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Everyone needs experimental data to understand biology. Exactly how and from what the data
were obtained determines an experiment’s results, specifies how it can be reproduced, and con-
ditions our analyses and interpretations. These details of materials, methods, and analyses are
the experiment’s provenance.

Today, as it has been for hundreds of years, experimental provenance is recorded in some
form of laboratory notebook. But as data migrate from the experimentalist’s mind and note-
book to publication, the lab server, the archival database, or the cloud, this essential informa-
tion now vanishes. Like interpretation, our ability to reproduce results depends on knowing
how they were produced by others. Shorn of their immediate context, the methodological ideas
and information that were perfectly transparent to the experimentalist (or computationalist!)
become opportunities for error-prone reconstruction by others, even within the same group
[1-3]. That reconstruction requires (repeated) private communications, rereading notebook
entries, polling one’s own or a group’s collective memory, and looking at the specimens. None
of those methods are reliable, and all are tedious.

As big data become a reality, it will be ever more imperative to encapsulate experimental
provenance with the data. But how do we get that information out of the brains and notebooks
in the first place? This is a problem of information capture, not data formats; of laboratory
practice, not resource discovery; and of the million flowers of experimental creativity, not
ontology building. Of course, ontologies, interoperable grid resources, and efficient search are
important and appealing—but absent experimental provenance, they are biologically moot.

The obvious solution might seem to be standards for post hoc data annotation by biologists.
Indeed, several previous efforts have defined sets of “minimal” metadata about particular types
of high-throughput experiments, beginning with the minimal information needed for microar-
ray experiments (the MIAME criteria) [4]. However, experience shows three fundamental
problems with this approach. First, despite vigorous encouragement from computational biolo-
gists, most deposited datasets lack such annotation [1]. Second, the universe of experiments
performed, let alone possible, far exceeds the stamina of even the most earnest committees to
promulgate definitions and criteria. As always, science outruns nomenclature.

The third fundamental problem is even more basic than effort or invention. Many experimen-
tally inclined biologists are too ill equipped and too busy to produce electronic provenance meta-
data in almost any form. Large experimental consortia and high-throughput facilities often do
develop in-house provenance systems, and these and commercial ones are available (for example,
see [5,6]). But smaller groups also generate essential data, often with a wide variety of experi-
ments that don’t fit existing packages, standards, or ontologies. Their provenance information
tends to be fragmented, buried in a mix of paper and electronic records, and dependent on the

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004384 October 20, 2015

1/10


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004384&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.nsf.gov

©PLOS

COMPUTATIONAL

BIOLOGY

group’s institutional memory. Provenance is especially important in these contexts, since many
of these experiments will nucleate the hypotheses and provide the materials for the subsequent
high-throughput experiments that are the meat and potatoes of much of contemporary computa-
tional biology. While metadata are notoriously difficult to obtain from experimentalists, in prin-
ciple they could be computed from adequate electronic provenance records. The first difficulty in
that sentence is “adequate electronic provenance records.” Like other forms of housekeeping, it is
easy for provenance to be mere drudgery, without the glass slipper at the end.

How can we make provenance easier so it is better for all? The trick is to capture provenance
as the experiment is planned, performed, and analyzed. The easier, more familiar, and more
helpful to the experimentalist capture is, the more routine it can become. Now, “easy” is the
toughest design goal of all, and building general systems is hard and expensive. But what could
we do in an afternoon or a few? I think the answer is quite a lot, provided the “we” is a joint
effort of the experimentally and computationally inclined. Experimentalists must repeatedly
show what they do, explain how they think, and critically test prototypes. Computationalists
must repeatedly observe all the acts of experimentation, listen for unstated assumptions, and
prototype the least intrusive, most experimentally efficient approaches. Together, both should
maximize simplicity, flexibility, extensibility, and fun.

Capturing the experimental record at the source in real time in all types of laboratories will
smooth the path to systems that automate capture and combine it with the extraction of prove-
nance and annotatation of datasets. To reach the provenance infrastructure of the future that
everyone needs, we need to understand the diversity of actual experimental practice and to
start solving that most difficult problem of provenance capture. A brief dollop of altruism that
focuses on very quick, lightweight, shareable improvements could immediately help experi-
mentalists, provoke engagement across boundaries, and seed more sustainable collaborations.
So, in the spirit of the rules for the provenance of computational experiments and instrument
data [7,8], I offer ten simple rules for interdisciplinary collaborations on provenance capture.
The order of the rules roughly parallels the workflow of discussions, from that first exploratory
cup of coffee to the migration to grander schemes and bigger data. While each rule varies a bit
in the distribution of tasks to experimentalists and computationalists, all require a joint effort.
Our current practice is described in Box 1.

Rule 1. Go Sideways and Backward to Go Forward

What do the experimentalists track now, and what physical items and ideas interact with that?
Similarly, many materials and methods have a history that is crucial to capture: genetic pedi-
grees and macromolecule preps are examples. So, discuss each major phase of the experimental
lab’s life and how those phases relate to its work of today and tomorrow. Retrospectively
entered data then join a consistent framework, rather than being kludged in.

Rule 2. Improve the Acts of Experimentation

No one willingly adds encumberances, so changes have to produce a net gain over the entire
experimental workflow. People are often willing to sacrifice a few person-days to save person-
months, but to identify improvements is a joint labor of reengineering. Multiple interactions
about and observations of the “same” experimental task show the ways in which the work var-
ies, pinpointing process improvements and delimiting a design’s flexibility.

Rule 3. It’'s Gotta Beat a Spreadsheet

Spreadsheets are ubiquitous because they’re flexible, well understood by a large community
(including students), great for prototyping an experimental workflow, and collect data simply.
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Box 1. Our Practice So Far

As a computational biologist who has also done maize genetics for the past nine years, I
have the privilege of directly experiencing the realities of my experimentalist colleagues
while watching how well—or not!—my computational ideas address the practical prob-
lems of experiments’ provenance. We study a set of ~55 distinct maize mutants that pro-
duce necrotic or chlorotic lesions on leaf tissue [13,14]. We package selected seed for
planting; plant in a field at research farms or in pots or trays in the greenhouse; repeat-
edly observe at least eight different phenotypes for each plant; pollinate with selected
plants; photograph leaves in situ or ex situ; orally describe each mutant family; collect,
lyophilize, and freeze samples of leaf tissue for DNA sequencing; harvest and shell polli-
nated ears; and file the corn for easy retrieval from the cold room. Field data are collected
in the form of images (either standardized or free-form), spreadsheet tables, audio
recordings, dumps of hourly weather data from a local recording station, and geographic
coordinates of the first row of each field.

How do we apply the rules? Our simple provenance system for maize genetics has
gradually evolved. The basic system was designed in the course of the first crop, with
much discussion with maize colleagues about what and how they track their provenance.
The result has proven very versatile and robust, needing only minimal changes despite
the changing circumstances of each crop and the addition of other experiments and data
and object types. Robustness is difficult to quantitate, but the system has so far managed
approximately 5,900 families of maize (4,000 in active use), 18,000 images (including
duplicates and test shots), 1,000 tissue samples, and 430,000 facts (including both pri-
mary data and reverse indices). We have added experiments and experimental protocols
over the years, changed key equipment more than once, and worked with approximately
20 students so far in the project. These volumes are small compared to those of many
experimental groups, especially in maize, but may suggest our experimental milieu.

The heart of our system is the unique identifiers. Every physical object that contrib-
utes directly to the production of our biological materials or for which data are collected
has a unique identifier. There are many types of objects involved, and we often need to
know what to do quickly, so we use mnemomic identifiers that distinguish each type of
object and distinguish plants and their progency from equipment. Standard equipment
for the field and seed room are not tracked—staplers, aprons, and shellers are all inter-
changeable. Cameras and scanners are not, so each has a distinctive name. So far, lenses
are permanently assigned to cameras, and camera names are recorded as part of the pho-
tographic data. If we were to exchange lenses among cameras, it would be simple to
name the lenses and their associations with cameras in the provenance system so that
past and present data were correctly annotated.

Each plant is tagged with a sturdy barcoded paper strip that has multiple tear-off tags,
each printed with the plant’s identifier, bar code, and an abbreviated symbolic genotype.
The plant’s identifier becomes the primary key for all tabular data and seed from that
plant, and it is the plant’s name in audio narratives, linking genotypes, phenotypes, sam-
ples, and data. Plant identifiers are 15 characters and state the year of planting, season,
family number, inbred background if relevant, and the row and plant number for each
plant. Redundancy is built into the identifier to help guard against information loss. Pol-
linations are labelled with tear-off tags from the plants serving as female and male for
that particular cross. Stapled together and to the seed envelope, they identify the shelled
seed for inventory, retrieval, and packing. The few person-days spent tagging the
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thousands of plants in each crop saves many person-months in data collection and verifi-
cation, inventory management, and computation.

Pots, trays, seed packets, row stakes, tissue samples, boxes, sleeves, and seed bags all
receive unique six-character identifying bar codes, with the identifiers for each type of
object beginning with a single mnemomic letter. All letters, including those for inbred
lines, are unique. Leaves are identified by either a relative or absolute coordinate on the
plant, depending on the experiment. Apart from the leaf identifiers, all identifiers and
their components are automatically generated, a lesson learned in the second year of
field work when identifiers for a few families of siblings were inadvertantly duplicated.

Identifiers are printed in a large, bold font, along with their one-dimensional bar
codes, on labels or tags. Labels and tags are generated with custom scripts and open-
source code [9,10,15,16]. Our script collection includes code to generate individual tags
to replace those with worn, illegible bar codes, hastily repurposed tags from sibling
plants, and tags with retrospectively corrected data.

Every action or datum involving a barcoded object is recorded by scanning the bar
code into a data table in a spreadsheet, either at the moment of the action or shortly
thereafter. Contemporaneous data collection is one of our best safeguards against man-
gled data, permitting correction while the object or action is immediately present. It also
helps us spot procedural bottlenecks and error-prone operations for process improve-
ment. The only exception to the rule of contemporaneous data collection is for interme-
diate forms of the data, such as emerging lesion phenotypes or the pollination and
photographic plan for a plant. These are stored on each plant as color-coded paper twist
ties, with the date and initials of the human scorer stored on the first plant of the row.
(We do record dates and scorer of each plant on it as needed, for example, when deter-
mining the onset of phenotypes.) These decisions can change as the phenotypes develop
and pollinations proceed, so we usually record only the final evaluation or intention.

Most data are collected by scanning bar codes into a spreadsheet running on a tablet,
using a matchbox-sized bluetooth scanner. Representative leaves from selected mutant
plants are photographed to record phenotypes and to provide data for their quantitative
characterization. Other photographs compare phenotypes among families and document
surprises. Audio recordings of descriptions of the field, crop, families, and individual
plants are collected throughout the field season, formerly with various dictaphone
arrangements and now with the tablets. Their transcription lags, so we are now experi-
menting with speech-to-text programs.

Conversion of data from spreadsheet to database uses a family of Perl scripts and
modules, including a library of regular expressions. As our data collection machinery has
migrated from menu scanners to iPads and spreadsheets, and as students have come and
gone, the characteristic errors that appear during data collection have changed. We
dump the data as csv files and manually check those files before processing them and
inserting their data into the database. Each student reviews the data he or she collected,
and we also review each other’s data. We also perform different post hoc checks, depend-
ing on the operation—making sure each row and packet are accounted for at planting,
that all recorded and unrecorded pollinations are harvested, that every ear used in polli-
nations is unique, etc.

Computationally, our provenance system uses a mix of tools: a declarative database
for crop and data management, including pedigree computations; emacs org-mode, for
the lab’s notebooks; git and tar for archiving ASCII data and code; and Perl scripts for
generating tags and labels, generating org-mode tables with embedded, readily visible
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calculations, and for converting data from spreadsheet dumps and org files to the data-
base. All types of files are backed up on two physically different RAID arrays. The experi-
mental provenance system was developed before our system for computations and
analyses, so the two interact at several levels without forming a monolith.

Images, files, and file and directory names all self-identify. Our leaf images include a
barcoded tag from the plant, marked with the leaf number. (This practice has rescued
data from scanning errors more than once.) All ASCII files begin with a string that
includes the file’s full path. Files or data increments produced by code include comments
specifying the name of the producing file or function, the source file for the data, and the
timestamp of production. File names for audio recordings are descriptive now that we
collect these with a tablet instead of a dictaphone. Names in directory trees are descrip-
tive; camera and scanner names form part of the directory tree for primary data storage,
helping us rapidly locate the data referenced in tables. Our lab notebook was formerly a
set of physical notebooks and ASCII files. We recently switched to emacs org-mode,
which facilitates project management and publication as well as written narratives. We
photograph whiteboards, oddities, and paper, cross-referencing the images in our org-
mode files and filing them in the same directories as the work they reference. We occa-
sionally record conversations, and these are cross-referenced and filed in the same way.

Data and computation semantics reside in predicate and argument names and com-
ments in files, but the more complex semantics still live in text files or my brain. Our
next provenance frontier is to compute our metadata more easily, starting with experi-
mental images intended for public deposition. Current ontologies denote only a tiny frac-
tion of what we deem important, but this may change in the future.

That combination is hard to beat! Yet, minor innovations in spreadsheets can yield big
improvements in provenance. Examples include restructuring repeated free text descriptions
as menu items and providing optional pop-up boxes with definitions of the lab’s terms and
methods. More extensive systems with designer interfaces or back ends can be merited if the
experimental workflows are very regular, but any proffered replacement should be as simple
and as robust as a spreadsheet to use and maintain. Homebrew systems without a trivial main-
tenance path die once the graduate student who built them moves on.

Rule 4. Barcode Everything Important and Keep the Labels Current

Each type of physical object or datum should have a distinctive, mnemomic identifier that tells
you what it is without needing a reference guide or a gadget. What should be memorialized
and how much information should be incorporated into the identifier for optimal tracking
depends on the laboratory, and designing good identifier systems that are robust to change
takes care. Mnemomic identifiers are easier to use in everyday experimental discourse than
unadorned integers but may need more maintenance, especially in the face of the inevitable
revisions. When the laboratory has many different types of physical objects and the context of
their relationships is important in knowing what to do (usually quite urgently), then mnemo-
mic identifiers can be a great help. They also have the advantage of letting one embed redun-
dant information into the identifier. When the objects form relatively few types and the
relationships among them are as yet unknown, then a centrally assigned integer can prove sim-
pler in the long run. In either case, it is crucial to avoid embedding any (often subconscious)
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biological assumptions or inferences in the identifier. Similarly, storage systems and the organi-
zation of collections change over time. Rather than build fungible relationships and inferences
into the identifier, identify the bone and the drawer it’s in today separately; store the encoded
site of the bone’s collection in a database, revising the site’s coordinates when Global Position-
ing System (GPS) data are substituted for sunsights; and discover the relationships among
bones collected at the same site by experiments.

Hastily improvised or newly inadequate identifiers are a fact of life and may not be trans-
formed into the standard scheme for some time. If any part of the identifier for the object
changes in the database (that site has more bones than we have characters in the identifier!),
print the new identifier and its bar code on a label and attach it to the object so that both new
and old labels can be read as needed. Keeping the labels current with the inevitable changes in
the databases prevents the confusion that results from scanning old labels into new data
schemes, minimizing repairs.

Once the identifier scheme is worked out, producing good labels is easy. Both open-source
and commercial programs to generate bar codes are available, and it’s easy to write one’s own
[9,10]. Print the identifier in large, bold font next to the bar code on sturdy label or tag stock so
that a glance tells the story. There are a variety of materials, tags, and labels that are waterproof,
take ink well without smearing, and tolerate temperature and humidity extremes so that plates
and tubes can be barcoded.

Rule 5. Make Everything Self-ldentifying

Any bar code can be mangled on scanning or land in the wrong place in the spreadsheet. Look-
ing at the physical artifact or data file can resolve these problems, but only if those things self-
identify. Self-identification can be as simple as descriptive directory and file names, including
file names as the first line in text files, or photographing a labelled container or rack of tubes.
Though namespace collisions can occur with descriptive names, they are far more legible than
random strings. A contemporaneous record guards against all errors except mislabelling the
original.

Rule 6. Use Version Control and Backups

Electronic laboratory notebooks are available in both open-source and commercial versions,
and some may fit a group’s workflow well enough to justify the effort and expense of adoption.
However, for many, a mnemomically named directory scheme, spreadsheets, text files, version
control, and a RAID array may be enough—and a significant improvement. Version control of
directories with ASCII data and notes is a cheap way to archive and time-stamp changes, emu-
lating electronic notebooks while preserving workflow flexibility. It also provides the most
insurance against fat fingers, fatigue, and forgetfulness. Calling export and backup scripts from
a cron job or a big green “archive now!” button reduces human supervision.

Rule 7. Automate Gluing over Cleaning

It’s usually not worth investing in sophisticated error correction much beyond essential refor-
matting. Many errors are idiosyncratic and disappear with practice in cleaning one’s data.
Cleaning is painful, even with macros, but it teaches one to minimize collection errors,
increases attention to experimental details, and creates another opportunity to check for lurk-
ing substantive errors. Rather, automate data transformations and archiving, and review char-
acteristic errors from time to time. A similar principle applies to data generated in high-
throughput facilities. If its managers are amenable, automating data transfers from a facility to
the ultimate storage device saves time and error.
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Box 2. A Glimpse of the Landscape

An abyss separates the practices in many laboratories and research on the semantics and
provenance of data and computations, workflow systems, and electronic notebooks and
groupware. Beyond the simple rules, scalably bridging the divide will require connecting
today’s achievements into flexible, transparent, and interoperable ecosystems of applica-
tions that meet experimentalists’ felt needs. Of course, we have seen this landscape before:
a visionary system that addressed many of these issues was the Worm Community Sys-
tem of the early 1990s [17,18]. Perhaps the following sketchy list can stimulate some col-
laborative spanning.

Metadata and provenance

In the rules, I emphasized provenance acquisition, skirted the formalization of metadata,
and ignored provenance maintenance and reconciliation [19-26]. Archivists call infor-
mation about the origin and semantics of experimental objects, computations, datasets,
and analyses “descriptive metadata” (a book’s content), distinguishing them from the
“administrative metadata” needed to use and manage resources (a book’s library record).
However, many desirable applications would use both notions transparently. The early
successes of the Dublin Core (administrative metadata), Gene Ontology, and macromo-
lecular crystallographic information file (mmCIF) (the latter two, descriptive metadata)
encouraged the idea that metadata would naturally arise from ontologies and be
exchanged through the web [27-29]. The result was a flowering of standards, societies,
ontologies, and working groups, each aimed at a particular slice of biology. Much of this
work is now represented in database annotations, ontology and Semantic Web languages,
and projects that foster and archive these materials [30-32]. Nonetheless, experimental -
ists treat annotations as read-only data and are largely unaware of the rest of the infra-
structure. The Nature methods checklist is an interesting mix of metadata and location
information [33,34]. It may further stimulate work on automated extraction of scientific,
descriptive metadata—and validation of the output!—as is now done for bibliographic,
administrative information [35-40]. We might even hope for a day when datasets and
computations have unique identifiers, rather like DOIs, to facilitate building chains of
provenance in both senses.

Workflow systems

Increasingly, wet-bench and computational work form an integrated whole, but current
workflow systems address either a portion of the wet-bench work—such as LabView’s
abilities to interconnect multiple instruments and their data—or computations [41]. At
the moment, connections between the two sides mostly reside in the experimenter’s
brain or in his or her notebooks. Research so far has been mainly on the essential techni-
cal details of organizing, tracking, and managing data, code, cycles, and storage [42-47].
Heroic efforts are made to stimulate adoption by each system’s notional user communi-
ties, but the need for heroism suggests that we should watch many experimentalists more
carefully to uncover their desires and reservations.

Electronic notebooks and groupware

Cross literate programming, record keeping, project management, and text editors. Their
offspring range from the free and open-source ipython notebook and emacs org-mode
aimed at individual investigators, to commercial systems for groups, to cloud-based
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editors such as Evernote and SimpleNote, to wrangling group documents in wikis, Goo-
gleDocs, or SharePoint [48-51]. They vary enormously in their support of all the desider-
ata mentioned, as do the needs of research groups for these good things. It may be time
to consider how open architectures could form modular, niche environments that also
ease the experimentalists’ journeys to thoughtful computation.

Rule 8. Integrate the Paper

Many brains, even young ones, think more fluently in front of paper (or whiteboards) than
screens. Photograph or scan these, cross-referencing the images in whatever the group uses for
electronic notebooks and filing them in the appropriate directories. Groups that use just a few
forms of stationary may benefit from switching to paper random-dot or grid notebooks and
recording pens, but this may be too restrictive or expensive for others. Don’t forget the other
form of “paper” that is produced by thinking out loud, and capture that with audio recordings.
Common smartphone and tablet operating systems all run free voice recorder apps. Some
groups may be able to use speech-to-text systems successfully to collect data.

Rule 9. Prepare to Extract Metadata

Spreadsheet field headers, database attributes, and free text notes are crude metadata. Scooping
them into a database that indexes their location will facilitate eventual extraction and lets one
track other information more easily than recursive greps. The scoops need be no fancier than a
text box on a form, a script that parses a csv or Excel file, or names of pdf files of paper note-
book pages describing an experiment’s method [11]. More sophisticated tools that embed
metadata collection in spreadsheet templates are also available [12]. Watch for repeated
phrases, which are good metadata candidates.

Rule 10. Only the Biologists Know for Sure

The harder part of metadata is ensuring the data’s actual and declared semantics match. The
experimentalist is the only one who knows, and intermittent discussion will reveal crucial sub-
conscious information. It follows that the definitions of metadata terms must be available at
the moment of entry. A box for free text insertion lets one capture and analyze emerging needs,
given a more committed collaboration.

Should you use existing standards, ontologies, and metadata (Box 2)? Of course, if these
conventions are stable, capture what the experimentalist needs to say, and the experimentalist
agrees with the convention's semantics. Ontologies in rapid-flux, fuzzily defined terms or odd
lumpings of tradtional nomenclature are not good candidates for describing experiments.
Then it is particularly important to record how the experimentalist describes the experiment
and its data and to transmit that information to ontologists so they have more usages to study,
while together you use them to define new metadata. As complex data accumulate in public
resources, those resources will have to manage the migration of ontological terms. For now,
free text seems the best guide to accurate migration, albeit the slowest.
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