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Abstract
Exhausted T cells express multiple co-inhibitory molecules that impair their function and

limit immunity to chronic viral infection. Defining novel markers of exhaustion is important

both for identifying and potentially reversing T cell exhaustion. Herein, we show that the

ectonucleotidse CD39 is a marker of exhausted CD8+ T cells. CD8+ T cells specific for HCV

or HIV express high levels of CD39, but those specific for EBV and CMV do not. CD39

expressed by CD8+ T cells in chronic infection is enzymatically active, co-expressed with

PD-1, marks cells with a transcriptional signature of T cell exhaustion and correlates with

viral load in HIV and HCV. In the mouse model of chronic Lymphocytic Choriomeningitis

Virus infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells

that is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T

cell population is enriched for cells with the phenotypic and functional profile of terminal

exhaustion. These findings provide a new marker of T cell exhaustion, and implicate the

purinergic pathway in the regulation of T cell exhaustion.

Author Summary

Chronic viral infection induces an acquired state of T cell dysfunction known as exhaus-
tion. Discovering surface markers of exhausted T cells is important for both to identify
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exhausted T cells as well as to develop potential therapies. We report that the ectonucleoti-
dase CD39 is expressed by T cells specific for chronic viral infections in humans and a
mouse model, but is rare in T cells following clearance of acute infections. In the mouse
model of chronic viral infection, CD39 demarcates a subpopulation of dysfunctional,
exhausted CD8+ T cells with the phenotype of irreversible exhaustion. CD39 expression
therefore identifies terminal CD8+ T cell exhaustion in mice and humans, and implicates
the purinergic pathway in the regulation of exhaustion.

Introduction
In acute infections, antigen-specific T cells differentiate into activated effector cells and then
into memory T cells which rapidly gain effector functions and re-expand on subsequent
encounter with the same pathogen [1]. In contrast, during chronic infections, pathogen-spe-
cific T cells gradually lose effector functions, fail to expand, and can eventually become physi-
cally deleted [2]. These traits are collectively termed T cell exhaustion, and have been described
both in animal models of chronic viral infection as well as in human infections with hepatitis C
virus (HCV) and human immunodeficiency virus (HIV) [2–4]. Identifying reversible mecha-
nisms of T cell exhaustion is therefore a major goal in medicine.

Prolonged or high-level expression of multiple inhibitory receptors such as PD-1, Lag3, and
CD244 (2B4) is a cardinal feature of exhausted T cells in both animal models and human dis-
ease [5–7]. Expression of PD-1 appears to be a particularly important feature of exhausted
CD8+ T cells, as the majority of exhausted cells in mouse models of chronic infection express
this receptor, and blockade of the PD-1:PD-L1 axis can restore the function of exhausted CD8+

T cells in humans and mouse models [2,6]. However, in humans, many inhibitory receptors
also can be expressed by a large fraction of fully functional memory CD8+ T cells. PD-1, for
instance, can be expressed by up to 60% of memory CD8+ T cells in healthy individuals, mak-
ing it challenging to use PD-1 to identify exhausted CD8+ T cells in humans, particularly when
the antigen-specificity of potentially exhausted CD8+ T cells is not known [8].

Studies in mice and humans suggest that exhausted CD8+ T cells are not a homogeneous
population, but instead include at least two subpopulations of T cells that differentially express
the transcription factors T-bet and Eomesodermin (Eomes) [9–11]. T-bethigh CD8+ T cells rep-
resent a progenitor subset with proliferative potential that give rise to Eomeshigh CD8+ T cells,
which are terminally differentiated and can no longer proliferate in response to antigen or be
rescued by PD-1 blockade [9,12]. Both populations express PD-1, but Eomeshigh exhausted
cells express the highest levels of PD-1. However, no specific cell-surface markers of this termi-
nally differentiated population of exhausted cells have thus far been identified.

CD39 (ENTPD1) is an ectonucleotidase originally identified as an activation marker on
human lymphocytes and as the vascular ecto-ADPase [13], but has subsequently been shown
to be a hallmark feature of regulatory T cells [14–16]. CD39 hydrolyzes extracellular ATP and
ADP into adenosine monophosphate, which is then processed into adenosine by CD73, an
ecto-5'-nucleotidase [17]. Adenosine is a potent immunoregulator that binds to A2A receptors
expressed by lymphocytes causing accumulation of intracellular cAMP, preventing T cell acti-
vation and NK cytotoxicity [18–20]. Loss of CD39 in Tregs markedly impairs their ability to
suppress T cell activation, suggesting that the juxtacrine activity of CD39 serves to negatively
regulate T cell function [15]. However, blood CD8+ T cells have generally been reported to be
CD39– [14,21–23], and the expression of this marker on exhausted T cells has not been
examined.
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In this study, we demonstrate that, in contrast to CD8+ T cells from healthy donors, anti-
gen-specific CD8+ T cells responding to chronic viral infection in humans and a mouse model
express high levels of biochemically active CD39. CD39+ CD8+ T cells co-express PD-1 and are
enriched for a gene signature of T cell exhaustion. In the mouse model of chronic LCMV infec-
tion, high levels of CD39 expression demarcate terminally differentiated virus-specific CD8+ T
cells within the pool of exhausted CD8+ T cells. Thus, CD39 provides a specific, pathological
marker of exhausted CD8+ T cells in chronic viral infection in humans and mouse models of
chronic viral infection.

Results

CD39 is expressed by CD8+ T cells responding to chronic infection
We surveyed the expression of CD39 by CD8+ T cells from healthy adult subjects without
chronic viral infection. Consistent with previous reports we found that only a small fraction
(mean 6%) of CD8+ T cells in healthy individuals expressed CD39 (Fig 1A and 1B) [14,21–23].
This small population of CD39+ CD8+ T cells in healthy donors was primarily found in the
central and effector memory compartments while virtually no naive CD8+ T cells expressed
CD39 (S1 Fig). We next focused on CD39 expression by antigen-specific CD8+ T cells specific
for latent viruses in healthy subjects and found that only a very small fraction of CMV- or
EBV-specific CD8+ T cells expressed CD39 (Fig 1A and 1B) (mean 3% and 7% respectively).

We next measured CD39 expression by T cells specific for the chronic viral pathogens HCV
and HIV. We measured CD39 expression in 57 subjects with acute HCV infections (23 with
acute resolving infection and 34 with chronically evolving infection), and in 40 subjects with
HIV infection (28 chronic progressors and 12 controllers; clinical characteristics of the subjects
are summarized in S1 Table). We found a mean of 51% of HCV-specific CD8+ T cells and 31%
of HIV-specific CD8+ T cells expressed CD39, a number significantly higher than CD8+ T cells
specific for EBV or CMV, or in total CD8+ T cell populations from healthy individuals (Fig 1A
and 1B). A slightly greater fraction of virus-specific CD8+ T cells from HCV-infected subjects
expressed CD39 than did those from HIV-infected subjects.

In subjects with chronic infection, the frequency of CD39-expressing cells in the virus-spe-
cific (tetramer+) CD8+ T cell population was significantly higher than in the total CD8+ T cell
population (Fig 1C and 1D). However the fraction of total CD8+ T cells expressing CD39 in
the CD8+ T cell compartment of individuals with HCV or HIV infection was slightly increased
compared to healthy controls (Fig 1E), consistent with the presence of other, unmeasured
virus-specific CD8+ T cells that were also CD39+ in the tetramer−fraction of CD8+ T cells.
Thus CD39 is expressed infrequently by CD8+ T cells in healthy donors, but marks a large frac-
tion of pathogen-specific cells CD8+ T cells in patients with chronic infection.

CD39 expressed by CD8+ T cells hydrolyzes ATP
CD39 expressed by regulatory T cells catalyzes the hydrolysis of ADP to 5’-AMP [14–16] but
its enzymatic activity can be regulated by a range of post-transcriptional mechanisms [PMID.
We therefore tested CD39 expressed by CD8+ T cells from patients infected with chronic HCV
was functional using ATP hydrolysis as a surrogate marker of CD39 activity [24–26]. We
sorted CD39– and CD39+ CD8+ T cells from six HCV-infected individuals (four with chronic
infection and two with resolved infection) and incubated equal numbers of cells in the presence
of extracellular ATP (eATP). Remaining levels of eATP were measured in the supernatant by
HPLC. As a control, we assessed ATP hydrolysis by CD4+ CD25+ CD39+ regulatory T cells
(Tregs) sorted from the same individuals (Fig 2A).
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Within the CD39+ CD8+ T cell population the level of CD39 expression was lower than in
Tregs (Fig 2B). Consistent with reduced CD39 expression relative to Tregs, ATP hydrolysis by
CD39+ CD8+ T cells was less than that by Tregs (Fig 2C). However ATP hydrolysis by CD39+

CD8+ T cells was significantly greater than that of CD39– cells (Fig 2C). Thus CD39 expressed
by CD8+ T cells in HCV infection is enzymatically active and capable of hydrolyzing ATP.

Fig 1. CD39 is highly expressed by virus-specific CD8+ T cells in chronic viral infection. (A) Expression of CD39 by virus-specific CD8+ T cells. Plots
are gated on CD8+. (B) Fraction of total or antigen-specific CD8+ T cells expressing CD39. (C, D) Comparison of CD39 expression by total CD8+ T cells with
virus-specific CD8+ T cells from patients with HCV (C) and HIV (D) infections. (E) Fraction of total CD8+ T cells expressing CD39 in healthy, HIV or HCV
infected donors. Error bars represent SEM. Statistical significance was assessed by Kruskal-Wallis test (B, E), or Wilcoxon test (C, D). *P <0.05, ***P
<0.001, ****P <0.0001.

doi:10.1371/journal.ppat.1005177.g001
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CD39 is co-expressed with PD-1 on virus-specific CD8+ T cells and
correlates with viral load in both HCV and HIV infection
CD8+ T cells specific for chronic viruses such as HCV and HIV express increased levels of PD-
1 [3,27]. We therefore examined the relationship between CD39 and PD-1 expression by virus-
specific CD8+ T cells in 54 patients with HCV (23 chronically infected and 31 resolvers) and 40
patients infected with HIV (28 chronic progressors, 7 viremic controllers and 5 elite control-
lers). In both diseases we found a significant association between the level of expression (mean
fluorescence intensity, MFI) of CD39 and PD-1 on antigen-specific CD8+ T cells in subjects
with HCV and with HIV (r = 0.70, P<0.0001 and r = 0.54, P<0.05, respectively) (Fig 3A and
3B).

We next examined the relationship between CD39 and PD-1 expression and viral load in
HCV and HIV infection. We found that in both the HCV and HIV infection there was a mod-
est but significant correlation between viral load and the level of CD39 expression on virus-spe-
cific CD8+ T cells measured by MFI (Fig 3C). The fraction of CD39+, virus-specific CD8+ T
cells was significantly higher in HIV progressors compared with those from HIV controllers
(S2 Fig). A similar, but non-significant, trend was seen comparing CD39 expression in HCV-
specific CD8+ T cells in patients with chronic versus resolved disease. However, in HCV, a sig-
nificantly higher fraction of virus-specific CD8+ T cells co-expressed both CD39 and PD-1 in
patients with chronic versus resolved disease (S2 Fig). Consistent with these findings, there was
a significant correlation between viral load and the fraction of virus-specific CD8+ T cells that
were CD39+ PD-1+ double positive in both HCV and HIV infection (S2 Fig). PD-1 expression
was also modestly correlated with the viral load in HCV and in HIV-infected patients (Fig 3D)
[3,27]. Thus CD39 expression by virus-specific CD8+ T cells is greatest in setting of high anti-
gen burden.

Transcriptional analysis of CD39+ CD8+ T cells in HCV infection
In order to characterize more broadly the phenotype of CD39+ CD8+ T cells from individuals
with chronic infection, we compared the global gene expression profiles of sorted CD39+ and
CD39– CD8+ T cells from 8 HCV-infected subjects (3 with acute resolving infection and 5 with
chronically evolving infection; S4 Table). Limited numbers of cells precluded the comparison
of CD39+ and CD39– CD8+ T cells within HCV-specific cells, leading us to focus on the total

Fig 2. CD39 expressed by CD8+ T cells in HCV infection is enzymatically active. (A) Flow cytometry sorting gates of CD39+ and CD39– CD8+ T cells and
CD39+ CD25+ CD4+ Tregs used for rpHPLC analysis of CD39 activity. (B) Summary of CD39 expression level relative to Tregs in the same subjects. (C) ATP
hydrolysis by CD8+ T cell populations relative to Tregs. Data represent 6 patients with chronic HCV infection. Error bars represent SEM. Statistical
significance was assessed by paired Student’s t-test (B, C). *P <0.05, **P <0.01.

doi:10.1371/journal.ppat.1005177.g002
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Fig 3. CD39 expression correlates with PD-1 expression and viral load in chronic viral infection. (A)
CD39 and PD-1 expression in chronic HCV (left) or HIV infection (right). Representative plots demonstrate
total (gray) and virus-specific (red) CD8+ T cells. (B) Correlation between CD39 and PD-1 expression by
HCV- (left) and HIV-specific (right) CD8+ T cells. (C) Correlation between CD39 expression by virus-specific
CD8+ T cells and viral load count in HCV (left) or HIV (right) infection. (D) Correlation between PD-1
expression by virus-specific CD8+ T cells and viral load in HCV (left) or HIV (right) infection. Correlation was
assessed by Pearson correlation coefficient (B, C, D). MFI; mean fluorescence intensity.

doi:10.1371/journal.ppat.1005177.g003
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CD8+ population of antigen-experienced CD8+ T cells (S4 Table). Because naive CD8+ T cells
express little CD39 (S1 Fig), we excluded this population from the sorted cells (S3 Fig) to enable
direct comparison of antigen-experienced CD39+ and CD39– CD8+ T cells.

We first used unbiased clustering approaches to identify whether CD39+ and CD39– CD8+

T cells showed distinct patterns of gene expression. Analysis of gene expression profiles using
consensus hierarchical clustering (Fig 4A) showed two distinct clusters of samples that

Fig 4. Transcriptional analysis of CD39+ and CD39– CD8+ T cells in HCV infection. (A) Consensus hierarchical clustering of expression profiles from
CD39+ (black) and CD39– (grey) CD8+ T cells from 8 HCV infected patients. Clustering is based on the top 10% of genes by variance across the dataset.
Sample similarity (1-Pearson correlation coefficient) is annotated with color from low (white) to high (green). (B)Gene set enrichment map displaying Gene
Ontology gene sets enriched (FDR < 0.1) in CD39+ CD8+ T cells from (A). Nodes (in red) are sized in proportion to gene set size; connecting line thickness
represents extent of gene member overlap between gene sets. (C)Gene set enrichment analysis of a signature of 200 genes up-regulated in exhausted
CD8+ T cells from the mouse model of chronic viral infection versus acute infection (day 30 post infection) in the ranked list of genes differentially expressed
by CD39+ vs. CD39– CD8+ T cells. Leading edge genes are indicated by orange symbols. (D) Volcano plot of all genes (grey) or exhausted leading edge
genes (orange) from (C).

doi:10.1371/journal.ppat.1005177.g004
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corresponded almost exactly to CD39+ and CD39– populations, suggesting that that in both
acute and chronic infection, CD39 expression demarcates two types of CD8+ T cells with
markedly different patterns of gene expression. Supervised analysis of differential gene expres-
sion identified 619 genes differentially expressed (FDR<0.15) between CD39+ and CD39–

CD8+ T cells (S4 Table). Inspection of the list of differentially expressed genes revealed many
with known roles in CD8+ T cell biology including increased expression of the inhibitory
receptors PD-1 and CTLA-4 in CD39+ CD8+ T cells.

To identify biological processes that were differentially active in CD39+ vs. CD39– cells, we
performed gene set enrichment analysis using the Gene Ontology collection of gene sets [28].
We found no significant enrichment of GO terms in the CD39– CD8+ subset. In contrast, 21
gene sets significantly enriched (FDR<0.1) in CD39+ population, almost all of which were
related to mitosis and cell-cycle associated genes or cytoskeleton organization (Fig 4B). This
suggests that CD39+ CD8+ T cells in chronic viral infection show coordinate up-regulation of
genes related to proliferation.

The expression of CD39 by CD8+ T cells in chronic but not acute/latent infection, suggests
that it may be a marker of T cell exhaustion. We therefore tested whether the profile of CD39+

CD8+ T cells was enriched for genes expressed by exhausted CD8+ cells. Previous studies of
gene expression in CD8+ T cells in the mouse model of chronic viral infection with the Clone
13 strain of LCMV have identified signatures of T cell exhaustion that are also enriched in
exhausted CD8+ T cells in humans [29–31]. We therefore curated a signature of 200 genes up-
regulated by exhausted CD8+ T cells responding to chronic infection relative to functional
memory CD8+ T cells generated by acute infection (LCMV Armstrong strain). We found that
the exhausted CD8+ T cell signature from LCMVmodel was significantly enriched in CD39+

vs. CD39– CD8+ T cells in subjects with HCV infection (Fig 4C). We focused on the “leading
edge” genes contributing most to the enrichment [32], which correspond to genes up-regulated
both in the mouse exhausted signature and in the human CD39+ profile. As expected, the lead-
ing edge genes included PD-1 (PDCD1), a feature of both human CD39+ CD8+ T cells and of
exhausted CD8+ T cells in the mouse model (Fig 4D). In addition we found that up-regulation
of many genes associated with proliferation including BUB1, TOP2A andMKI67 was common
to mouse exhausted CD8+ T cells and human CD39+ CD8+ T cells. Thus CD39+ CD8+ T cells
in HCV infection and exhausted CD8+ T cells in a mouse model of chronic infection share
transcriptional features that include genes related to proliferation.

CD39 is increased in exhausted CD8+ T cells in the mouse model of
chronic LCMV infection
Because the mouse signature of CD8+ T cell exhaustion was significantly enriched in the tran-
scriptional profile of CD39+ CD8+ T cells in HCV-infected patients, we next asked if CD39 was
up-regulated by CD8+ T cells in the mouse model of chronic viral infection. To address this
question we compared two well-described mouse models of viral infection using two strains of
LCMV: LCMV Armstrong that causes an acute infection that is resolved in up to 8 days; and
LCMV Clone 13 that persists in mice for up to 3 months and leads to T cell exhaustion [5,6].

We measured CD39 expression and compared it to PD-1 expression in CD8+ T cells
responding to each infection. While naive CD8+ T cells expressed neither CD39 nor PD-1 (Fig
5A), both were rapidly and coordinately up-regulated by antigen-experienced cells following
either infection (day 7 post infection [d7 p.i.], Fig 5B). However, in acute infection, the fraction
of CD39 bright PD-1+ population decreased with time. In contrast, high expression of CD39
and PD-1 was maintained in Clone 13 infection. The accumulation of CD39 bright PD-1+ cells
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Fig 5. CD39 is highly up-regulated by exhausted CD8+ T cells in a mousemodel of chronic infection. (A, B) Expression of CD39 and PD-1 by CD44–

naive mouse CD8+ T cells (A) and in CD8+ T cells at indicated times following LCMV Armstrong (acute) or Clone 13 (chronic) infection (B). Representative
plots show total (black) and H-2Db GP276-286 tetramer-specific CD8+ T cells (red). Summary of results in 5 mice per group is shown in bar-graphs on the right.
Statistical significance was assessed with Mann-Whitney test. *P < 0.5, **P < 0.01.

doi:10.1371/journal.ppat.1005177.g005
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among the total CD8+ population was most apparent in the H-2Db GP276-286 tetramer-specific
CD8+ T cells (Fig 5B).

Thus after chronic viral infection, antigen-specific CD8+ T cells can be identified by high
expression of both CD39 and PD-1. This difference in expression of both markers between
chronic and acute infection is noticeable as early as d7 p.i. but becomes more pronounced with
time after infection.

CD39 expression correlates with a terminally exhausted phenotype in
virus-specific CD8+ T cells in chronic infection
Having determined that high, persistent expression of CD39 is a feature of LCMV-specific
CD8+ T cells during chronic LCMV infection, we next sought to further characterize the phe-
notype of CD39+ CD8+ T cells during Clone 13 infection. We analyzed CD39 expression in
antigen-experienced, CD44+ CD8+ T cells and found that mice infected with Clone 13 devel-
oped a population of cells with particularly high expression of CD39 (CD39high). This popula-
tion was entirely absent in mice infected with the acute LCMV Armstrong strain at d35 p.i.,
which only exhibited the presence of intermediate levels of CD39 staining (CD39int) (Fig 6A).
Further characterization of the two sub-populations in Clone 13 infected mice revealed that
the CD39high cells showed more down-regulation of CD127 (Fig 6B) and higher expression of
PD-1 (Fig 6C) than did the CD39int population.

Because the highest levels of PD-1 are characteristic of terminally exhausted CD8+ T cells in
chronic infection [12,33], we tested whether CD39high T cells in chronic infection showed
other phenotypic characteristics of terminal exhaustion. Analysis of expression of two addi-
tional co-inhibitory receptors, CD244 (2B4) and Lag3, showed that a significantly higher frac-
tion of CD39high cells co-expressed multiple receptors, consistent with terminal exhaustion. In
contrast, CD39int CD8+ T cells were generally negative for all three receptors analyzed (Fig 6D
and 6E). We next examined the expression of the transcription factors T-bet and Eomes. We
found that the CD39high subset of CD8+ T cells was comprised primarily of Eomeshigh T-betlow

terminally exhausted phenotype, while the CD39int CD8+ T cells showed a comparable distri-
bution of both (Fig 6F). Similarly, we found that in CD8+ T cells from subjects with either
HCV or HIV infection, the CD39+ CD8+ T cell compartment contained a significantly higher
ratio of Eomeshigh T-betlow: Eomeslow T-bethigh relative to CD39– CD8+ T cells (S4 Fig). Thus
in both humans and mice with chronic viral infection, CD39+ CD8+ T cells show a phenotype
consistent with previous descriptions of terminal exhaustion [9].

CD39 correlates with reduced functionality in virus-specific CD8+ T cells
in chronic infection
We next examined the functional properties of CD39high and CD39int CD8+ T cells from mice
with chronic LCMV infection. Co-production of cytokines IFN-γ and TNFα is a feature
of virus-specific T cells responding to acute infection and in the early stages of chronic infec-
tion but is progressively lost as exhaustion evolves [2]. To compare the functionality of
CD39high and CD39int virus-specific CD8+ T cells, we isolated CD8+ T cells from mice with
chronic infection at d35 post-infection and stained for IFN-γ and TNFα following in vitro
stimulation with GP33-41 peptide. We found a significantly smaller fraction of antigen-specific
coproduced IFN-γ and TNFα in CD39high CD8+ T cells compared to CD39int CD8+ T cells
(Fig 7A and 7B).

To confirm this finding, we analyzed the function of transferred P14 CD8+ T cells in chronic
infection. The P14 TCR transgene recognizes the GP33-41 peptide of LCMV presented on H-
2Db. We found that both the frequency of IFN-γ-producing and IFN-γ/TNFα co-producing
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P14 T cells was significantly lower in CD39high CD8+ T cells compared to CD39int CD8+ T cells
(Fig 7C and 7D). The defect in cytokine secretion was not only observed in terms of the fre-
quency of cytokine-secreting cells, but also in the amount of cytokine detected per cell. Even
among cells that did secrete IFN-γ, we found the MFI of expression to be significantly lower in
CD39high CD8+ T cells compared to CD39int CD8+ T cells (Fig 7E and 7F). Thus high levels of
CD39 expression demarcate a population of exhausted cells with the poorest function in
chronic infection.

Fig 6. CD39 identifies terminally exhausted CD8+ T cells in mice with chronic LCMV infection. (A) Expression of CD39 and CD44+ by mouse CD8+ T
cells 30–35 days following LCMV Armstrong (left) or Clone 13 (right) infection. (B, C) Representative histograms (left) of CD127 (B) and PD-1 (C) expression
by CD39high and CD39int CD8+ T cells from Clone 13 (red and blue, respectively) and CD39int from Armstrong (filled gray) infected mice on d35 p.i. (left).
Fraction of CD127+ (B) and MFI of PD-1 in PD-1+ cells (C) is shown on the right. Results are from 5 mice. (D) Fraction of CD39high and CD39int CD44+ CD8+ T
cells expressing different combinations of co-inhibitory receptors PD-1, 2B4, and Lag3. (E) Average number of co-inhibitory receptors expressed by CD39int

(left) or CD39high (right) CD8+ T cells at d35 p.i. following LCMVClone 13 infection. (F) Representative plots of T-bet and Eomes expression in CD39int (left)
and CD39high (right) cells as in (A). Summary of results is shown on the right. Data are representative of three experiments of 5 mice per group. Statistical
significance was assessed with Student’s t-test (B, C, F) with Holm-Sidak multiple comparison correction (D). **P < 0.01, ****P < 0.0001.

doi:10.1371/journal.ppat.1005177.g006

CD39 Expression Identifies Terminally Exhausted CD8+ T Cells

PLOS Pathogens | DOI:10.1371/journal.ppat.1005177 October 20, 2015 11 / 21



Discussion
The state of CD8+ T cell exhaustion is characterized by widespread changes in gene expression
relative to functional memory CD8+ T cells [5]. However, in humans, identification of specific
T cell exhaustion markers that are not shared by more functional CD8+ T cell populations has
been challenging [8]. We show that high-level expression of the ectonucleotidase CD39 is char-
acteristic of CD8+ T cells specific for chronic viral infections in humans and mice, but is other-
wise rare in the CD8+ T cell compartment of healthy donors. Persistent, high-level expression
is also seen in the LCMVmouse model of chronic viral infection, suggesting that CD39 expres-
sion is a phenotypic marker of CD8+ T cell exhaustion. Moreover, within the exhausted popu-
lation in the mouse model, CD39high CD8+ T cells express the highest levels of PD-1, co-
express multiple inhibitory receptors and have profoundly impaired function. We found that
in both mice and humans, CD39 is expressed preferentially by CD8+ T cells that are T-betlow/
Eomeshigh. These data suggest that CD39 expression by CD8+ T cells is a pathological finding
and demarcates the population of CD8+ T cells previously identify as being terminally
exhausted [9].

The fact that peripheral blood CD8+ T cells in humans can express CD39 is surprising. Pre-
vious data have shown that CD39 expression is restricted to CD4+ regulatory T cells, Th17
cells, and small populations of regulatory-like CD8+ T cells [14,21–23]. Indeed, we find that in
the bulk population of CD8+ T cells in healthy donors only a small minority of CD8+ T cells
expresses CD39. However, CD39 is abundantly expressed by virus-specific CD8+ T cells in two
human chronic infections (HIV and HCV). This helps explain why CD39+ CD8+ T cells have
not been appreciated in earlier studies that have focused on healthy individuals, and suggests
that, in steady-state conditions, the expression of CD39 by CD8+ T cells is a pathological occur-
rence that is related to the development of T cell exhaustion. Whether the small fraction of

Fig 7. Terminally exhausted CD8+ T cells marked by high levels of CD39 are most impaired in their effector function. (A) Representative plots
showing the production of IFN-γ and TNFα in CD39int or CD39high CD8+ T cells 36 days following LCMVClone 13 infection. (B) Quantification of cells in (A)
that produce both TNFα and IFN-γ relative to IFN-γ only. (C, D) Cytokine production by P14 cells (C) gated from an infection as in (A) and summary of IFN-γ
and TNFα producing cells. (E, F) Mean fluorescence intensity (MFI) of IFN-γ in IFN-γ positive endogenous (E) and transferred P14 cells (F). Statistical
significance was assessed with paired Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

doi:10.1371/journal.ppat.1005177.g007
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CD8+ T cells expressing CD39 in healthy donors represents acutely activated CD8+ T cells, or
those exhausted by asymptomatic chronic pathogens or inflammatory signals is an important
question for future studies.

Several features of CD39-expressing CD8+ T cells suggest that CD39 is a diagnostically valu-
able marker of T cell exhaustion. First, in both human and mouse CD8+ T cells responding to
chronic infection, CD39 is co-expressed with PD-1, an inhibitory receptor expressed by the
majority of exhausted T cells [5,6]. Second, CD39 expression correlates with viral load in sub-
jects with HIV and HCV infection suggesting that the conditions of high levels of inflammation
and antigen load that lead to exhaustion also increase CD39 expression in the virus-specific
pool of CD8+ T cells, as has been observed for PD-1 [3,34]. Third, gene signatures characteris-
tic of exhausted mouse CD8+ T cells are enriched in CD39+ cells relative to CD39– CD8+ T
cells in subjects with HCV infection, underscoring the association between CD39 expression
and T cell exhaustion. Finally, chronic LCMV infection in the mouse model increases CD39
expression by exhausted virus-specific CD8+ T cells, and elicits a population of CD39high cells
that are absent in functional memory cells. Previous studies show that CD39, like PD-1, is tran-
siently up-regulated by acute T cell activation [14,35]. Additional studies will therefore be
required to determine the extent to which T cell activation (rather than exhaustion per se) con-
tributes to the up-regulation of CD39 and PD-1 in chronic infection. However, the strong asso-
ciation between CD39 expression and the hallmark phenotypic features of T cell exhaustion in
humans and a mouse model suggests that it can serve as a valuable marker of the exhausted T
cells state.

The expression of molecules, such as PD-1, that inhibit T cell function has been used to
identify exhausted CD8+ T cells in several studies of human chronic infection and cancer [2].
However, there are important distinctions between the pattern of CD39 expression and that
of inhibitory receptors. Many inhibitory receptors, such as PD-1 [3,8,36] and CD244 [37,38]
are also expressed by a substantial fraction of CD8+ T cells in healthy donors that are not
exhausted. In contrast, CD39 expression is found in only a very small minority of CD8+ T cells
from healthy donors. This expression pattern suggests that CD39 expression, particularly in
combination with PD-1, may be useful as a more specific phenotype of exhausted CD8+ T cells,
at least in HCV and HIV infection. In addition, CD39 may provide a useful marker to isolate
exhausted CD8+ T cells in settings such as tumor-specific responses where very few reagents
are available to identify antigen-specific T cells. Importantly, while CD39 is rare in the CD8+

compartment in healthy donors, it is expressed by CD4+ Tregs–as is PD-1 –making it difficult
to distinguish between exhausted CD4+ T cells and Tregs by CD39 expression alone.

Analysis of global expression profiles of CD39+ versus CD39– CD8+ T cells in HCV-infected
subjects showed that the CD39+ fraction was strongly enriched for genes related to prolifera-
tion. This may at first seem counterintuitive, given the functional defects that have been
described in exhausted CD8+ T cells [2,5]. However, data from the mouse model of chronic
infection suggest that, unlike memory CD8+ T cells, exhausted CD8+ T cells are dependent on
continuous exposure to viral antigen to ensure their survival and undergo extensive cell divi-
sion at a rate higher than that seen in physiological homeostatic proliferation of the memory
CD8+ T cell pool [39]. Exhausted CD8+ T cells therefore have a paradoxical increase in their
proliferation in vivo despite reduced proliferative potential in vitro [40], explaining the
increased expression of proliferation-associated genes in CD39+ CD8+ T cells in HCV infection
and in mouse exhausted CD8+ T cells [9,41].

Recent studies of exhausted CD8+ T cells have revealed that two distinct states of virus-spe-
cific CD8+ T cells exist in chronically infected mice and humans [9,10]. Differential expression
of the T-box transcription factors T-bet and Eomes characterize two populations, which form a
progenitor-progeny relationship. T-bethigh cells display low intrinsic turnover but are capable
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of proliferation in response to persisting antigen, giving rise to Eomeshigh terminal progeny. In
contrast, Eomeshigh CD8+ T cells responding to chronic infection had reduced capacity to
undergo additional proliferation in vivo. The T-betlow /Eomeshigh exhausted subset of CD8+ T
cells correspond to the PD-1 bright population that has also been shown to be unresponsive to
PD-1:PD-L1 blockade. These data suggest that the differential expression of these transcription
factors identifies subpopulations of exhausted CD8+ T cells with fundamentally different fates
and functional profiles. Our data show that in the LCMVmouse model of chronic infection
and in HIV infection, the CD39high subset of CD8+ T cells demarcates T-betlow /Eomeshigh

cells. Consistent with this, CD39+ CD8+ T cells in the mouse model express the highest levels
of PD-1, co-express multiple inhibitory receptors and show marked functional defects. These
findings suggest that CD39 may be a marker not only of the exhausted state, but specifically of
the most terminally exhausted cells, at least in the mouse model. Additional studies of the fate
of transferred CD39+ vs. CD39– exhausted CD8+ T cells in the mouse model, and broader sur-
veys of CD39 expression in human chronic infections will be required to determine whether
this marker can be used as a surrogate for terminal exhaustion. However, the strong association
between CD39 expression and the key features of terminal exhaustion suggests that it may
prove a useful marker to help distinguish between "reversible" and "irreversible" T cell exhaus-
tion. Moroever, the fact that isolating CD39+ cells does not require intracellular staining (as is
required for T-bet and Eomes) makes this marker useful for studying the function of this termi-
nally exhausted cells ex vivo.

The fact that CD39 is expressed by a slightly larger fraction of HCV-specific CD8+ T cells
than HIV-specific CD8+ T cells may be related to differences in the timing of blood sampling
during the course of infection, or may be due to differences in the extent of antigen-load and
inflammation in the two infections. Alternatively, it may be consistent with a model in which
HCV-specific CD8+ T cells are in a more “terminal” state of exhaustion than CD8+ T cells spe-
cific for HIV. This possibility is supported by profound loss of HCV-specific CD8+ T cells over
the course of chronic infection [42] that is not seen in the HIV-specific CD8+ T cell pool, con-
sistent with the clonal deletion seen in mouse models of extreme CD8+ T cell exhaustion
[43,44]

It is tempting to speculate that expression of CD39 contributes to the dysfunction of
exhausted T cells [45]. For instance, the expression of CD39 might enable CD8+ T cells to pro-
vide negative regulation in an autocrine or juxtacrine fashion via adenosine [18–20] in the
same manner as Tregs [15,35]. The fact that CD39 requires both a substrate (ATP) and a
downstream enzyme (CD73) to generate adenosine could provide a mechanism to ensure that
this negative signaling occurred only in certain contexts such as in inflamed, damaged tissues
where the extracellular concentrations of ATP are high and CD73-expressing cells are present
[46]. Moreover, CD39-expressing CD8+ T cells may contribute to the general inhibitory milieu
by contributing to the inhibition of activated T cells that express the adenosine receptor but are
not yet exhausted. It will therefore be important to determine whether inhibition of CD39
activity could provide an additional therapeutic strategy to rescue the function of exhausted T
cells.

Materials and Methods

Human Subjects
Healthy human donors were recruited at the Kraft family Blood Donor Center, Dana-Farber
Cancer Institute. All human subjects with HCV infection were recruited at the Gastrointestinal
Unit and the Department of Surgery of the Massachusetts General Hospital (Boston, MA) (S1
Table).
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Individuals with chronic HCV infection (n = 82) were defined by positive anti-HCV anti-
body and detectable viral load. Patients with spontaneous clearance of HCV, termed resolvers
(n = 30), were defined by positive anti-HCV antibody but an undetectable viral load for at least
6 months. The estimated time of infection was calculated either using the exposure date or the
time of onset of symptoms and peak ALT (which are assumed to be 7 weeks post infection). All
HCV patients were treatment naive and studied at 5.9 and 219.7 weeks post infection. HCV
RNA levels were determined using the VERSANT HCV RNA 3.0 (bDNA 3.0) assay (Bayer
Diagnostics).

All HIV infected subjects (n = 40) were recruited at the Ragon Institute at the Massachusetts
General Hospital (Boston, USA) or the Peter Medawar Building for Pathogen Research
(Oxford, UK) (S2 Table). HIV controllers included elite controllers (n = 5) defined as having
HIV RNA below the level of detection (<75 viral copies per ml) and viremic controllers (n = 7)
with HIV RNA levels< 2,000 viral copies per ml. HIV chronic progressors (n = 28) were
defined as having> 2,000 viral copies per ml. All subjects were off therapy. Viral load during
chronic infection was measured using the Roche Amplicor version 1.5 assay.

MHCClass I Tetramers
Major histocompatibility complex (MHC) class I HIV Gag-specific tetramers were produced
as previously described [47] or obtained from Proimmune. CMV- and EBV-specific MHC
class I dextramers conjugated with FITC and APC were purchased from Immudex. Mouse
MHC class I tetramers of H-2Db complexed with LCMV GP276-286 were produced as previ-
ously described [48,49]. Biotinylated complexes were tetramerized using allophycocyanin-con-
jugated streptavidin (Molecular Probes). The complete list of multimers can be found in
supplemental materials (S3 Table).

Antibodies and flow cytometry
The following anti-human (hu) and anti-mouse (m) fluorochrome-conjugated antibodies were
used for flow cytometry: huCD8α (RPA-T8), huCD4 (OKT4), huCD3 (OKT3), huCD39 (A1),
huPD-1 (EG12.2H7), huCD25 (BC96), huCCR7 (G043H7), huCD45RA (HI100), huT-bet
(4B10), mCD8α (53–6.7), mCD4 (GK1.5), mCD3 (145-2C11), mCD244.2 (m2B4 (B6)458.1),
mPD-1 (RMP1-30), mLag3 (C9B7W), mCD44 (IM7), mCD127 (A7R34), mTNFα (MP6X
T22) (all from Biolegend), mT-bet (04–46; BD Pharmingen), mCD39 (24DMS1), mIFN-γ
(XMG1.2), huEomes (WD1928) and mEomes (Dan11mag) (eBioscience). Intracellular stain-
ing was performed following surface staining and fixed and permeabilized using the FoxP3/
Transcription Factor Staining Buffer Set (eBioscience). Cells were sorted by BD FACS ARIA II
and all other analyses were performed on BD LSR II and BD LSR Fortessa flow cytometers
equipped with FACSDiva v6.1. Gates were set using Full Minus One (FMO) controls. Data
were analyzed using FlowJo software v9.8 (Treestar).

For intracellular cytokine analysis of mouse T cells, 2x106 splenocytes were cultured in the
presence of GP33-41 peptide (0.2 μg/ml) (sequence KAVYNFATM), brefeldin A (BD), and
monensin (BD) for 4.5 hours at 37°C. Following staining for surface antigens, cells were per-
meabilized and stained for intracellular cytokines with the Cytofix/Cytoperm kit according to
manufacturer's instructions (BD Biosciences).

Mice and infections
Wild-type C57BL/6J mice were purchased from The Jackson Laboratory. Female mice (6–8
weeks old) were infected with 2 x 105 plaque forming units (p.f.u.) of LCMV-Armstrong intra-
peritoneally or 4 x 106 p.f.u. of LCMV-Clone 13 intravenously and analyzed at indicated time
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points by homogenizing the spleen into a single-cell suspension, Ammonium-Chloride-Potas-
sium lysis of red blood cells, followed by antibody staining. For experiments involving P14 cell
transfers, Ly5.1+ P14s were isolated from peripheral blood, and 500 P14 cells were transferred
i.v. into 5–6 week old wild-type female mice one day prior to infection. Viruses were propa-
gated as described previously [48–50].

HPLC analysis of ATP levels
The concentration of ATP hydrolyzed by CD8+ T cells from subjects with HCV infection
(n = 6) was assessed by high performance liquid chromatography (HPLC) as previously
described [51]. Briefly, 10,000 CD39+ CD8+ T cells were sorted and placed on ice to minimize
ATP production by cells. 20 μM of ATP was added and incubated for 1 h at 37°C in 5% CO2

to allow for cellular activity to increase and CD39-mediated ATP hydrolysis to occur.
Samples were then placed in an ice bath for 10 min to halt enzymatic activity, collected, and
centrifuged for 10 min at 380 x g and 0°C. Cells were discarded and supernatant centrifuged
again to remove remaining cells (2350 x g, 5 min, 0°C). The resulting RPMI samples (160 μl)
were treated with 10 μl of an 8 M perchloric acid solution (Sigma-Aldrich) and centrifuged at
15,900 x g for 10 min at 0°C to precipitate proteins. In order to neutralize the pH of the result-
ing solutions and to remove lipids, supernatants (80 μl) were treated with 4 M K2HPO4 (8 μl)
and tri-N-octylamine (50 μl). These samples were mixed with 50 μl of 1,1,2-trichloro-trifluor-
oethane and centrifuged (15,900 x g, 10 min, 0°C) and this last lipid extraction step was
repeated once. The resulting supernatants were subjected to the following procedure to gener-
ate fluorescent etheno-adenine products: 150 μl supernatant (or nucleotide standard solution)
was incubated at 72°C for 30 min with 250 mMNa2HPO4 (20 μl) and 1 M chloroacetaldehyde
(30 μl; Sigma-Aldrich) in a final reaction volume of 200 μl, resulting in the formation of 1,
N6-etheno derivatives as previously described [51]. Samples were placed on ice, alkalinized
with 0.5 M NH4HCO3 (50 μl), filtered with a 1 ml syringe and 0.45 μM filter and analyzed
using a Waters HPLC system and Supelcosil 3 μM LC-18T reverse phase column (Sigma), con-
sisting of a gradient system described previously, a Waters autosampler, and a Waters 474 fluo-
rescence detector [52]. Empower2 software was used for the analysis of data and all samples
were compared with water and ATP standard controls as well as a sample with no cells to
determine background degradation of ATP.

Microarray data acquisition
CD8+ T cells from subjects with HCV infection were sorted and pelleted and re-suspended in TRI-
zol (Invitrogen). RNA extraction was performed using the RNAdvance Tissue Isolation kit (Agen-
court). Concentrations of total RNA were determined with a Nanodrop spectrophotometer or
Ribogreen RNA quantification kits (Molecular Probes/Invitrogen). RNA purity was determined by
Bioanalyzer 2100 traces (Agilent Technologies). Total RNA was amplified with theWT-Ovation
Pico RNA Amplification system (NuGEN) according to the manufacturer's instructions. After
fragmentation and biotinylation, cDNA was hybridized to HG-U133A 2.0 microarrays (Affyme-
trix). Data have been deposited in Gene Expression Omnibus with accession code GSE72752.

Statistics
Prior to analysis, microarray data were pre-processed and normalized using robust multichip
averaging, as previously described [53]. Differentially gene expression and consensus clustering
[54] were performed using Gene-E software (www.broadinstitute.org/cancer/software/
GENE-E/), and gene set enrichment analysis was performed as described previously using gene
sets from MSigDB [55] or published resources [29,32].
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Consensus hierarchical clustering was performed using the top 10% of genes that varied
across the dataset, without reference to sample identity. Consensus cluster assesses the “stabil-
ity” of the clusters discovered using unbiased methods such as hierarchical clustering i.e. the
robustness of the putative clusters to sampling variability. The basic assumption is that if the
data represent a sample of items drawn from distinct sub-populations, a different sample
drawn from the same sub-populations, would result in cluster composition and number should
not be radically different. Therefore, the more the attained clusters are robust to sampling vari-
ability, the greater the likelihood that the observed clusters represent real structure. The result
of consensus clustering is a matrix that shows, for each pair of samples, the proportion of clus-
tering runs on sub-sampled data in which those two items cluster together (shown on a scale of
0 to 1).

Enrichment Map analysis of GSEA results was performed as described [56]. The gene signa-
ture of exhaustion was generated by identifying the top 200 genes upregulated in CD8+ T cells
responding to chronic vs. acute LCMV infection in microarray data from a previously pub-
lished study [29].

Ethics statement
All human subjects were recruited with recruited with written informed consent in accordance
with Dana-Farber Cancer Institute IRB approval DFCI 00–159, Partners IRB approvals
2010P002121, 2010P002463, 1999P004983, and Oxford Research Ethics Committee approval
06/Q1604/12. The mouse work was performed under a protocol 01214 approved by the HMA
Institutional Animal Care and Use Committee (IACUC), in strict accordance with the recom-
mendations in the Guide for the care and use of Laboratory Animals of the National Institutes
of Health. The Harvard Medical School animal management program is accredited by the
Association for the Assessment and Accreditation of Laboratory Animal Care International
(AAALAC).

Supporting Information
S1 Fig. CD39 is expressed by few CD8+ T cells in health donors. Fraction of CD39+ cells in
naïve CD8+ T and central memory (CM), effector memory (EM) and effector memory RA+

(EMRA) subpopulations of CD8+ T cells based on CD45RA and CCR7 staining from 18
healthy human donors. Error bars represent SEM. Statistical significance was assessed by Fried-
man test. ��P<0.01, ���P<0.001.
(TIF)

S2 Fig. CD39 and PD-1 co-expression in HCV and HIV. (A, B) Fraction of HCV-specific (A)
and HIV-specific (B) CD8+ T cells expressing PD-1, CD39, or both in patients with persistent
high viral load (black) or patients controlling the disease (grey). Correlation of the fraction of
PD-1 and CD39 double positive virus specific CD8+ T cells with the viral load in the blood in
HCV (C) and HIV (D) infected patients. Statistical significance was assessed by Mann-Whit-
ney test with Bonferroni correction (A, B). �P<0.05. Correlation was assessed by Pearson cor-
relation coefficient (C, D). MFI; mean fluorescence intensity.
(TIF)

S3 Fig. Cell sorting strategy for microarray analysis. Gating strategy for CD39+ and CD39–

live non-naive CD8+ T cells from HCV-infected patients.
(TIF)

S4 Fig. Comparison of T-bet and Eomes expression by CD39+ and CD39– CD8+ T cells in
patients with chronic viral infection. (A, D) Expression of CD39 in CD8+ T cells in patients
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infected with HCV (A) and HIV (D). (B, E) Expression of transcription factors T-bet and
Eomes on CD39– and CD39+ populations identified in (A) and (D). (C, F) Summary of the
ratio of terminally exhausted Eomeshigh/T-betlow CD8+ T cells in CD39– and CD39+ subsets in
HCV (C) and HIV (F) infection. Statistical significance was assessed with paired Student’s t-
test. �P< 0.05, ���P< 0.001.
(TIF)

S1 Table. Clinical characteristics of the subjects with HCV infection.
(XLSX)

S2 Table. Clinical characteristics of the subjects with HIV infection.
(XLSX)

S3 Table. The complete list of MHC-peptide multimers used in the study.
(XLSX)

S4 Table. List of genes differentially expressed in CD39+ vs CD39– CD8+ T cells in HCV
infected subjects (FDR<0.15).
(XLSX)
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