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Abstract. This is a methodological study exploring the use of quantitative histopathology applied to the cervix to discriminate
between normal and cancerous (consisting of adenocarcinoma and adenocarcinomain situ) tissue samples. The goal is classifying
tissue samples, which are populations of cells, from measurements on the cells. Our method uses one particular feature, the
IODs-Index, to create a tissue level feature. The specific goal of this study is to find a threshold for the IODs-Index that is used to
create the tissue level feature. The main statistical tool is Receiver Operating Characteristic (ROC) curve analysis. When applied
to the data, our method achieved promising results with good estimated sensitivity and specificity for our data set. The optimal
threshold for the IODs-Index was found to be 2.12.

1. Introduction

This study explores quantitative pathology (QP) as
a possible aid for detection and diagnosis of adenocar-
cinoma (AdCa) and adenocarcinomain situ (ACIS) of
the cervix. QP methods measure nuclear characteris-
tics through the use of digital image analysis. Com-
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mercially available systems that collect and analyze
these nuclear images exist. Some of these systems are
designed for cervical cytologic diagnosis of the more
common squamous lesions. These systems take a large
number of measurements based on the optical proper-
ties of nuclear images in order to capture a subset of
pertinent characteristics of the nuclei related to ploidy
and abnormality [8]. QP reduces the subjectivity asso-
ciated with classic visual diagnostic procedures and al-
lows for reproducible criteria for the diagnosis of ACIS
and AdCa. QP has been shown to be effective in de-
tecting premalignant and malignant cells [19]. There
is evidence that QP methods have potential in detect-
ing malignancy-associated changes – premalignant le-
sions associated with changes in the DNA structure
which cannot be detected using classical visual tech-
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niques [17]. QP has also successfully monitored re-
gression/progression in chemoprevention studies ex-
amining premalignant conditions [3,23], and the mea-
surements can be correlated to biomarkers evaluating
ploidy [20,21].

ACIS was thought to be rare when it was first
discovered, but recent evidence suggests more focus
should be given to diagnosing this disease. Hepler
et al. [12] first described ACIS in 1953, and Friedell
and McKay [11] detailed more characteristics of the le-
sion in a later publication. Currently this lesion occurs
in 1 out of 25,000 Pap smears, but several studies offer
evidence that the prevalence of this lesion is rising [7,
22]. ACIS is the putative precursor of adenocarcinoma
(AdCa), and detection of ACIS might yield better prog-
nosis for patients with AdCa. Currently, AdCa has a
poorer prognosis than the more common squamous
cervical lesions [4,7,9,10,26]. The histologic and cyto-
logic diagnostic criteria for ACIS has been only rela-
tively recently established [1,2,5,13,15]. The cytologic
and histologic characteristics of ACIS can resemble
those of other lesions such as metaplasia, endometrio-
sis, and reparative changes [13]. Therefore, traditional
cytologic procedures may not detect this lesion with
high sensitivity, which may result in underdiagnosing
this potentially serious disease [4,16].

Previously, West et al. found several QP features
where the means significantly differed across cell
types [27]. The cellular measurements were taken us-
ing the Cyto-SavantTM, one of the commercially avail-
able image analysis systems. Subsequently, Swartz
et al. reported promising results for classifying tissue
slices based on cellular measurements [25]. In the sec-
ond work, several different classification procedures
were examined. Each procedure involved first using the
cellular measurements from the Cyto-SavantTM to cre-
ate features that apply to the tissue sample as a whole.
Then these tissue-sample features were used to classify
the tissue sample as diseased or not diseased.

One of the promising procedures used by Swartz
et al. involved only the IODs-Index [25]. The IODs-
Index (also called ICM-DNA, or Image Cytometric
Measurement of DNA [3]) measures the Integrated
Optical Density (IOD) of the nuclear image. The small
“s” is added to emphasize that the measurement is
being applied to cells collected from sections. It is a
normalized feature, meaning that the IOD measure-
ment from each of the cells of interest, in this case
the glandular epithelial cells from the canal, are di-
vided by the mean IOD measurement of a collection of
control cells from the same tissue slice. In this study

lymphocytes serve as the control cells. The normal-
ization reduces the patient-to-patient variability, and
it reduces the effects of stain intensity so that the
IODs-Index is easier to compare across patients than
just the IOD measurement. Also the IODs-Index is
highly correlated with the amount of DNA in the nu-
cleus.

In the previous work by Swartz et al. [25], the
tissue-slice feature created from the IODs-Index was
the proportion of cells from a given tissue slice with
IODs-Index values greater than or equal to 2.5. Higher
values of this proportion score were associated with
cancerous tissue slices. Although this value of 2.5 had
biological motivations, it was not chosen to optimize
the classification procedure.

In this work we empirically find a threshold value
that is optimal with respect to the classification task
at hand for the given data set. Our results suggest that
optimizing the threshold for the IODs-Index gives a
smaller threshold value than 2.5, and thus could po-
tentially improve the classification performance when
classifying normal versus cancerous (ACIS and AdCa)
tissue slices. This shows that a simple algorithm in-
volving only the IODs-Index has the potential to per-
form remarkably well when classifying tissue slices.

2. Materials and methods

We will begin by discussing the patient case se-
lection and the selection of the cells from the tissue
slices. Then we discuss the classification algorithm
along with the optimization procedure.

2.1. Patient case selection

The data used in this article is the same as that de-
scribed in [25] and [27]. A retrospective computerized
search through the pathology records at the M.D. An-
derson Cancer Center by pathologic diagnosis iden-
tified patients for this study. Archival tissue blocks
and pathology slides stained with hematoxylin and
eosin (H&E) were retrieved, reviewed, and mapped by
two pathologists specializing in gynecology (I.B. and
A.M.). The pathologists confirmed the diagnosis of
ACIS and AdCa using established criteria [5,15]. Any
cases containing mixed lesions or insufficient tissue
for additional preparation and analysis were excluded.
The patients included in the normal group were also
found from the archival tissue blocks, but the reason
for their treatment was unrelated to adenocarcinoma,
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and the slices showed no evidence of this disease. Fur-
ther quality-control issues were examined as described
subsequently, resulting in a final data pool consisting
of 68 tissue samples: 13 with normal histology, 37 with
ACIS and 18 with AdCa.

2.2. Specimen preparation

Sections of 4µm were cut from the archival spec-
imens and stained using a thionin–Fuelgen reaction
method as described in [3]. The pathologists then rere-
viewed the slides and compared them to the original
H&E slides to confirm both the diagnosis and that
sufficient tissue was present for analysis. One of the
pathologists also mapped the region of interest for the
image analysis.

2.3. Image analysis and cell selection

The QP measurements were made by a Cyto-
SavantTM computer-assisted image analysis system
(Cancer Imaging, Vancouver, BC, Canada) using fea-
ture set FB5. Seventy-five tissue slices – one from each
patient – were initially collected. Data from two spec-
imens were discarded because the values used for nor-
malization were missing. Five other slides were dis-
carded because the images were out of focus. From
each of the remaining 68 tissue sections, images of
146± 50 (mean± standard deviation) epithelial and
105± 30 lymphocyte cell nuclei were collected from
the mapped areas using a semi-interactive procedure.
Only nonoverlapping nuclei with clearly discernable
borders and no evidence of “capping” were collected
for the final analysis. Capping refers to the cutting ef-
fect where only the tip, or cap, of a nucleus is present
on the slide.

The images were then stored in the computer mem-
ory. Nuclear boundaries can be defined by the com-
puter software in a precise and reproducible manner,
and measurements are made on the cell images and
stored for analysis. The lymphocyte nuclear images are
used as an internal standard on each slide to normal-
ize some of the features, including the IODs-Index, so
these features are adjusted for effects of stain intensity.

In addition to concerns of stain intensity variation,
there was concern that the DNA might degrade over
time because the time when the samples were taken
covers a wide range (1985–1999). This issue was ex-
amined by finding normal epithelial cells on all slides
and checking the mean DNA amount for each slide.
There was no significant correlation found between the

age of the sample and the mean DNA amount for both
the squamous cells and the lymphocytes. This suggests
that there is minimal or no DNA degradation over the
range of the samples. The analysis is discussed in more
detail in Section 4.

2.4. Statistical analysis

Before analyzing the data, the AdCa and ACIS
groups were combined to make up one group of dis-
eased cases, and this diseased group was compared to
the normal cases. Macros were written in SAS ver-
sion 8.01 to perform all the analyses. Here we de-
scribe a composite discriminant algorithm we devel-
oped, which performs two basic tasks. First, it creates
a feature for the tissue slice using the cellular infor-
mation from the IODs-Index. Second, the tissue slices
are classified using statistical methods applied to the
tissue-slice feature. In this section, we describe the ba-
sics of the algorithm and the optimization of the thresh-
old used to create the tissue-slice feature.

2.4.1. General algorithm
The general algorithm has two steps. In the first step,

we generate a tissue-slice feature from the IODs-Index.
We consider all the cells from a given tissue slice and
calculate the proportion of cells with IODs-Index val-
ues greater than or equal to an Index Cutoff (IC) value.
We will refer to the Proportion of IODs-Index values
greater than or equal to this IC value as the PIV score,
and to designate a PIV score associated with a particu-
lar IC value, we will include the IC value in the name
(for example, the PIV score associated with an IC value
of 2.12 is the PIV2.12 score). The PIV score is a fea-
ture that applies to the tissue slice.

In the second step, we use the tissue-slice feature,
the PIV score, to classify the tissue slices. From the
Swartz et al. study [25], a high PIV score is indicative
of cancerous tissue slices. For the second stage of the
algorithm, we apply a threshold to the PIV score so
that we can classify the tissue slices in an optimal way.
Then tissue slices with a PIV score above this threshold
are classified as cancerous, and tissue slices with a PIV
score below this value are classified as normal.

2.4.2. Optimization procedure
Before implementing the algorithm, we must find

the IC value and the PIV score threshold that optimize
the classification algorithm. We use Receiver Operat-
ing Characteristic (ROC) curve analysis to optimize
both thresholds. A ROC curve is a visual tool used for
assessing performance of a diagnostic test [18]. Each
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point on the ROC curve is called an operating point
and is associated with a threshold and a sensitivity and
specificity for performing the test at that threshold. To
generate an empirical ROC curve, we follow a proce-
dure similar to the one outlined by Schein et al. [24].
First we rank order the observations according to the
PIV score. For each observed value of the PIV score,
we consider a threshold at that value. Then we clas-
sify all samples at or above the threshold as diseased,
and those below as normal. The percentages of sam-
ples correctly classified give the sensitivity and speci-
ficity for that operating point. This is done for all ob-
served values of the PIV score to trace out the ROC
curve. We add a final operating point associated with
considering all samples normal. This ensures that both
extreme points of the ROC curve are represented. The
ROC curve associated with these empirical operating
points is graphically represented by plotting 1 – speci-
ficity on the horizontal axis, and sensitivity on the ver-
tical axis. The point at the upper-left most point on the
curve is the point that maximizes the sum of the sen-
sitivity and specificity of a test. Therefore, we can find
the sensitivity and specificity of the test based on the
PIV score that is optimal in the sense that it maximizes
the sum of the sensitivity and specificity.

This procedure also helps us find an optimal IC
value. For every particular IC value, the PIV score as-
sociated with it is a different score from a PIV score
associated with any other IC value. Thus, each PIV
score generates a different ROC curve. We can summa-
rize the performance associated with each ROC curve
using the area under the curve (AUC). It is a widely
used summary value used to compare ROC curves [6].
The AUC is calculated exactly from the empirical ROC
curve. Therefore, we can find the IC value that pro-
duces the PIV score with the largest AUC value by
comparing across all ROC curves. This gives us the op-
timal IC value that yields the PIV score with the great-
est AUC.

We used this idea to implement a simple procedure
to optimize the IC value. We examined a mesh of IC
values ranging from 1.95 to 3.00 using increments of
size 0.01. A ROC curve was estimated for the PIV
score associated with each IC value, and the operating
point yielding the highest sum of sensitivity and speci-
ficity on the estimated ROC curve was identified. Then
we determined the IC value associated with the ROC
curve that obtained the highest AUC value.

2.4.3. Error-rate estimates
To reduce the bias of the error-rate estimates, we

used a leave-one-out cross-validation procedure. All

the cells from a given slide were omitted while find-
ing the optimal IC value. Then the IC value found from
this training set was used to calculate the PIV score for
the omitted tissue slice. This was repeated for all tissue
slices. Finally the sensitivity and specificity maximiz-
ing the sum (sensitivity+ specificity) were estimated
from the ROC curve generated from the leave-one-out
PIV scores.

3. Results

For this data set, the IC value associated with the
ROC curve that had the maximum overall AUC was
2.12. Following our earlier established convention, we
refer to the PIV score associated with this optimal IC
value as the PIV2.12 score. Furthermore, if we con-
sider the raw scores instead of percents, the ROC curve
scale goes from 0 to 1 on both axes, and the maxi-
mum possible AUC value is 1. On this scale, the AUC
of the PIV2.12 score was 0.976, which is exceptional.
Graphically one can see the results of the leave-one-
out cross-validated ROC curve in Fig. 1. The operating
point that maximizes the sum of sensitivity and speci-
ficity for the PIV2.12 score is marked. The estimates
of the sensitivity and specificity associated with this
operating point are 94.5% sensitivity and 100% speci-
ficity making the sum 194.5, and the threshold associ-
ated with this optimal operating point is 0.08. The clas-
sification results by tissue type are reported in Table 1.

As mentioned in Section 2.3, we also looked for a
confounding effect from DNA degradation. We found
no evidence of significant DNA degradation. The scat-
ter plots for both the normal glandular cells of the
cervix and the lymphocytes, along with their regres-
sion lines, are in Figs 2 and 3, respectively. The coeffi-
cient for the age in years of the slide was not significant
for both cell types, see Table 2.

4. Conclusions and discussion

Quantitative features in histologic settings are use-
ful in diagnosing adenocarcinoma. In the present study

Table 1

Classification results by tissue type

Normal ACIS AdCa

Normal 13/13 2/37 1/18

Cancer 0/13 35/37 17/18

Percent correctly classified 100% 94.6% 94.4%
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Fig. 1. This plot shows the ROC curve for the PIV2.12 score. The solid diamond shows the operating point with the optimal sensitivity and
specificity in terms of their sum.

Fig. 2. This figure shows the plot of the average normal DNA amount for each of the tissue slices plotted against the age of the slide. The dotted
line is the regression line. The slope of the regression line was not statistically significant.
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Fig. 3. This figure shows the plot of the average lymphocyte DNA amount for each of the tissue slices plotted against the age of the slide. The
dotted line is the regression line. Again, the slope of the regression line was not statistically significant.

Table 2

Regression coefficients for cell means with slide age

Estimate t-value P -value

Epithelials −0.450 −0.73 0.47

Lymphocytes −0.297 −1.11 0.27

we were able to develop a methodology for an algo-
rithm that discriminates between normal and diseased
tissue slices based on the IODs-Index alone. From this
study we see that the IODs-Index contains valuable
information regarding the cancer status of histologic
tissue slices. The sensitivity and specificity associated
with optimal operating points for the PIV2.5 score
from [25] was 90.9% sensitivity and 92.3% specificity,
with a sum of 183.2. In Section 3 we mentioned that
the PIV2.12 yielded 94.5% sensitivity and 100% speci-
ficity with a sum of 194.5. Notice that the PIV2.12
score has a higher sum of sensitivity and specificity
than the PIV2.5 score. This suggests that by optimizing
the CI value, we gain performance.

For the best procedure from [25] the sensitivity and
specificity was 96.4% and 92.3%, respectively, and
their sum was 188.7. This procedure was a more com-
plicated algorithm based on multilevel statistical mod-
elling. The simple algorithm in this work is compa-
rable to the more complex algorithm of the previous
work, and thus has the potential to be an effective tool

for discriminating between normal and cancerous tis-
sue slices. A larger study is required before the algo-
rithm could be applied clinically.

Figure 4 shows histograms of the IODs-Index values
for three representative tissue slices, one for each di-
agnostic group: normal, ACIS, and AdCa. The optimal
IC value of 2.12 is marked with a dotted line. One can
see in this graph that the cancerous tissue slices (ACIS
and AdCa) have histograms with longer right tails than
the normal slice, indicating that there are more cells
with higher IODs-Index values in the cancerous tissue
slices. Also notice that the normal tissue slice has very
few cells with IODs-Index values greater than the IC
value. In fact, since the threshold of the optimal oper-
ating point is 0.08, which results in 100% specificity,
we know that for this data set, less than 8% of the cells
from a particular normal tissue slice will have IODs-
Index value greater than 2.12.

We are confident the performance of the classifica-
tion algorithm is not due to any confounding effects
from possible DNA degradation. First, as noted before,
the coefficient for the age of the slide in years was
not significant for both cell types, see Table 2. Sec-
ond, even if the relationship were significant for both
cell types, the coefficients are still very small (−0.450
for the normal cells and−0.269 for the lymphocytes;
this is a fraction of a percent per year loss in a typi-
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Fig. 4. This plot shows the representative histograms of the IODs-Index value for cells from a Normal, ACIS, and AdCa tissue slice. The dotted
line marks the optimal IC value of 2.12.

cal specimen) so that over the 14 year span of the slide
age, we would be looking at a 6.3 unit reduction in the
DNA amount for the normals and a 3.8 unit reduction
for the lymphocytes. These numbers are small relative
to the standard deviation of the cells on the slides (the
minimum was 11.5). Third, the lymphocytes would de-
grade at a slower rate than the normal cells. This means
that, if we consider just the possible effect of slide age,
the IODs-Index, which is the IOD value of the normal
divided by the mean IOD value of the lymphocytes,
would tend to get smaller as the slides get older, since
the denominator shrinks slower than the numerator. In
our samples, the AdCa and ACIS groups have the old-
est slides (1–14 years old and 0–4 years old, respec-
tively), while the normal group consists of the most re-
cent slides (0–1 years old). Yet, the normal cells, which
were from the youngest slides, also have the smallest
IODs-Index value.

In summary, there is no statistically significant ev-
idence of an effect due to DNA degradation. Even if
we were to consider the effect significant, it would im-
ply that our classification results would be conserva-
tive. Therefore, the good performance of the classifica-
tion algorithm is not due to a confounding effect from
the age of the slide. Furthermore we would expect that
in a clinical situation there is a possibility of seeing
improved performance using fresh samples.

Because our 13 normal samples are strictly normal
– they do not contain inflammation or other abnormal,
non-cancerous conditions – the sensitivity and speci-
ficity values are potentially biased upwards. Further in-
vestigation using a larger data set is required before

this tool could be used clinically. Specifically, using a
larger prospective study with more non-cancerous con-
ditions to determine the optimal IC value is in order.
However the methodology is sound. During the leave-
one-out cross-validation the optimal value of 2.12 was
very stable; only 3 of the 68 leave-one-out cross valida-
tion training samples had an optimal IC value that was
not 2.12. Thus there is potential benefit to be gained
by optimizing the threshold for the IODs-Index em-
pirically, and we also see that the IODs-Index does
have valuable information which can potentially im-
prove the assessment of cancerous lesions.

In the future, we hope to further develop several as-
pects of this study as well. Using a larger data set,
we could explore the possibility of distinguishing be-
tween all three cell types: Normal, ACIS, and AdCa.
Also, we could explore other possible methods of in-
ducing features applying to the tissue slices from fea-
tures measured on cells within the tissue slices. Again,
although there is potentially useful information in the
IODs-Index, discriminating between the three different
groups might require other features than just the IODs-
Index.
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