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Abstract

The orphan nuclear receptors NR4A1, NR4A2 and NR4A3 are immediate early genes induced by 

multiple stressors, and the NR4A1 receptors play an important role in maintaining cellular 

homeostasis and disease. There is increasing evidence for the role of these receptors in metabolic, 

cardiovascular and neurological functions and also in inflammation and inflammatory diseases and 

in immune functions and cancer. Despite the similarities of NR4A1, NR4A2 and NR4A3 and their 

interactions with common cis-genomic elements, they exhibit unique activities and cell-/tissue-

specific functions. Although endogenous ligands for NR4A receptors have not been identified, 

there is increasing evidence that structurally-diverse synthetic molecules can directly interact with 

the ligand binding domain of NR4A1 and act as agonists or antagonists, and ligands for NR4A2 

and NR4A3 have also been identified. Since NR4A receptors are key factors in multiple diseases, 

there are opportunities for the future development of NR4A ligands for clinical applications in 

treating multiple health problems including metabolic, neurologic and cardiovascular diseases, 

other inflammatory conditions, and cancer.
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INTRODUCTION

The orphan nuclear receptor (NR) family has been characterized as a collection of nuclear 

receptors which share many structural domain similarities with other NRs; however, their 

endogenous ligands are unknown [1]. These receptors include NR0B1 (adrenal hypoplasia 

congenita critical region on chromosome X gene), NR0B2 (small heterodimer partner), 

NR1D1/2 (Rev-Erbαβ), NR2C1 (testicular receptor 2), NR2C2 (testicular receptor 2), 

NR2E1 (tailless), NR2E3 (photoreceptor-specific NR [PNR]), NR2F1 chicken ovalbumin 

upstream promoter transcription factor 1 (COUP-TFI), NR2F2 (COUP-TFII), NR2F6 

(verbA-related protein), NR4A1 (Nur77), NR4A2 (Nurr1), NR4A3 (Nor1), and NR6A1 

(GCNF).

In contrast to the other NRs, the orphan NR0B1 (DAX-1) and NR0B2 (SHP) receptors do 

not express a DNA binding domain (DBD) and primarily function as nuclear cofactors that 

influence gene expression through protein-protein interactions [2–4]. The three NR4A 

receptors have significant structural similarities in their ligand binding domains (LBDs) and 

DNA BDs, whereas their N-terminal (A/B) domains containing activation function 1 (AF1) 

are highly divergent [5–8]. NR4A receptors were initially defined as nerve growth factor-

induced-β (NGFI-β) receptors that bind as monomers to an NGFI-β response element 

(NBRE:AAAGGTCA) [8–12]. NR4A receptors also bind as a homo- or heterodimer to a 

Nur-responsive element (NuRE:TGATATTACCTCCAAATGCCA) which has been 

characterized from the pro-opiomelanocortin gene promoter [13, 14]. Both NR4A1 and 

NR4A2 can also bind as heterodimers with the retinoid X receptor (RXR) to a DR5 motif 

[15, 16]. These receptor-DNA interactions are characteristic of all NRs (except NR0B1 and 

NR0B2) and there is also evidence that NR4A1 regulates gene expression through 

interactions with the specificity protein 1 (Sp1) transcription factor bound to its cognate GC-

rich motif [17–19]. NR4A1 acts as a cofactor (along with p300) of Sp1, and many other NRs 

bind Sp1 and are integral cofactors for expression of Sp1-regulated genes [19–28].

The initial discovery of NR4A receptors was linked to their rapid induction by multiple 

stimuli in various tissues/cells and organs and these responses play a role in coping with 

both exogenous and endogenous stressors and the tissue-specific expression and induction of 

NR4A receptors contributes to their specificity (reviewed in [29, 30]). For example, NR4A 

receptors are induced by nerve growth factors in neuronal cells and by apoptosis-inducing 

agents in cancer cell lines [31–37]. In contrast, extensive studies with NR4A1 demonstrate 

that this receptor is not only induced by diverse anti-apoptotic agents but is also highly 

expressed in solid tumors and exhibits pro-oncogenic activity. Over the past decade, several 

timely and informative reviews on NR4A receptors have been published [29, 30, 38–42] and 

therefore this paper will primarily focus on more recent advances in the field.

NR4A1 in Cellular Homeostasis and Diseases

Individual and combined knockouts of NR4A1, NR4A2 and NR4A3 in mice have been 

described and extensively investigated to demonstrate the function of these receptors in 

maintaining cellular homeostasis and their role in disease. Thus, contributions of NR4A1 in 
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metabolic disease, inflammation, atherosclerosis and other responses will be discussed in 

subsequent sub-sections of this review. One of the earliest functions identified for NR4A1 

was its induction in T-cell hybridomas or thymocytes undergoing apoptosis [43, 44]. 

Surprisingly, T-cell receptor-mediated apoptosis in NR4A1 knockout mice was not defective 

and other apoptosis inducers were also functional in these mice [45]. NR4A1 also modulates 

adrenocortical function by regulation of CYP21 expression; however, in NR4A1 knockout 

mice the function of the hypothalamic pituitary axis was intact and it was concluded that 

other factors expressed in these mice compensated for loss of NR4A1 [46, 47]. However, the 

loss of NR4A1 in mice has dramatic effects on inflammatory, immune, metabolic and 

neurological functions and these will be discussed under the proceeding subsections. The 

direct effects of NR4A1 loss in mice were more pronounced in some double knockout mice 

containing the loss of another NR4A gene. For example, the loss of both NR4A1 and 

NR4A3 in mice led to the rapid development of lethal acute myeloid leukemia (AML) in 

mice indicating tumor suppressor-like activity for these receptors [48]. Using a similar 

approach, it was shown that a decreased dose of NR4A1 and NR4A3 (e.g. NR4A1+/−/

NR4A3−/− and NR4A1−/−/NR4A3+/−) resulted in a condition resembling a mixed 

myelodysplastic/myoproliferative neoplasm [49]. It was also recently reported that loss of 

NR4A1, NR4A2 and NR4A3 in T-cells blocked development of Treg-cells and resulted 

autoimmune diseases in multiple organs [50]. Thus, the future development of tissue-

specific knockout of one or more NR4A receptors in mice will be important for 

understanding the underlying functions of these receptors.

NR4A1 and Metabolic Diseases

Pearen and Muscat have reviewed the roles of NR4A1 and other NR4A genes in metabolic 

diseases [30] and have summarized the diverse stimuli associated with metabolic function 

that induce expression of NR4A receptors and their role in glycogen metabolism in skeletal 

muscle has been reviewed [51]. Several recent reports have expanded on the role of NR4A1 

in obesity and type2 diabetes and the potential for using NR4A1 ligands for treating this 

disease which has been increasing dramatically in western industrialized countries. NR4A1, 

NR4A2 and NR4A3 are highly upregulated in obese individuals and significantly decrease 

after fat loss [52]. NR4A1, NR4A2 and NR4A3 are rapidly induced by cAMP in mouse 

hepatocytes and by glucagon in mouse liver and overexpression of NR4A1 induced 

gluconeogenic gene expression [53]. In mice injected with an adenoviral-NR4A1 construct 

there was an increase in blood and hepatic glucose levels, whereas a dominant negative 

adenoviral-NR4A1-M1 construct decreased blood glucose levels and other parameters 

consistent with a diabetic-like condition [53]. In contrast the protective effects of NR4A1 

knockdown in normal mice is not observed in NR4A1−/− mice maintained on a high fat diet 

since these animals exhibit increased insulin resistance and hepatic steatosis [54]. This study 

also demonstrated that loss of NR4A1 increases insulin-resistance suggesting that NR4A1 

expression in muscle and other tissue may influence whole body glucose metabolism and 

metabolic disease [54]. In diabetic db/db mice expressing NR4A1, blood glucose levels 

were higher than in the db/db/NR4A1−/− mice, whereas levels were similar in normal mice 

and high fat diet plus streptozotocin (STZ) mice which represent a non-genetic model for 

obesity and T2DM [55]. The rationale for the differences in NR4A1 function in these mouse 

models requires further investigation.
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Wu and coworkers have been investigating the identification and effects of NR4A1 ligands 

on metabolic disease and have identified cytosporone B (CsnB) and related analogs and 

ethyl [2,3,4-trimethoxy-6-(i-octanoyl)phenyl] acetate (TMPA) as compounds that bound the 

ligand binding domain (LBD) of NR4A1 (Fig. 1) [34, 55, 56]. CsnB was characterized as an 

NR4A1 agonist that increased blood glucose levels and induced hepatic gluconeogenesis in 

C57BL/6 mice [56]. TMPA also interacted with the LBD or NR4A1 but in contrast to CsnB, 

TMPA decreased blood glucose in db/db mice and had lower levels of insulin and the effects 

were not observed in db/db/NR4A1−/− mice [55]. Moreover, in the non-genetic high fat diet/

STZ-treated mice TMPA also decreased blood glucose levels and the effects were not 

observed in these mice after loss of NR4A1. In addition, TMPA also inhibited hepatic 

gluconeogenesis in db/db mice as evidenced by increased phosphorylation of AMPKα and 

repression of glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase 

(Pepck) gene expression which was not observed in db/db mice crossed with NR4A1−/− 

mice. NR4A1-dependent activation of hepatic gluconeogenesis has been reported in several 

studies [53, 56, 57] and using TMPA as an NR4A1 antagonist, an interesting pathway has 

been uncovered (Figure 1B) [55]. High levels of gluconeogenesis are associated, in part, 

with constitutive inactivation of AMPKα due to the inactivation of liver kinase B1 (LKB1) 

which is sequestered by NR4A1 in the nucleus. Inactivation of NR4A1 in cells treated with 

TMPA results in nuclear export of free LKB1 which in turn activates (phosphorylates) 

AMPKα resulting in the inhibition of gluconeogenesis [55].

Thus, it is apparent that NR4A1 plays an important role in metabolic disease and T2DM and 

is a potential target for treatment of metabolic diseases and their complications.

NR4A1 and Cardiovascular Disease

Since cardiovascular disease is associated with chronic inflammation, it is not surprising that 

NR4A receptors play a role in this disease (reviewed in [58–60]). NR4A1 is expressed and 

functional in many of the cell subtypes that contribute to the damage of arterial vessel cell 

walls and this includes vascular smooth muscle cells, endothelial cells, invading 

macrophages and monocytes. De Vries and coworkers first detected NR4A1 as a gene 

induced in human smooth muscle cells treated with growth factors and cytokines [61] and 

also in atherosclerotic lesions in mouse models [62–65]. Perturbation of smooth muscle cells 

increases NR4A1 expression, and results of knockdown or overexpression experiments 

suggest that this receptor inhibits proliferation [63, 64]. Balloon-injury induced neointimal 

hyperplasia in rat carotid arteries was inhibited after treatment with the antioxidant α-lipoic 

acid which also induced formation of cytoplasmic NR4A1 [66]. The protective effects of α-

lipoic acid were decreased after NR4A1 knockdown in vivo. In vascular smooth muscle cells 

in culture, NR4A1 was important for α-lipoic acid-induced apoptosis, suggesting that the 

cytosolic NR4A1 is critical for induction of apoptosis and this is consistent with studies in 

cancer cells and tumors [41]. Similar results were observed in neonatal heart cells cultured 

under conditions resembling a high fat diet where reactive oxygen species (ROS) induced 

apoptosis and this was accompanied by increased cytosolic NR4A1 expression and 

interactions with the mitochondria as observed in some cancer cell lines [41].
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NR4A1 is also induced by multiple factors in endothelial cells and plays a role in endothelial 

cell proliferation and angiogenesis [67–69]. A recent study reported that both histamine and 

serotonin are pro-angiogenic factors in endothelial cells and in vivo and these effects are 

dependent on the histamine and serotonin receptors and NR4A1 but are independent of 

vascular endothelial growth factor (VEGF). These responses are also transitory since after 

an extended period (10 day), the angiogenesis inhibitor thrombospondin 1 was induced by 

serotonin and histamine and this response was NR4A1-independent [70]. The role of 

NR4A1 in inflammation and macrophages will be discussed separately; however, 

macrophages in areas of plaque formation express NR4A1 [70, 71]. Moreover, in both cell 

models and ApoE−/− mice maintained on a high fat/cholesterol diet, increased expression of 

NR4A1 or activation of the receptor by CsnB decreased macrophage derived foam cells and 

decreased atherosclerotic plaque formation [72]. This was also accompanied by decreased 

expression of inflammatory and adhesion genes and decreased hepatic lipid deposition and 

intestinal absorption of lipids, whereas the opposite effects were observed after NR4A1 

knockdown. These results were consistent with transgenic animal studies showing that 

expression of NR4A1 results in inhibition of macrophage accumulation and matrix 

metalloproteinase levels in mouse models [62]. Complementary results [73] were also 

observed in ApoE−/−/NR4A1−/− mice that exhibited increased atherosclerosis after 11 weeks 

on a western diet, and the loss of NR4A1 enhanced atherosclerosis, enhanced toll-like 

receptor signaling and pro-inflammatory macrophages. The importance of NR4A1 in 

inflammatory lymphocyte antigen bC (Ly-bChigh) and its function in healing after 

myocardial infarction has also recently been reported [74]. Ly-bChigh regulates a biphasic 

inflammatory and reparative response in the healing process and the loss of NR4A1 impairs 

healing and macrophages.

Thus, NR4A1 essentially plays a protective role in cardiovascular disease, and the protective 

effects of NR4A1 and Csn in the high fat/cholesterol mouse model [72] were dissimilar to 

those observed in db/db and non-genetic models of metabolic disease where NR4A1 

promotes metabolic disease [55, 56]. It will be important to determine the role of human 

NR4A1 in these responses prior to clinical applications of NR4A1 ligands.

NR4A1 and Neurological Functions

NR4A2 (Nurr1) has been extensively investigated with respect to neuronal function since 

Nurr1−/− mice exhibit a well characterized selective loss of dopamine biosynthesis in the 

substantial Nigra/Ventral Tegmental area of the brain but not in hypothalamic neurons [75]. 

However, there is not only substantial evidence for expression of NR4A1 in various regions 

of the brain [76, 77] but also an increasing number of reports demonstrating the neuronal 

functions of this receptor [78]. cAMP response element binding protein (CREB) is an 

important nuclear transcription factor involved in neuroprotection, and results of cell culture 

and in vivo studies indicate that NR4A receptors mediate CREB-dependent neuroprotection 

[79]. Induced learning in mice by contextual fear conditioning increased expression of 

NR4A1, NR4A2 and NR4A3 in the hippocampus and similar results were observed for 

histone deacetylase inhibitor-induced enhanced memory [80]. A recent study delineated 

differences in the functions of NR4A1 and NR4A2 in the brain; NR4A2 was important for 

long term memory, object location and recognition, whereas NR4A1 was required only for 
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object location [81]. NR4A1 has also been linked to synaptic remodeling, response to L-

DOPA, behavioral changes and dopaminergic loss after administering 1-methly-4-

phenyl-1,2,3,6-tetrahychopyridine (MPTP) in mice [82–85]. MPTP-induced loss of 

dopaminergic neurons is more severe in NR4A1−/− mice compared to wild-type mice, and 

MPTP-dependent downregulation of NR4A1 is mediated by decreased expression of 

myocyte enhancer factor 2D (MEF2D) [85]. Patients chronically treated with antipsychotic 

drugs may develop tardive dyskinesia (TD) and in rodent models of this disease, there is an 

increase in NR4A1 expression [83, 86]. This has also been observed in non-human primates 

and it has been suggested that NR4A1 may be a target for intervention [86]. Another 

possible chemotherapeutic role for NR4A1 ligand may for treatment of strokes since 

NR4A1 is decreased in neural cells deprived of oxygen and glucose, and neural damage is 

rescued by NR4A1 overexpression [87]. Thus, the development of NR4A1-specific ligands 

for treatment of some neurological disorders represents both an opportunity and challenge 

for the future.

NR4A1 and Arthritis

Arthritis is another example of an inflammatory disease, and both NR4A1 and NR4A2 are 

induced in experimental models of inflammation [88–90]. For example, type II collagen-

induced arthritis was significantly decreased in mice overexpressing NR4A1 compared to 

wild-type mice [88], suggesting another possible therapeutic target for an NR4A1 agonist 

such as Csn.

NR4A1 and Inflammation and Immune Responses

The rapid induction of NR4A receptors in response to diverse inflammatory agents and their 

rolls in T-cell receptor-mediated apoptosis has been reviewed [91] and noted in the 

Introduction to this article. Moreover, the roles of NR4A1 in metabolic, cardiovascular and 

neurological disease and arthritis are associated with inflammatory conditions. With the 

exception of metabolic disease models, most studies on inflammation and immune responses 

suggest that although NR4A1 is induced under inflammatory conditions, the receptor tends 

to be protective and is a potential target for NR4A1 agonists. Key recent papers include the 

observation that (i) NR4A receptors (all 3) play an important role in T-cell development 

[50], (ii) NR4A1 regulates subsets of genes important for differentiation of Treg cells [92], 

and (iii) NR4A1 is important for the anti-inflammatory effects of apoptotic cells in 

macrophages [93].

NR4A1 and Cancer

NR4A1 and its role in cancer have been recently reviewed [38–42] and only the important 

key concepts will be included in this article. Results of animal studies in which NR4A1 and 

NR4A3 have been knocked out and subsequent work on cell culture models indicate that 

NR4A1 is a tumor suppressor for the AML form of leukemia [48, 49]. In contrast, studies in 

other leukemia cell lines suggest a possible oncogenic role for NR4A1 [94] and research on 

the leukemia-type dependent differences in the function of NR4A1 is ongoing. The 

expression and function of NR4A1 in solid tumors is consistent in multiple tumor types. For 

example, NR4A1 is overexpressed in colon, pancreatic, breast (estrogen receptor positive 

and negative), and lung tumors, and in breast, colon and lung tumor patients high expression 
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of NR4A1 predicts decreased survival [17, 95–100]. The functional activity NR4A1 in 

cancer has been extensively investigated in cancer cell lines by either knockdown or 

overexpression, and results have shown that in lung, melanoma, lymphoma, pancreatic, 

colon, cervical, ovarian, and gastric cancer cell lines, NR4A1 regulates one or more of 

cancer cell proliferation, survival, cell cycle progression, migration, and invasion [17, 96, 

98–107].

The mechanisms of action of NR4A1 are highly complex and involve both the nuclear and 

cytosolic receptors. Some of the earliest studies on NR4A1 in cancer cells demonstrated a 

novel pathway in which the caged retinoid compound CD437 and several analogs and 

diverse apoptosis-inducing agents induce apoptosis in cancer cell lines by inducing nuclear 

export of NR4A1 [108–120]. This nuclear export pathway has been linked to formation of a 

pro-apoptotic mitochondrial NR4A1-bcl2 complex, and this is also observed using peptide 

mimics and paclitaxel which simulates NR4A1 interactions with bcl2 [121, 122]. Cytosolic 

NR4A1 plays an important role in the mechanism of action of several pro-apoptotic 

antineoplastic agents including platinum-based drugs [123]. It was also observed that 

increased expression of chromodomain helicase/adenosine triphosphatase (ATPase) DNA-

binding protein 1-like (CHD1L), which inhibits nuclear export of NR4A1, was associated 

with the increased survival of hepatocellular carcinoma cells [124].

The extranuclear activity of NR4A1 is a drug-induced response which invariably results in 

the induction of apoptosis; however, results of most knockdown or overexpression studies 

demonstrate a role for NR4A1 in cell proliferation, survival, migration and invasion. 

Presumably these responses are primarily due to NR4A1-regulated genes, and results in 

pancreatic cancer cells have identified genes that fit into each of these categories [101]. 

Mechanistic studies in colon cancer cells have identified several pathways that are consistent 

with the pro-oncogenic functions of nuclear NR4A1. Figure 2 summarizes some of these 

pathways observed in colon cancer cells. NR4A1 interacts with and inactivates p53 and, 

based on results of RNAi experiments, this results in activation of mTOR due to decreased 

expression of p53-regulated sestrin 2 and inactivation of AMPKα [96]. NR4A1 also 

regulates expression of survivin and other Sp-regulated genes containing GC-rich promoters 

[17, 18], and NR4A1 also regulates redox genes such as isocitrate dehydrogenase1 (IDH1) 

and thioredoxin domain containing 5 (TXNDC5) to maintain low levels of intracellular 

stress [18, 101]. NR4A1 also activates the pro-invasion gene MMP9 and suppresses E-

cadherin [98] and also modulates β-catenin expression through multiple pathways [100, 125, 

126]. These are examples of some NR4A1-regulated genes and pathways in colon cancer 

cells and other pathways including the cooperative role of NR4A1 in TGFβ-induced 

epithelial-mesenchymal-transition (EMT) in breast cancer cells [99], demonstrating the pro-

oncogenic functions of the receptor. Thus, development of NR4A1 antagonists will be 

highly advantageous for cancer chemotherapy due to their potential for disabling multiple 

pro-oncogenic pathways (Fig. 2).

Wu and coworkers identified 3 structurally diverse compounds that bind NR4A1-LBD, 

namely CsnB and related compounds, TMPA, and 1-(3,4,5-trihydroxyphenyl)nonan-1-one 

(THPN) (Figure 1) [34, 55, 56, 127]. Results of modeling and receptor mutation studies 

show that these compounds interact with different amino acid side-chains within the LBD. 
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CsnB exhibits NR4A1 agonist activity in transactivation assays and inhibits cancer cell and 

tumor growth and these effects are associated with nuclear export of NR4A1 [65]. The 

antineoplastic activity of THPN is also due to nuclear export of NR4A1 [127]. There is 

some evidence that TMPA may act as a nuclear NR4A1 antagonist; however, the anticancer 

activates of this compound has not been characterized [55]. Studies in this laboratory have 

identified 1;1-bis(3′-indolyl)-1-(p-substituted phenyl)methane (C-DIM) compounds that 

modulate NR4A1-dependent transactivation [17, 18, 96, 97, 101, 128]. Early studies 

identified the p-methoxy-phenyl analogy (DIM-C-pPhOCH3) as a potential NR4A1 agonist 

in pancreatic cancer cells using rodent derived NR4A1 constructs [128]; however, in 

subsequent studies using human NR4A1 we observed that this compound was only a weak 

agonist and most C-DIMs inhibited NR4A1-dependent transactivation [18, 39]. In 

collaboration with the Wu laboratory, we have now shown that many C-DIM analogs 

including the p-hydroxyl, trifluoromethyl, bromo, unsubstituted, cyano, chloro, iodo and 

carboxymethylphenyl analogs all directly bind the NR4A1-LBD [18]. Modeling studies for 

the highly active p-hydroxyphenyl compound (DIM-pPhOH) (Kd = 0.11 μM) show a unique 

interaction with the LBD of NR4A1 that differs from other ligands identified in the Wu 

laboratory. DIM-C-pPhOH and related compounds act directly on nuclear NR4A1 and 

exhibit NR4A1 antagonist activity, and results in cancer cell lines and tumors show that 

DIM-C-pPhOH is a highly effective anticancer agent [17, 18, 96, 97, 101]. As an NR4A1 

antagonist, DIM-C-pPhOH inhibits the pro-oncogenic NR4A1-dependent pathways outlined 

in Figure 2, suggesting that C-DIM compounds and other NR4A1 antagonists represent an 

important new class of mechanism-based anticancer agents.

NR4A2 in Cellular Homeostasis and Disease

The nuclear receptor NR4A2 (Nurr1, HZF-3, RNR1, NOT, DHR38) is the second member 

of the NR4A family and possesses structural motifs and complex patterns of transcriptional 

activity similar to NR4A1 and NR4A3. The DNA-binding domain of NR4A2 is over 92% 

homologous to the same domain of NR4A1 (Nur77), conferring similarities both in 

sequence identity and function between these receptors [129]. Research over the past two 

decades has demonstrated activities of NR4A2 associated with energy metabolism, 

atherosclerosis and vascular function, T-cell receptor (TCR)-mediated apoptosis, 

inflammatory responses, regulation of the hypothalamic-pituitary axis (HPA) and 

reproductive processes [59]. Additionally, NR4A2 plays a significant role in development 

and homeostasis of the central nervous system and has been associated with functional 

working memory as well as neurological disorders such as Parkinson’s disease [78, 130]. 

Like NR4A1 and NR4A3, NR4A2 modulates target gene transcription by binding as a 

monomer, homodimer or heterodimer with RXR to cis-acting response elements such as the 

NGFI-B-responsive element (NBRE) located in gene promoter regions, which exhibit a 

canonical AAAGGTCA consensus sequence [131, 132]. Additionally, NR4A2-RXR 

heterodimers bind to a related sequence motif, DR5 (5′-AGGTCANNNAAAGGTCA-3′) in 

the presence of 9-cis-retinoic acid, whereas NR4A2 homodimers bind to another related 

sequence with the palindromic structure, 5′-TGACCTTTNNNNNAAAGGTCA-3′ [133]. 

The transcriptional activity of NR4A2 is not limited to transactivation but also includes 

transcriptional repression or “transrepression” by a mechanism involving recruitment of 
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nuclear co-repressor proteins that stabilize histone-DNA binding and suppress gene 

expression [134, 135]. Genome-wide transcriptomic and ChIP-on-ChIP studies have 

described a large number of target genes that are regulated by NR4A2 but the effects of 

NR4A2 activation on gene expression are highly dependent on cell type and on the nature of 

the signaling event studied. For example, NR4A2 activation can induce apoptosis in cancer 

cell lines [136, 137], but can also stimulate development and maturation of dopaminergic 

neurons [138–140], as well as block inflammatory responses in macrophage cells [130]. The 

loss of NR4A2 in mice results in the failure of dopamine neurons to differentiate [77] and 

like NR4A1, NR4A2−/− mice exhibit many other deficits as outlined below. To understand 

the regulatory effects of NR4A2, it will therefore be important to elucidate cell-specific 

signaling mechanisms and to identify distinct protein complexes that associate with either 

transcriptional activation or repression. Although the effects of NR4A2 are diverse, it has 

been proposed that NR4A transcription factors are the first-wave transcriptional response to 

environmental cues that cause diverse adaptive changes in cellular physiology [78].

NR4A2 and Metabolic Disease

Because of its effects in regulating genes important for metabolism, small molecular 

activators of NR4A2 are highly sought after as potential therapeutic agents for metabolic 

disease. The crystal structure of the human NR4A2 LBD indicates that it does not apparently 

contain a classical ligand binding cavity, as seen with other NR4A family members and with 

other steroid hormone receptors, due to the intrusion of side chains from several bulky 

hydrophobic residues in the region normally occupied by ligands [8]. These structural 

studies also suggested that the conformation of the NR4A2 LBD might confer a level of 

constitutive activity, due to the resemblance to the ligand-bound conformation of RXR. 

Later computer-based modeling of the NR4A2 LBD identified a hydrophobic region 

opposite the classical co-activator-binding site that is critical for transcriptional activity, as 

demonstrated by site-directed mutagenesis studies [141]. Mutations in this region reduced or 

abolished transcriptional activity of the NR4A2 LBD and indicated that proteasome-

dependent degradation was important for NR4A2 protein turnover and modulation of the 

transcriptional effects of the receptor. Although the endogenous ligand for NR4A2 has yet to 

be identified, a number of compounds have been reported to activate or otherwise modulate 

the activity of the receptor. Among these, the anti-metabolite cancer drug 6-mercaptopurine, 

which is widely used for the treatment of acute childhood leukemia and chronic myelocytic 

leukemia, was shown to induce NR4A2 and NR4A3 through a motif in the N-terminal AF-1 

domain of the receptor [142]. However, direct binding of 6-mercaptopurine to NR4A2 

remains to be determined. It has also been reported that several benzimidazole compounds 

have high affinity for the NR4A2, as well as a series of isoxazolopyridinone compounds 

[30]. Another synthetic small molecule activator of NR4A2, 1,1-bis(3′-indolyl)-1-(p-

chlorophenyl)methane (C-DIM12), caused ligand-dependent activation of NR4A2 and 

subsequent poly(ADP-ribose) polymerase (PARP) cleavage and apoptosis in bladder cancer 

cells that was abolished by RNAi knockdown of NR4A2 [136]. Recent modeling and 

receptor binding studies with this class of compounds have identified several C-DIM 

analogs that directly binding to NR4A1 in a groove along the co-activator interface of the 

LBD [18]. This domain is highly conserved between NR4A family members, suggesting 
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that selected C-DIM compounds with small, polar substituents on the phenyl ring could 

modulate NR4A2 transcriptional activity through direct binding to the receptor

The ability of NR4A2 to regulate the expression of multiple genes associated with 

metabolism and gluconeogenesis suggests that this factor may also be an important regulator 

of metabolic disease. The hepatic expression of NR4A2 is induced by cAMP in response to 

glucagon as well as a number of other compounds acting on the β-adrenoreceptor signaling 

axis, including fatty acids, glucose, insulin, cholesterol and thiazolidinediones [30]. NR4A2, 

as well as NR4A1 and NR4A3, are induced in rat liver after dietary restriction, underscoring 

the importance of the NR4A receptor subgroup with dietary inputs positively regulating 

metabolism [143]. Furthermore, dietary restriction in these studies also increased expression 

of Ucp-3, Ampkg3, Pgc-1a and Pgc-1b in muscle, which is consistent with increased activity 

of both NR4A1 and NR4A3 and which positively correlated with improved glucose 

utilization and insulin sensitivity. Other metabolically associated genes regulated by NR4A2 

include the ATP-binding cassette subfamily G members 5 and 8 (AbcG5/8), Apolipoprotein 

B and E (ApoB/E), fatty acid synthase (Fas), fructose-1,6-bisphosphatase 1 and 2 (Fbp1/2), 

glucose transporter 4 (Glut4), uncoupling protein 2 and 3 (Ucp2/3), and the peroxisome 

proliferator-activated receptor-γ (Pgc1a), as extensively reviewed by Pearen and Muscat 

[30]. The NR4A subgroup, including NR4A2, is likely critically important for glucose 

utilization and for maintaining homeostasis in cholesterol and fatty acid metabolism. Small 

molecular ligands of NR4A2 could therefore be effective in treating aspects of metabolic 

disease and are being intensively studied for this purpose.

NR4A2 and Cardiovascular Disease

Atherosclerosis is characterized by hardening of arteries as a result of formation of plaques 

that compromises normal blood flow over time. Athersclerotic plaques contain fat, 

cholesterol and calcium deposits that stimulate a proliferative response in smooth muscle 

cells within the media of arteries, resulting in further constrictions to blood flow that may 

lead to myocardial infarction, stroke and death. Activation of endothelial cells at 

atherosclerotic plaques attracts circulating monocytes that represent an early event in the 

development of atherosclerotic lesions. NR4A receptors are moderately induced in 

atherosclerotic endothelial cells and macrophages and it has been proposed that amongst this 

receptor subfamily, NR4A3 promotes the development of atherosclerotic lesions, whereas 

NR4A1 and NR4A2 attenuate atherosclerosis [132]. NR4A2 also appears to have an anti-

mitogenic effect in smooth muscle cells, which antagonizes the formation of atherosclerotic 

plaques [144]. The ability of NR4A2 to inhibit NFκB-dependent expression of inflammatory 

genes in macrophages may also contribute to the anti-atherogenic activity of this factor [59, 

135]. This activity may be of particular importance, given that activated macrophages 

release cytokines and growth factors that aggravate local inflammation and activate 

underlying smooth muscle cells, leading to excessive uptake of lipids and the transition of 

macrophages into lipid-laden foam cells that remain resident in the atherosclerotic lesion 

[58]. Supporting the role for NR4A2 in protection against atherogenesis, it was discovered 

that NR4A2 is negatively regulated by miR-145 in smooth muscle cells and that mice 

lacking miR-145 are resistant to the development of atherosclerotic plaques, owing to their 

high expression of NR4A2 [145]. Additionally, studies in human macrophages using 
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lentiviral-mediated overexpression or knockdown of NR4A2 demonstrated that NR4A2 

inhibited the uptake of oxidized LDL by macrophages and reduced the expression of pro-

inflammatory cytokines and chemokines [146]. Collectively, these data support a role for 

NR4A2 in protection against cardiovascular disease.

NR4A2 and Neurological Function

NR4A2 has pleiotropic effects on gene expression in the brain which are highly dependent 

on cell type and on the specific extracellular signal or stressor encountered. Studies in 

human neural SK-N-AS cells were conducted in which a number of stable clonal lines were 

constructed with graded NR4A2 gene expression to approximate levels of NR4A2 seen in 

dopaminergic neurons present in human substantia nigra [147]. Transcriptomic data 

acquired from these NR4A2-expressing clonal lines revealed that the effects of NR4A2 on 

target genes varied considerably as a function of its concentration. Nearly one-fifth of 

NR4A2-responsive transcripts showed bidirectional changes with increasing NR4A2 

expression where some genes were induced and others suppressed. Transcripts that were 

induced by increasing concentrations of NR4A2 included genes such as the 

neurodevelopment factors Crmp1, Kif1a and Tubb2a, whereas a number of transcripts were 

decreased at all higher concentrations of NR4A2, including the NFκB-related transcripts 

(Nfkb1, Nfkb1a), TNF-related transcripts (Tnf, Tnfip1, Tnf4sf4), and the peroxisome 

proliferator-activated receptor γ (Pgc1) [147]. These data strongly suggest that NR4A2 

exerts concentration-dependent effects that dramatically influence transcriptional programs 

in neural cells.

NR4A2 is widely expressed throughout the brain and is present in telencephalic structures 

such as the cortex and hippocampus, although it is most well studied in context of its effects 

in dopaminergic neurons. As an immediate-early gene encoding a member of the steroid-

thyroid hormone receptor family, NR4A2 is also rapidly induced following stress and injury 

in the CNS. In postnatal mice exposed to the glutmate receptor agonist, kainic acid, NR4A2 

protein levels were rapidly induced in pyramidal neurons in the CA1 and CA3 layers of the 

hippocampus, as well as more transiently in the dentate gyrus, a region generally more 

resistant to neuronal in injury from kainic acid exposure [148]. NR4A2 is also involved with 

memory and learning, which may be mediated in part by MAP kinase signaling pathways 

that alter its phosphorylation state and its nuclear localization, described in studies where 

stimulation of ionotropic glutmate receptors (AMPA, NMDA) resulted in increased 

phosphorylation of NR4A2 and its export from the nucleus [78]. Interactions between 

NR4A2 and the cyclic-AMP response element binding protein (CREB) are important for 

memory and knockdown of NR4A in the hippocampus using antisense oligonucleotides 

impaired long-term memory and reversal learning in an appetitive spatial learning task 

[149].

In dopaminergic brain regions, particularly the substantia nigra (SN) and the ventral 

tegmental area (VTA), NR4A2 is important both for development and homestasis of 

dopamine producing neurons. This was initially demonstrated by studies using NR4A2 

knockout mice, in which mice lacking NR4A2 failed to generate midbrain dopaminergic 

neurons, were hypoactive and died during the early postnatal period [77]. NR4A2 is also 
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required for maintenance and maturation of adult midbrain dopamine neurons [139], in part, 

through its regulation of dopamine synthesis and metabolism [150, 151]. Mice heterozygous 

for NR4A2 display an age-dependent decline in the number of dopaminergic neurons in the 

SN compared to wild-type mice and also exhibit a decrease in peak evoked DA release that 

is only partly compensated by increased expression of the dopamine transporter [152]. The 

age-related decline in neurological function in heterozygous NR4A2 knockout mice 

correlates with the effects of decreased NR4A2 expression in models of Parkinson’s disease 

(PD), where reduced expression of NR4A2 increases the vulnerability of mesencephalic 

dopamine neurons to injury from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

[153]. In a study of 201 individuals affected with PD and 221 age-matched unaffected 

controls, two mutations were identified that associated with PD and mapped to the first exon 

of NR4A2 [154]. A subsequent study in 278 patients with PD, 166 healthy controls (HC), 

and 256 neurological disease controls revealed that lower expression of NR4A2 resulted in a 

significant increase in the risk for developing PD [155]. Selected point mutations in human 

NR4A2 are also implicated in PD by decreasing expression of tyrosine hydroxylase, the rate 

limiting enzyme in dopamine synthesis [156]. NR4A2 also regulates the expression of α-

synuclein, the major protein constitutent of Lewy Body aggregates in PD, and decreased 

expression of NR4A2 transcriptionally increases α-synuclein expression [157]. The 

importance of NR4A2 in PD was also highlighted in recent studies using a synthetic small 

molecular activator of NR4A2, 1,1-bis(3′-indolyl)-1-(p-chlorophenyl)methane, which 

protected against MPTP-induced loss of dopaminergic neurons in a mouse model of PD and 

increased expression and nuclear localization of NR4A2 in the SN [158]. Collectively, these 

data indicate that NR4A2 is an important factor regulating multiple physiologic functions in 

the CNS but also suggest that this transcription factor in important in protection against 

oxidative and inflammatory stress relevant to neurodegenerative disorders including PD.

NR4A2 in Inflammatory and Immune Responses

NR4A2 appears to have both constitutive and inducible anti-inflammatory activity in 

monocyte/macrophage lineage immune cells, as well as in brain glial cells including both 

astrocytes and microglia. This anti-inflammatory activity appears to be directed towards the 

NFκB signaling pathway in response to inflammatory stimuli such as tumor necrosis factor 

α (TNFα) and bacterial lipopolysaccharide (LPS). Following exposure to TNFα or LPS, the 

p65 (RelA) subunit of NFκB rapidly translocates to the nucleus, where its histone 

deacetylase activity and subsequent phosphorylation by GSK3β facilitates opening of 

chromatin and removal of constitutively bound nuclear co-repressor complexes [135]. These 

studies also report that sumoylation of NR4A2 on K577 of the LBD is essential for this 

transrepressive activity. Earlier studies support this conclusion, because K577 in the NR4A2 

LBD is part of a consensus SUMO-modification sequence and mutation of this lysine to 

arginine results in decreased transcriptional activity, suggesting that sumoylation of K577 is 

important for transcriptional modulation by NR4A2 [141]. In brain glial cells, the anti-

inflammatory effects of NR4A2 are mediated by docking to NFκB-p65 on target 

inflammatory gene promoters, followed by recruitment of the CoREST co-repressor 

complex, resulting in clearance of NFκB-p65 and transcriptional repression [135]. Because 

inflammatory activation of glial cells is critical to the progressive loss of dopaminergic 

neurons in PD, these studies suggest that NR4A2 protects against neuronal loss in part by 
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limiting the production of neurotoxic mediators by microglia and astrocytes. NR4A2 also 

plays a pro-inflammatory role in synoviocytes associated with arthritis and a recent report 

that NR4A2 regulation of prolactin expression contributes to this response [159].

NR4A2 also influences maturation and differentiation of Th17 T-cells and may thereby have 

a role in both autoimmunity and in resolution of infections [160]. NR4A2, but not NR4A1 or 

NR4A3, is upregulated in rheumatoid arthritis, where its expression is induced by PGE2, 

IL-1β, and TNF-α [161], suggesting that this factor may have broad effects in limiting 

inflammatory responses through its function as a transrepressor of the NFκB pathway. 

Additionally, NR4A2 regulates expression of the Forkhead transcription factor Foxp3, 

which is important for differentiation of regulatory T cells (Treg cells) and is mediated 

through direct interaction of NR4A2 with Runx1 [30]. Induction of NR4A2, along with 

other soluble and cell-surface mediators with anti-inflammatory activities (e.g., IL-10, TGF-

β, resolvins, ligands for TAM receptors), is important to attenuate responses to inducers or 

amplifiers of inflammation [130]. Based on these and other studies, NR4A2 appears to be 

broadly important for regulating both inflammation and resolution of inflammatory 

signaling in activated immune cells and glial cells.

NR4A2 and Cancer

A number of receptor knockdown or overexpression studies both in vivo and in cancer cell 

lines demonstrate that NR4A orphan receptors exhibit pro-oncogenic or tumor suppressor-

like activity that is dependent on the type of tumor [38]. NR4A receptors have been shown 

to enhance cell proliferation, apoptosis, and differentiation in a tissue-specific context [29]. 

NR4A2 is upregulated in normal breast epithelium compared to breast cancer cells, 

suggesting an inverse correlation between breast cancer and the level of NR4A2 expression 

[162]. These studies also reported that short hairpin RNA (shRNA)-mediated silencing of 

NR4A2 gene expression in breast tumor xenografts in mice significantly reduced tumor 

growth [132]. Immunohistochemical analyses of human prostate cancer biopsies indicated 

that expression of NR4A2 was significantly higher than in normal controls, suggesting an 

inverse relationship between expression of NR4A2 and tumor growth [163]. Likewise, 

silencing of NR4A2 expression in vitro in prostate cancer cells reduced cell proliferation, 

invasion and migration, indicating that NR4A2 could a biomarker for the progression of 

breast and prostate cancer [132].

NR4A2 is more highly expressed in estrogen receptor-positive breast and bladder tumors 

compared with normal tissue, and higher levels of cytoplasmic NR4A2 were a prognostic 

factor for high tumor grade, decreased survival, and increased distant metastasis in a cohort 

of bladder cancer patients [38]. NR4A2 is also more highly expressed in prostate tumors 

compared to normal prostate and correlates with tumor classification and Gleason score as a 

negative prognostic factor [163]. Small molecules that stimulate the inhibitory effects of 

NR4A2 may have promise in treating cancer, demonstrated by the effects of the NR4A2-

acting compound 1,1-bis(3′-indolyl)-1-(p-chlorophenyl)methane (C-DIM12 or DIM-C-

pPhCl) which induced TRAIL protein expression and PARP cleavage in bladder cancer cells 

that was significantly decreased by inhibition of NR4A2 with RNAi [136]. Interestingly, 

overexpression of NR4A2 in colorectal cancer cells revealed that ectopic expression of 
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NR4A2 increased resistance to the chemotherapeutic agents 5-fluorouracil and oxaliplatin 

and attenuated the chemotherapeutic-induced apoptosis [164]. Using tissue microarray 

analysis, these studies also found that NR4A2 expression was increased in colorectal cancer 

specimens collected from 51 adenomatous colorectal cancers, 14 familial adenomatous 

polyposis colorectal cancers, 17 stage IV colorectal cancers with adjacent mucosa, and 682 

stage I–III colorectal cancers. Increased expression of NR4A2 was related to protein kinase 

A activation and was correlated with chemoresistance [164]. These data demonstrate that 

NR4A2 expression predicts poor survival and drug resistance in various cancers, including 

breast, prostate, bladder and colon cancers.

NR4A3 in Cellular Homeostasis and Disease

The nuclear receptor NR4A3 (Nor1, TEX, MINOR, CHN) is the third member of the NR4A 

family and shares many of the same characteristics reported for NR4A1 and NR4A2. 

NR4A3-mediated transactivation and interactions with various cis-elements, except that 

unlike NR4A1 and NR4A2, NR4A3 does not form a heterodimer with RXR [15, 16]. 

Although there is some redundancy in the functions of the three NR4A receptors since these 

receptors are induced as early immediate genes by some of the same stressors [29, 30], each 

receptor also exhibits unique functions. One study reported that loss of NR4A3 in mice was 

embryo-lethal [165]; however, subsequent studies indicate that NR4A3−/− mice survive but 

exhibit deficits in the semicircular canals of the inner ear and in hippocampal development 

[166, 167]. This latter response can lead to several neuronal deficits and enhanced kainic 

acid-induced seizures. As indicated previously, double knockout NR4A1−/−/NR4A3−/− mice 

rapidly develop acute AML-type leukemia and have been designated as tumor suppressors 

for this type of cancer [48, 49]. Moreover, studies on knockdown of NR4A3 and other 

NR4A receptors demonstrate a role for NR4As in immune homeostasis and regulation of T-

cell development and aspects of metabolic disease [50, 52]. Muscat and coworkers have 

previously reviewed the physiological and pathophysiological roles of NR4A3 and other 

NR4A receptors [29, 30], and this article will highlight some of these functions and more 

recent studies.

NR4A3 and Metabolic Disease

Knockdown of NR4A3 in c2c12 skeletal muscle cells resulted in changes in gene expression 

consistent with a shift from oxidative to anaerobic gene expression [168], and subsequent 

studies in NR4A3-overexpressing mice demonstrated that NR4A3 increases type II muscle 

fibers and resistance to fatigue [169]. A role for NR4A3 in high vs. low running capacity in 

rodents was also reported [170]. NR4A3 induced cAMP in hepatocytes and in mouse liver in 

fasted mice [53] and levels were upregulated in obese patients [52]. The role of this receptor 

in mouse models of obesity and T2DM have not been extensively investigated.

NR4A3 and Cardiovascular Disease

NR4A3 is expressed in atherosclerotic lesions and is induced by diverse stressors in smooth 

muscle cells [69, 171–174], and knockdown experiments in smooth muscle cells suggest 

that this receptor plays a role in proliferation of these cells [174, 175]. NR4A3-induced 

proliferation has been linked to regulation of cyclins D1 and D2 [174, 175] and S-phase 
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kinase-associated protein 2 (Skp2) which results in decreased expression of the cyclin-

dependent kinase inhibitor p27 [176]. A recent study showed that miR-638 is also a key 

regulator of smooth muscle cell proliferation by targeting NR4A3 which results in silencing 

of NR4A3-regulated genes involved in cell proliferation [177]. These results coupled with 

data from a mouse model overexpressing NR4A3 in smooth muscle cells demonstrate that in 

contrast to NR4A1, NR4A3 serves to enhance neointintima hyperplasia. A recent study 

showed that NR4A3 inhibited NFκB signaling in vascular smooth muscle cells 

demonstrating an anti-inflammatory function in this cell type [178]. NR4A receptors 

including NR4A3 are induced by VEGF in endothelial cells [69] and this proliferative 

response is inhibited after NR4A3 knockdown [171, 179]. A recent study reported that 

NR4A3 regulated vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells through 

direct binding to an NBRE promoter element [180]. NR4A3 plays a role in monocyte 

adhesion and in an in vivo model for atherosclerosis using ApoE−/−/NR4A3−/− mice, it was 

confirmed that NR4A3 regulates recruitment of monocytes to the vascular wall. NR4A3 

facilitates macrophage recruitment, whereas the opposite response is observed for NR4A1 

[72].

NR4A3 and Neurological Functions

NR4A genes have important neuronal functions [80–82] and studies with NR4A3−/− mice 

show specific hippocampal functions for this receptor. NR4A3 is a CREB-regulated gene 

and plays a role in memory enhancement by HDAC inhibitors [80]. More recent studies 

show differential expression of NR4A receptors [181, 182] and studies on dopamine neurons 

showed that in the ventral tegmental area, haloperidol rapidly induced NR4A3 and NR4A1 

(but not NR4A2) and this was accompanied by induction of tyrosine hydroxylase and the 

dopamine transporter-mRNA. Functional studies also showed that NR4A3 expression in the 

Wistar-Kyoto rat contributed to depressive behavior [183]. Moreover, polymorphisms 

within the NR4A3 gene are correlated with nicotine addiction in patients with mental health 

disease [184], and it is possible that NR4A polymorphisms may also be associated with 

other receptor mediated health problems.

Inflammation and Immune Responses

NR4A3 like all NR4A receptors is induced by stressors and is upregulated by inflammatory 

conditions and also plays an integral role in T-cell receptor-induced apoptosis [29, 30, 49, 

50]. Knockdown of NR4A1, NR4A2 and NR4A3 (combined) in mice resulted in death 

within 3 weeks and among the double knockout mice, only the NR4A1−/−/NR4A3−/− mice 

died within 3–4 weeks [50]. Moreover, in this same study development of Treg cells was 

also decreased and it was concluded that “NR4A1 and NR4A3 were the main contributors to 

Treg cell homeostasis and the prevention of autoimmunity” [50].

NR4A3 in Cancer

The combined loss of NR4A3 and NR4A1 in mice results in acute AML-type leukemia [48, 

49] and HDAC-inhibitor mediated apoptosis in AML cells is accompanied by induction of 

NR4A3 [185]. These results demonstrate a role for NR4A3 (in combination with NR4A1) as 

a tumor suppressor for AML; however, the function of this receptor in other leukemias has 
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not been determined. NR4A3 is downregulated in nasopharyngeal carcinomas due to 

promoter hypermethylation, and in cell lines overexpression of NR4A3 decreased cell 

proliferation and colony formation and this was consistent with tumor suppressor activity 

[186, 187]. NR4A3 is one of only a few NRs overexpressed in ER-positive and ER-negative 

breast tumors, and a recent report shows that NR4A3 expression is higher in triple negative 

vs. luminal tumors [95, 188]; however, the function of this receptor in breast cancer has not 

yet been determined. NR4A3 is also overexpressed in human hepatocellular carcinomas and 

induces hepatocyte proliferation, and the function of this gene in liver cancer cells has not 

been determined [189]. Genomic studies in horses have also linked NR4A3 to susceptibility 

to melanoma [190] but expression and functions in human melanomas have not been 

determined. Prostaglandin A2 is the only reported NR4A3 ligand [191], and future clinical 

applications for targeting NR4A3 will require additional insights on tumor-specific 

functions of this gene and development of new ligands.

Summary

NR4A1, NR4A2 and NR4A3 are orphan nuclear receptors and immediate early genes 

induced by multiple stressors. All three receptors bind the same genomic cis-elements; 

however, their distinct differences in activities are due, in part, to their more unique N- and 

C-terminal domains that differentially interact with various cofactors and ligands and their 

tissue-specific expression. Complete and tissue-specific knockout mouse models uniquely 

distinguish between the different roles for these receptors in metabolic, cardiovascular, 

neurological, immune and inflammatory functions, cancer and related diseases. Although 

endogenous ligands for NR4A receptors have not been identified, several recent studies have 

identified structurally diverse compounds that bind and activate or inactivate nuclear 

NR4A1 or induce nuclear export of NR4A1, and these compounds show some promise in 

the treatment of conditions such as metabolic diseases and cancer. For example, a recently 

published paper showed that the pro-fibrotic effects of transforming growth factor-β (TGF-

β) signaling was inhibited by NR4A1 which recruits inhibitory chromatin-modifying 

complexes to the promoters of TGF-β-regulated genes [192]. The NR4A1 agonist 

cytosporone B inhibits experimentally-induced fibrosis in multiple tissues “demonstrating 

the first proof of concept for targeting NR4A1 in fibrotic diseases” [192]. Future clinical 

applications of NR4A ligands will require the synthesis and development of ligands specific 

for NR4A1, NR4A2 and NR4A3 and characterization of selective NR4A modulators that 

can be used for their tissue-specific agonist/antagonist activities.
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Highlights

• NR4A receptors play a critical role in maintaining cellular homeostasis.

• NR4A receptors also play critical roles in multiple diseases.

• Ligands for NR4A receptors have been characterized.

• NR4A ligands have applications for treating multiple diseases and cancer.
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Figure 1. 
Ligands that bind NR4A1. Studies in the Wu laboratory have identified a series of 

polyhydroxyaromatic compounds containing medium chain alkylketone groups that bind 

NR4A1 and act as agonists and antagonists (CsnB, THPN and TMPA) (34, 55, 56, 127).
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Figure 2. 
NR4A1-regulated pathways in cancer cells that are inhibited by C-DIM/NR4A1 antagonists. 

Treatment of cancer cell lines with C-DIM/NR4A1 antagonists such as DIM-C-pPhOH or 

knockdown of NR4A1 by RNA interference results in inhibition of mTOR signaling by 

activation of p53, resulting in the induction of sestrin 2 and activation of AMPKα [96]. This 

is also accompanied by induction of ROS and ER stress through downregulation of 

TXNDC5 and IDH1 [18, 101] and also decreased expression of NR4A1/Sp1-regulated pro-

survival/growth promoting genes [17]. Cancer cell invasion is also inhibited by antagonizing 

NR4A1 which results in decreased expression of MMP9 and E-cadherin [98].
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