLR) 4 and 6, is required for activation of microglial cells and the production of 

inflammatory cytokines, chemokines and neurotoxins [9, 11]. Following Aβ binding to this 

receptor complex, intracellular signaling leads to the translocation of nuclear factor κB 

(NFκB) from the cytoplasm into the nucleus [22] but also activation of cAMP/protein kinase 

A (PKA)/phosphorylated cAMP response element binding protein (CREB) [23] resulting in 

the transcription of several pro-inflammatory cytokines, NO-Synthase and cyclooxygenase-2 

[24, 25]. Recently, an alternative intracellular signaling pathway that is downstream from 

Aβ binding came into focus: the activation of the NLRP3 inflammasome [13, 14].

The NLRP3 inflammasome

Inflammasomes are inducible high molecular weight protein complexes that were described 

first by Martinon et al. in 2002 [26]. Four different inflammasomes and their activators have 

been well characterized so far: NLRP1 [27], NLRP3 [28], NLRC4 [29] and AIM2 [30]. The 

NLRP3 inflammasome in particular seems to be involved in many pathological mechanisms, 

since it is activated by several microbes [31, 32], urate crystals [33], cholesterol crystals [34] 

and aggregated Aβ [12]. The NLRP3 inflammasome, is an intracellular protein complex 

consisting of the sensor protein NLRP3, the adaptor protein Apoptosis associated Speck-like 

protein containing a caspase activating and recruitment domain (ASC) and pro caspase-1. 

Assembly and activation of this complex leads to the cleavage of pro caspase-1 to active 

caspase-1 (Figure 1). Active caspase-1 in turn cleaves and thereby activates pro-

inflammatory cytokines of the IL-1β family. IL-1β as well as IL-18 are synthesized as 

inactive precursors and undergo posttranslational modifications to become active cytokines 

[35]. IL-1β is a very potent pyrogenic cytokine and therefore its production and release has 
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to be tightly controlled. In the central nervous system, IL-1β seems to impact long-term 

potentiation and synaptic plasticity in the hippocampus where memory is consolidated [36].

Two steps are necessary to activate the NLRP3 inflammasome: The first step involves 

‘priming’ of the inflammasome, and is the result of disinhibition and nuclear translocation of 

NF-κB which leads to the transcription of NLRP3 itself and pro IL-1β, both prerequisites for 

the actual activation of the inflammasome [37, 38]. Many signaling pathways induced by a 

plethora of stimuli converge in the activation of NF-κB – the most prominent stimuli being 

LPS that signals via TLR4/CD14 [39]. A much faster way to make NLRP3 available is the 

deubiquitination of NLRP3 which is suggested to be dependent on mitochondrial ROS 

activity [40]. The second step of NLRP3 activation is the oligomerization of NLRP3 and the 

assembly with ASC and pro caspase-1. NLRP3 has been shown to sense putative ligands 

with its C-terminal leucine-rich repeats and self-oligomerizes via its nucleotide binding 

domain NACHT [41]. Upon oligomerization, ASC joins the complex and recruits caspase-1 

via its caspase recruitment and activating domain (CARD) [42]. In addition, data from 

murine macrophages indicate that ASC specks can transmit inflammasome activation from 

cell-to-cell in a prion-like manner [43, 44].

Because inflammasome activation is involved in many pathological processes, attention has 

been shifting lately to understanding mechanisms of inflammasome regulation. Yan et al. 

found that dopamine serves as an endogenous inhibitor of the NLRP3 inflammasome [45]. 

This dopamine effect may be mediated via dopamine receptor 1 which is expressed on many 

subsets of immune cells including microglial cells [46]. The proposed underlying 

mechanism of NLRP3 inhibition in this context is ubiquitination and autophagy-mediated 

degradation of NLRP3 mediated by increased levels of cAMP as described earlier by Lee et 

al. [47]. In addition, to such endogenous regulatory pathways, Coll et al. characterized a 

very specific NLRP3 small inhibitor [48]. MCC950, a diarylsulfonylurea-containing 

compound, blocked NLRP3 inflammasome activation induced by ATP, Nigericin and urate 

crystals in vitro in human and murine macrophages and delayed the onset and slowed the 

progression of experimental autoimmune encephalitis, an in vivo mouse model of multiple 

sclerosis. This inhibitor could be used to study the suitability of NLRP3 as a therapeutic 

target in many diseases.

The NLRP3 inflammasome in AD

Elevated levels of IL-1β, an endproduct of inflammasome activation have been reported in 

brains of AD patients as far back as 1989 [49]. It took nearly three decades to identify a 

potential pathway that could explain such elevated levels, when Aβ was identified as an 

inflammasome activator [12]. Halle et al proposed that phagocytosis of Aβ is the first step in 

NLRP3 inflammasome activation. Such activation required priming of bone-marrow derived 

macrophages and microglia with interferon-γ or LPS before uptake of Aβ fibrils. Inhibition 

of phagocytosis with cytochalasin D abrogated inflammasome activation by Aβ fibrils. 

Following their phagocytosis, Aβ fibrils localize in intracellular lysosomes, compromising 

the membrane of these lysosomes and leading to the release cathepsin B, a lysosomal 

proteolytic enzyme, into the cytosol, thereby activating the inflammasome (Figure 1). The 

mechanisms by which cathepsin B activates the inflammasome and whether this 
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phenomenon occurs in AD patients or AD animal models is not clear. Data from Aβ treated 

rat primary microglial cells suggest an inhibitory role for NLRP10 in this context [50]. 

NLRP10 inhibits the formation of the NLRP3 inflammasome by interacting with ASC. 

Upon treatment with a cocktail of aggregated Aβ1-42 and Aβ1-40 NLRP10 is degraded, 

probably by cathepsins, allowing the NLRP3 inflammasome protein complex to be formed.

Sheedy et al. suggested that the pattern recognition receptor CD36 is a possible receptor for 

soluble Aβ that conveys the signal from Aβ to the inflammasome in the aforementioned two-

step manner [14]. CD36 seems to be responsible for priming of the cells through activation 

of the receptor complex CD36/TLR4/6, subsequent translocation of NF-κB to the nucleus 

and transcription of NLRP3 and pro IL-1β (Figure 1). The mechanism by which soluble Aβ 

leads to the assembly of the NLRP3 inflammasome is not fully understood. Sheedy et al. 

show intracellular formation of Aβ fibrils and lysosomal location after three hours of 

treatment with soluble Aβ, but they did not determine lysosomal integrity or the levels of 

cathepsin B. Aβ treatment of cells obtained from CD36-/- mice or pre-treatment with Congo 

red that interferes with the formation of β-sheets, reduces IL-1β secretion. However, in this 

study murine bone-marrow derived macrophages were used and not immune cells isolated 

from the brain.

In 2013 Heneka et al. showed enhanced caspase-1 activation in human brains from patients 

suffering from mild cognitive impairment and AD. They also found that NLRP3 or 

Caspase-1 deficiency in mice that carry mutations associated with familial AD (APP/PS1) 

showed improvements in cognitive decline [13]. In addition, APP/PS1/Nlrp3-/- mice had 

reduced hippocampal and cortical Aβ deposition, although the processing and expression of 

the amyloid precursor protein was not affected. Using methoxy-XO4, a fluorescent molecule 

that binds Aβ with high affinity, injected intraperitoneally into adult APP/PS1/ Nlrp3-/- and 

APP/PS1/Casp1-/- mice, the authors showed a two-fold increase in Aβ phagocytosis by 

microglial cells from these mice compared to APP/PS1 mice. This finding suggests that 

NLRP3 inflammasome activation reduces phagocytosis of Aβ by microglial cells. NLRP3 

activation could therefor contribute to the pathogenesis of AD via two processes. First it can 

regulate production of IL-1 and possibly neurotoxins causing neuronal degeneration. 

Second, it can reduce Aβ clearance leading to enhanced deposition, thereby creating a self-

perpetuating loop that culminated in AD progression.

A second pathway that might contribute to inflammasome activation in AD brains involves 

extracellular ATP and the purinergic receptor P2X7. Extracellular ATP may be released by 

dying or degenerating neurons and activates P2X7 [28, 51]. P2X7, which is expressed on 

microglia [16], in turn activates the NLRP3 inflammasome [28, 51]. Interestingly, P2X7 

expression is increased in human AD brains [52]. Based on these reports it is possible that 

signaling via P2X7 provides a second mechanism for NLRP3 inflammasome activation in 

addition to Aβ-induced signaling [53].

Open questions and caveats

Because microglial cells are the resident mononuclear phagocytes of the CNS, most 

published studies refer to Aβ-associated mononuclear phagocytes as microglia. Work done 
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in animal models of Aβ deposition suggested that in addition to microglia, some Aβ-

associated mononuclear phagocytes are blood or bone marrow derived monocytes [54, 55]. 

Our own work using the Tg2576 mouse model of Aβ deposition supported the possibility 

that blood-borne monocytes accumulate in the brains of these mice as the disease progresses 

[8]. Indeed, we observed a significant increase in CD11b+/CD45hi cells (believed to be 

monocytes based on their high expression of CD45 [56, 57]) in Tg2576 animals compared to 

non-Tg controls. We also found that accumulation of CD11b+/CD45hi cells is significantly 

impaired in Tg2576 mice deficient in the chemokine receptor Ccr2 [8], a major chemokine 

receptor highly expressed on monocytes [58] but not on resident microglia [16]. This was 

later confirmed by Naert and colleagues [59]. More recent reports showed that cells 

expressing monocyte markers are associated with plaques in two transgenic models of Aβ 

deposition [60], and that adoptively transferred monocytes home in to these plaques [61]. 

Furthermore, while CD36 is expressed in microglial cells, its level of expression on 

peripheral monocytes and macrophages is more than 100-fold higher than in microglial cells 

[16]. These studies raise the possibility that Aβ-induced CD36-dependent inflammasome 

activation in AD may occur not only in microglia but also in peripheral blood monocytes 

recruited to the brain.

Conclusions

The NLRP3 inflammasome appears to play an important role in the pathogenesis and 

progression of AD making an attractive target for therapeutic intervention. However, 

interfering with keyparts of the inflammasome (NLRP3, ASC and Caspase-1) in a shotgun 

manner as a therapeutic approach may also have serious systemic effects because of the 

ubiquitous distribution and importance of inflammasome activation in many peripheral 

processes. Future research should focus on identifying CNS-specific pathways leading to 

inflammasome activation, including possible additional receptors or endogenous cell-

specific inhibitors.
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Figure 1. 
Activation of the NLRP3 inflammasome by Aβ. Both, soluble and fibrillar Aβ can contribute 

to Inflammasome activation. Aβ fibrils cause activation of microglial cells and therefore 

provide signal 1 via NF-κB transcription of NLRP3 and pro IL-1β. Signal 2 can either be 

provided by intracellular aggregation of soluble Aβ or by lysosomal rupture through 

phagocytosed Aβ fibrils. Both events are leading to the formation of the active NLRP3 

inflammasome. Active Caspase-1 finally cleaves pro IL-1β to active IL-1β which is released 

to the extracellular space.
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