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Abstract: Mapping brain connectivity based on neuroimaging data is a promising new tool for under-
standing brain structure and function. In this methods paper, we demonstrate that group independent
component analysis (GICA) can be used to perform a dual parcellation of the brain based on its connectiv-
ity matrix (cmICA). This dual parcellation consists of a set of spatially independent source maps, and a
corresponding set of paired dual maps that define the connectivity of each source map to the brain. These
dual maps are called the connectivity profiles of the source maps. Traditional analysis of connectivity
matrices has been used previously for brain parcellation, but the present method provides additional
information on the connectivity of these segmented regions. In this paper, the whole brain structural con-
nectivity matrices were calculated on a 5 mm3 voxel scale from diffusion imaging data based on the prob-
abilistic tractography method. The effect of the choice of the number of components (30 and 100) and
their stability were examined. This method generated a set of spatially independent components that are
consistent with the canonical brain tracts provided by previous anatomic descriptions, with the high
order model yielding finer segmentations. The corpus-callosum example shows how this method leads to
a robust parcellation of a brain structure based on its connectivity properties. We applied cmICA to study
structural connectivity differences between a group of schizophrenia subjects and healthy controls. The
connectivity profiles at both model orders showed similar regions with reduced connectivity in schizo-
phrenia patients. These regions included forceps major, right inferior fronto-occipital fasciculus, uncinate
fasciculus, thalamic radiation, and corticospinal tract. This paper provides a novel unsupervised data-
driven framework that summarizes the information in a large global connectivity matrix and tests for
brain connectivity differences. It has the potential for capturing important brain changes related to disease
in connectivity-based disorders. Hum Brain Mapp 36:4681–4701, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Connectivity diagram plays a key role in brain function
and behavior. Many neuropsychiatric disorders, e.g. schiz-
ophrenia, have been suggested caused by abnormal com-
munication between disparate brain networks. However,
compared with the conventional region-of-interest or vol-
ume based morphometric analysis, connectivity analysis is
not that straightforward, as it represents the interregional
or intervoxel relationships. This makes it difficult to inter-
pret, track, and visualize neurophysiological biomarkers.
The aim of this study is to demonstrate that group inde-
pendent analysis (GICA) [Calhoun and Adali, 2012; Cal-
houn et al., 2001] is capable of accomplishing such tasks.

Brain connectivity can de described in terms of a con-
nectivity matrix C, whose element Cði; jÞ describes the
strength of the morphometric link between nodes i and j
(structural connectivity) or describes a statistical link, such
as the correlation between the BOLD (or EEG, MEG) acti-
vation at the two nodes (functional connectivity). In this
paper, we show that group ICA of the connectivity matrix
(cmICA) can be used for dual parcellation of the brain
connectivity. The dual parcellation consists of a set of spa-
tially independent maps {sk} and a corresponding dual set
of spatial maps {rk}, such that rk defines the brain regions
connected to sk. rk is called the connectivity profile of sk.
We focus on such a dual parcellation based on structural
connectivity matrices calculated from diffusion imaging
data by probabilistic tractography.

This is a new method for understanding brain connec-
tivity based on diffusion fiber tractography. Fiber tractog-
raphy using diffusion imaging is an important
noninvasive technique to quantitatively evaluate anatomi-
cal or structural connectivity between different brain
regions. A major application of these connectivity maps is
regional (cortical or subcortical) segmentation/parcellation
of the brain. These studies include segmentation of the
thalamus [Behrens et al., 2003a], medial frontal cortex
[Johansen-Berg et al., 2004], inferior frontal cortex [Anwan-
der et al., 2007], and cingulate cortex [Beckmann et al.,
2009, Cloutman and Ralph, 2012] for a recent review). So
far the same topic has not yet been systematically studied
for the whole brain, mainly because of the computational
demands. A connectivity matrix computed from diffusion
tractography does not directly give tract parcellations, but
only gives a distribution of fiber counts between different

brain regions. Further processing is required to interpret
the connectivity matrix. In this study, we propose cmICA,
a group independent component analysis (ICA) for decompos-
ing connectivity matrices. We apply it to a large whole brain
voxel-to-voxel tractographic connectivity matrix and exam-
ined its capability of blind neuronal tract separation in an
unsupervised learning of connectivity properties, rather
than predefining a region of interests (ROI) and/or seg-
menting specific brain regions as in some of the previous
studies. We further evaluate cmICA’s ability to distinguish
groups of subjects with possible differences in brain struc-
tural connectivity by applying it to data from schizophre-
nia patients and healthy controls.

The data-driven group ICA approach [Calhoun and
Adali, 2012; Calhoun et al., 2001] has been used previously
to extract functional network sources during a task or at
rest based on fMRI data [Beckmann et al., 2005; Calhoun
and Adali, 2012; Calhoun et al., 2008; Calhoun et al., 2002].
This work applies the same technology to connectivity
matrices. In fMRI the data is space-by-time, while in the
present application the data is space-by-space. Although
seems like a trivial difference, it does make it harder to
interpret the results. One of our goals is to give a clear
interpretation of the results for the GICA analysis of con-
nectivity matrices. Spatial GICA decomposes fMRI data
into linked statistically independent spatial maps and the
corresponding representative time series. Here also the
connectivity matrix is decomposed in two linked spatial
maps. We obtain spatially independent maps and their
corresponding pairs describing their connectivity profile.

This is also a new framework to look for differences
between connectivity matrices of two groups of subjects.
Functional connectivity matrix differences have previously
been studied by looking at difference of each element Cði; j
Þ across the groups and checking for significant differences
after correcting for multiple comparisons [Allen et al.,
2014; Smith, 2012; Van Essen et al., 2013]. Typically, in
these studies Cði; jÞ represented macroscopic brain areas
(ROIs) defined on apriori knowledge, while we defineCði; jÞ
at a voxel level. Then in an unsupervised manner, cmICA
reduces the connectivity matrix into fewer components,
which capture the essential connectivity properties and
differences are sought among them.

We calculate the structural connectivity from diffusion
tensor imaging data and use probabilistic tractography to
calculate the connectivity matrix elements. Cði; jÞ is calcu-
lated as the percentage of fiber tracts that start from the ith

node and reach the jth node. There are different methods
for calculating the connectivity matrix, among them one is
the streamline tracking [Mori et al., 1999]. This method is
not well suited for modeling crossing/kissing fibers and
more susceptible to noises because of its deterministic
properties; where probabilistic tracking [Behrens et al.,
2003b] minimizes these problems by taking into account
the uncertainty of the local fiber orientation. Also, com-
pared with supervised ROI-based methods for calculating

Abbreviations

DTI diffusion tensor imaging
GFA generalized fractional anisotropy
GICA group independent analysis
HARDI high angular resolution diffusion imaging
ICA independent component analysis
IFG inferior frontal gyrus
TBSS tract based spatial statistics
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connectivity matrices, cmICA provides a data-driven view
of the connectivity in a comprehensive and relatively
unbiased manner, which may increase sensitivity to subtle
changes between subjects [Allen et al., 2011; Koch et al.,
2010]. Moreover, cmICA can be extended to analyze a sub-
set of the structural connectivity matrix focusing on spe-
cific interregional connections, such as thalamocortical
pathways [Behrens et al., 2003a; O’Muircheartaigh et al.,
2011], functional connectivity matrices obtained from fMRI
[Van Essen et al., 2013], other neuronal imaging
approaches [Oh et al., 2014], or any mathematical adjacent
matrices representing a graph. While our cmICA technique
does not depend on the choice of the method for calculat-
ing a connectivity matrix, the interpretation of the final
results will depend on how the connectivity matrix was
calculated. In this paper, we only focus on cmICA applica-
tion to structural connectivity.

Just as in the GICA application to fMRI data, the maps
rk and sk are calculated for each subject, and can be used
to look for connectivity differences between groups of sub-
jects. We apply the method to look for connectivity differ-
ences between a group of schizophrenia patients and
healthy controls. One theory proposed to understand
schizophrenia has been the functional disconnection
hypothesis [Friston, 1998]. It is based on a dysfunctional
connection of the brain leading to cognitive impairment.
This raises the possibility of functional disconnection being
accompanied by damage or disorganization of white mat-
ter tracts that connect the respective functional gray matter
regions. More recent genetic and histopathological studies
provide further indirect evidence that patients with schizo-
phrenia may be more susceptible to oligodendrocyte dys-
function and impaired myelination, leading to white
matter abnormalities [Aston et al., 2004; Davis and Harou-
tunian, 2003; Hakak et al., 2001; Sugai et al., 2004].

Previous diffusion based analysis to study schizophrenia
has mostly focused on scalar parameters, such as fractional
anisotropy (FA) to look for white matter integrity differen-
ces between healthy controls and schizophrenia patients.
The group differences were tested based either on a voxel
based analysis or a tract based spatial statistics (TBSS)
[Smith et al., 2006] method. The finding of reduced FA in
patients is interpreted as an indicator of ‘altered’ connec-
tivity [Camchong et al., 2011; Caprihan et al., 2011; Clark
et al., 2011; Fitzsimmons et al., 2013; Lee et al., 2013].
However, a drawback of these methods is that FA is a
local measure, and although a reduction in FA can lead to
reduced connectivity between regions connected by the
fiber tracts passing through that region of reduced FA, the
FA analysis does not directly identify the compromised
network. FA is a ‘proxy’ marker for anatomical integrity,
and thus limited in capturing the global connection infor-
mation [Kim et al., 2008].

A more direct analysis of structural connectivity
between different regions has been used previously in
schizophrenia studies to look at connectivity differences

between inferior frontal gyrus (IFG) and superior temporal
gyrus (STG) in patients [Kubicki et al., 2011]. It was also
used in Kubota’s study [Kubota et al., 2013] to calculate
connectivity within the thalamocortical pathways. None-
theless, these studies sought connectivity differences in a
limited number of anatomically predefined ROIs’ between
schizophrenia and controls. In this paper, we present an
alternative method of analyzing diffusion imaging based
structural connectivity matrices, which capture the net-
works effected by white matter pathologies [Behrens et al.,
2003b; Mori et al., 1999; Skudlarski et al., 2008]. Although
our focus is on a general method of connectivity matrix
analysis, simultaneous analysis of structural and functional
activity in schizophrenia patients can give a more compre-
hensive picture of connectivity changes [Skudlarski et al.,
2010].

In addition, we look at the effect of the number of ICA
components on the maps generated by cmICA and also
study their stability with respect to the choice of the initi-
alization parameters in the GICA algorithm. In summary,
the cmICA algorithm segments the brain into tracts and
generates their dual connectivity profiles based on the con-
nectivity matrix. These dual maps are useful to study con-
nectivity differences caused by white matter injury.

METHOD

Theory

The connectivity matrix C is a Nb3Na matrix, represent-
ing the connectivity strength between all node pairs across
two brain regions Region A (Na nodes) and Region B (Nb

nodes). After reformatting a connectivity matrix, the pro-
posed cmICA can be easily related to previous ICA appli-
cations in fMRI, as such a connectivity matrix is similar to
the spatial-temporal data generated in fMRI experiment
expressed as a Nb3Na dimension matrix, with the 3D
brain voxels as rows, and the corresponding time courses
as columns. Each column is a fMRI time-course of one
voxel, which is very similar to the connectivity profile of
the voxel in our example. In fMRI we have Time by Space

as input for further analysis; in our case both dimensions
of the connectivity matrix are different regions of space, so
Region B by Region A connectivity is the input for further
analysis. This analogy opens up the possibility of using
tools developed for fMRI analysis for analyzing structural
connectivity data.

The cmICA approximates the connectivity matrix C by a
matrix Ĉ such that it has been factorized into

Ĉ5RS (1)

where R is a Nb3Nc matrix and S is a matrix. If our nota-
tion is to represent all vectors as column vectors, then
with S5ðs1; s2; :::; sNc

ÞT and R5ðr1; r2; :::; rNc
Þ, we can write
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Ĉ5
XNc

k51

rksT
k (2)

Following the analogy of GICA analysis to fMRI data,
each ‘spatial map’ sk represents an independent source
over Region A, and each ‘loading coefficient’ rk represents
a brain map over Region B that indicates the common con-
nectivity pattern shared by the region sk. Figure 1 illus-
trates the cmICA factorization in brain. In the Region A to
Region B case (Fig. 1A), cmICA decomposes an asymmet-
rical connectivity matrix (Fig. 1A Left) that is derived from
the structural connectivity (Fig. 1A Middle, see Supporting
Information A for the details of constructing connectivity
matrix from diffusion imaging) into independent spatial
maps sk in Region A (Fig. 1A Right, marked in purple,
green and brown areas), with all the nodes within each

spatial map sk share the similar connectivity profile rk in
Region B (Fig. 1A Right, marked in lighter purple, green
and brown areas) and rk conveys two types of information
– (1) the regions which are connected to sk (the nodes’
location in Region B) and (2) the strength of the connectiv-
ity (the nodes’ intensity projected from the connectivity
lines into Region B). In the case of whole brain connectiv-
ity (Fig. 1B), cmICA is performed on a symmetric connec-
tivity matrix (Fig. 1B Left); therefore sk can be highly
correlated with rk, resulting in independent connectivity
parcels (Fig. 1B Right, marked in dark blue, red, yellow,
blue, and dark green areas), simply because sk and rk are
defined over the same spatial region and the connectivity
profile is shared by the intraparcel nodes. The interpreta-
tion of the relationship between S and R has special signif-
icance when the connectivity matrix is symmetric. The
question of similarity between S and R only arises when

Figure 1.

cmICA factorizes the connecitivity as follows. In the Region to

Region case (A), cmICA decomposes an asymmetrical connec-

tivity matrix into independent spatial maps sk in Region A (pur-

ple, green and brown areas), with all the nodes within each

spatial map sk share the similar connectivity profile rk in Region

B (lighter purple, green and brown areas). The rk represents the

location and strength of how sk connects to Region B. In the

whole brain connectivity case (B), cmICA decomposes a

symmetric connectivity matrix into independent connectivity

parcels (B Right, dark blue, red, yellow, blue and dark green

areas). In this case sk can be highly correlated with rk . Each

intracomponent connectivity network can be computed by rksT
k ,

and the cmICA segments can overlap (purple, orange and green

dots in Figure 1B Right), representing the crossing regions in dif-

ferent connectivity networks. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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the regions A and B are identical, a point which we dis-
cuss in more detail later. We believe that if the tract map S
and its connectivity profile map R have highly similar spa-
tial patterns, then this shows that the connectivity struc-
ture of tract S is from itself, suggesting a ‘tightly’
connected parcel; if not then it indicates a ‘loose’ parcel. In
addition, the segmentations derived from cmICA can over-
lap (the purple, orange, and green dots in Fig. 1B Right),
e.g. representing the crossing fibers in different tracts. This
is different from most hard segmentation methods com-
monly used in connectivity matrix parcellation [Anwander
et al., 2007; Johansen-Berg et al., 2004].

A number of options are available for implementing
GICA and the subsequent back-reconstruction [Erhardt
et al., 2011]. We describe the method below in four steps-
1. PCA data reduction of connectivity matrix Ck for a sin-
gle subject; 2. Group concatenation of reduced data C� and
second level PCA reduction; 3. ICA on group data into
maps S; 4. Back-reconstruction of group S and R into sub-
ject level Sk andRk.

Notations

S: ICA independent spatial components, parcels, or
tracts (for diffusion tractographic data).

R: ICA connectivity profile, paired with S and represent-
ing its connection strength across brain.

Connectivity matrix: a Nb3Na matrix, representing the
connectivity strength between all node pairs across two
brain regions Region A (size Na) and Region B (size Nb); S
separate Region A, and R separate Region B.

Nodes: Single elements in Region A or Region B.
Connection: Single elements in connectivity matrix.

Subjects

Subjects were recruited via the Center for Biomedical
Research Excellence (COBRE, http://cobre.mrn.org) pro-
gram at the Mind Research Network. We used diffusion
tensor imaging data from a large data set of schizophrenia
subjects (n 5 64, age 5 38.8 613.3 years) and healthy con-
trol subjects (n 5 64, age 5 35.3 6 11.0 years). COBRE data
are also shared via the COINS data exchange (http://
coins.mrn.org/dx) [Scott et al., 2011; Wood et al., in press].
Each subject provided written informed consent according
to guidelines at the University of New Mexico and was
compensated for their participation. Prior to inclusion in
the study, all healthy subjects were screened to ensure
they were free from neurological or psychiatric diseases
(DSM-IV Axis I or Axis II). Structural clinical interviews
for DSM-IV (SCID) and case file reviews confirmed diag-
nosis of schizophrenia for the patients. The specific clinical
screening protocol can be referred to our recent work
[Cetin et al., 2014], including retrospective and prospective
clinical stability, medical history, etc. Patients and control
were matched with age, gender, race, parental socioeco-
nomic status (education and occupation levels), a less

biased premorbid intelligence estimate [Saykin et al., 1991;
Yeo et al., 2014]. Table I provides demographic and clinical
information in details. The data was all collected on a 3T
Siemens Trio scanner with identical imaging parameters.

Data Acquisition

Diffusion data were acquired via a single-shot spin-echo
echo planar imaging (EPI) with a twice-refocused balanced
echo sequence to reduce eddy current distortions. The DTI
sequence had 30 directions, b 5 800 s/mm2 and five meas-
urements of b 5 0, for 6 minutes of acquisition time. The
b 5 0 measurements were interleaved after every six non-
zero b-value measurements. DTI was obtained in the axial
direction along the AC-PC line. The FOV was 256 3

256 mm with a 2 mm slice thickness, 72 slices, 128 3 128
matrix size, voxel size 5 2 mm 3 2 mm 3 2 mm, TE 5 84
ms, TR 5 9,000 ms, NEX51, partial Fourier encoding of 3/
4, and with a GRAPPA acceleration factor of 2.

Diffusion Analysis

Quality control of diffusion images were based on an
automatic algorithm based on several criteria. The signal
drop-outs caused by large or abrupt motion were identi-
fied and removed by a custom in-house program written
in IDL (http://www.exelisvis.com). These typically appear
as zipper like artifacts in the sagital view. The smaller and
the gradual motion through the scan, and the eddy current
induced distortions were corrected by registering images
to the first b 5 0 image by flirt/FSL (http://fsl.fmrib.ox.ac.
uk) with an affine transform and mutual information cost
index. A gradient direction requiring more 3 mm of dis-
placement on 100 cm radius sphere was not included. The
back ground noise level threshold was automatically calcu-
lated from regions outside the image (mean 1 two times
the standard deviation). The mean image signal for a
given gradient direction had to be greater than this thresh-
old, otherwise the gradient direction was dropped. Sub-
jects with greater than 10% of the gradient directions
removed were not included because of the possible bias in
their calculated diffusion parameters. The effect of remov-
ing gradient directions on FA calculation has been previ-
ously studied by our group [Ling et al., 2012]. We have
not studied the effect of removing gradient directions on
connectivity calculations. Gradient directions were
adjusted for any image rotation required during the
motion correction step. This was followed by calculating
the orientation distribution function (ODF) by bedpostx/
FSL and probabilistic tractography by probtrackx/FSL.

During tractography, we performed bedpostx on native
space and then warped onto the standard MNI FA maps.
Also in this application, we used the entire brain’s voxels
as the seed region as well as the target region, without
predefining any ROI masks to ensure pure data driven
blind source separation. To balance the computation
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demands and performance, a 5 mm spatial resolution and
250 streamlines from each seed voxel were used. Down-
sampling at this stage reduced the number of voxels and
the connectivity matrix to a large, yet manageable size.
The spatial resolution of 5 mm was the smallest voxel size
we could handle based on our memory limits, with �200
Gb RAM cost for 128 subjects. On three subjects we did
single subject cmICA with 250, 500, and 1000 streamlines,
and the tract patterns were essentially similar to those
obtained by using 250 streamlines. We then proceeded to
do further analysis with 250 streamlines for reasons of
computational speed.

Connectivity Analysis

After probabilistic tractography, whole brain voxel-
paired connectivity were converted with a two-dimensional
connectivity matrix for further analysis, as illustrated in
Supporting Information A. The connectivity matrices from
the two groups of subjects were then subjected to a multi-

subject cmICA and followed by back-reconstruction for
each subject [Calhoun et al., 2001]. The whole analysis pipe-
line is shown in Figure 2, with steps of data acquisition, dif-
fusion analysis, connectivity matrix construction described
in Methods 2-4 and the final cmICA. The group-level
cmICA implemented here is equivalent to the temporal-
concatenated group ICA algorithm applied previously in
fMRI [Calhoun and Adali, 2006; Wu et al., 2010]. Similar to
the fMRI in group-level analysis, we concatenate the input
Region B by Region A data of individuals along Region B.
The cmICA calculates maximally spatial independent maps
S for Region A that are representative across all subjects in
the group. These maps were back-reconstructed into
subject-specific spatial maps Sk and their shared connectiv-
ity profile maps Rk, where k is the subject index. And the
group-level connectivity profile maps R are calculated as
the aggregation of Rk. (Note that the aggregation of Sk is
mathematically close to S). The cmICA produces spatially
independent maps S over Region A and their connectivity
profile maps R over Region B across all subjects.

TABLE I. Demographic and clinical information

Schizophrenia
patients (n 5 64)

Healthy
controls (n 5 64) P-value

Age (Years) 38.8 6 13.3 35.3 6 11.0 0.11
Gender (Male:female) 50:14 45:19 0.32
Racea 2:2:4:1:55 2:0:5:0:57 0.63
Marital statusb 7:8:47:2 17:9:38:0 8.9e-3
Socioeconomic status
Highest level of educationc 3.8 6 1.4 4.6 6 1.3 1.6e-3
Parental education levelc(primary/secondary caretaker) 4.2 6 2.0/4.5 6 2.2 4.7 6 1.9/4.9 6 2.3 0.25/0.39
Highest level of occupationd 5.1 6 1.5 3.8 6 1.3 1.4e-6
Parental occupation leveld(primary/secondary caretaker) 4.3 6 1.7/4.3 6 1.7 3.6 6 1.5/3.9 6 1.8 0.03/0.25
Family psychosis historye 16 (25%) 1 (1.6%) 6.6e-5
Psychiatric onset agef 22.0 6 8.4
WTAR IQg 99.4 6 16.4 109.8 6 12.8 2.0e-4
WASI Sum IQh 98.0 6 17.4 111.2 6 11.8 5.8e-6
MATRICS composite scorei 30.9 6 13.6 50.4 6 8.3 1.9e-14
PANSSj

Positive 15.0 6 4.6
Negative 14.6 6 4.6
General 29.7 6 8.3

aRace: American Indian (or Alaska native): Asian: black (or African American): native Hawaiian (or other pacific islander): white.
bMarital status: married: divorced: single: separated.
cHighest level of education/parental education level - ‘1’ grade 6 or less, ‘2’ grade 7 - 12 (without graduating high school), ‘3’ graduated
high school or high school equivalent, ‘4’ part college, ‘5’ graduated 2 yr college, ‘6’ graduated 4 yr college, ‘7’ part graduate/professio-
nal school, ‘8’ completed graduate/professional.
dHighest level of occupation/parental occupation level - ‘1’ higher executives, proprietors of large concerns, and major professionals, ‘2’
business managers, proprietors of medium-sized business, and lesser professionals, ‘3’ administrative personnel, small independent
businesses, and minor professionals, ‘4’ clerical and sales workers, technicians, owners of small businesses and minor professionals, ‘5’
skilled manual employees, ‘6’ machine operators and semi-skilled employees, ‘7’ unskilled employees.
eFamily psychosis history: having first degree relative with psychosis.
fPsychiatric onset age: age at first diagnoses of schizophrenia or schizoaffective disorder.
gWTAR: Wechsler test of adult reading.
hWASI: Wechsler abbreviated scale of intelligence.
iMATRICS: ‘Measurement and treatment research to improve cognition in schizophrenia’ consensus cognitive battery.
jPANSS: Positive and negative syndrome scale.
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We examined the similarity between S and R based on
our data and further discuss this point later. In addition a
mathematical condition is derived when there will be per-
fect correlation between sk and rk (Supporting Information
B). All components were thresholded to display the
strongest tract regions based on the distribution of voxel-
wise t-statistics [Allen et al., 2011]. ICASSO with multiple
re-runs and random initial conditions was used to arrive
at a robust decomposition [Himberg et al., 2004].

Since this is the first attempt to apply ICA to whole-
brain tractography at the group level, we chose both low
order (30) and high order (100) to understand the effect of

model order selection. These model orders were chosen
based upon our previous extensive experience in ICA in
fMRI and EEG [Calhoun and Adali, 2012; Calhoun et al.,
2010; Wu et al., 2010]. The choice of low and high model
orders lets us study the fine-grained regional separation
obtained by higher order models for our diffusion based
data. In contrast to fMRI applications [Allen et al., 2014;
Kiviniemi et al., 2009; Wu et al., 2010], as well as to main-
tain more variance of information (>80%), we also eval-
uated ICASSO results across several high model orders
from 50 to 150, and empirically determined that 100 was
the best choice in terms of covering all the expected tracts

Figure 2.

The cmICA connectivity analysis pipeline includes the initial DTI preprocessing, FA map calcula-

tion, bedpostx/probtrackx to retrieve connectivity information, connectivity matrix construction,

and the final ICA parcellation. ICA can be employed for a single subject analysis (left) or for

group level analysis (right). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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and providing the most stability within our dataset. We
also ran cmICA on three individual subjects separately as
well as on group analysis at both model orders to look at
reproducibility and stability of the model.

Group Difference Analysis

After cmICA back-reconstructions, each subject has its
own independent tract maps Sk and their shared connec-
tivity profile Rk corresponding to each ICA components.
We ran two-sample t-tests separately for both Sk and Rk

for all the subjects to look for connectivity based group
differences. Previous schizophrenia studies have demon-
strated that brain structural connectivity is highly associ-
ated with age or illness duration [Jones et al., 2006;
Kyriakopoulos et al., 2009; Voineskos et al., 2010]. In this
study, we first used a multivariate model selection proce-
dure to check the impact of different factors by performing
a multivariate analysis of covariance (MANCOVA) on
effects of age, gender, race and group label as well as their
dependences to see which one(s) predictor in the design
matrix showed variabilities in the multivariate response.
And we found that for these 128 subjects only the age pre-
dicted a significant variability whereas the age 3 group or
any other factors in the design matrix didn’t indicate a sig-
nificant variability. We then only removed age-related
effects and their likely influence on cross-group compari-
son by matching ages across groups and testing the statis-
tical differences with age as a covariate. Lastly, the
significant regions were adjusted for multiple comparisons
using the false discovery rate (FDR) corrected P< 0.05 and
cluster size> 5 voxels.

RESULTS

Low Model Order Tract Clusters S

We broadly classified 30 cmICA spatial maps into three
major functional categories, seen in Figure 3, consisting of
commissural (right-left hemispheric cortex), association
(same hemispheric cortex-cortex) and projection (cortex-
spinal, cortex-thalamic) fibers [Mori et al., 2005; Wakana
et al., 2004], with detailed names in each category aided
by the 20 region ‘JHU white-matter tractography atlas’
[FSL-Atlases; Hua et al., 2008; Wakana et al., 2007]. The
cmICA spatial maps were converted to ROIs for visualiza-
tion purposes by a suitable threshold. The ROI was gener-
ated by t-statistics and thresholded at t > l14r, with l
being the mean and r the standard deviation of spatial
component (as discussed by [Allen et al., 2011] in Appen-
dix B). Note that we do not use these ROIs for looking at
group differences.

The commissural fibers define the fibers that go across
the corpus callosum connecting both hemispheres of the
brain. We found that eleven out of the thirty ICA compo-
nents belonged to this category. The association fibers con-
nect different parts of the brain within the same cerebral

hemisphere. Fourteen of the thirty ICA components
belonged to this category. These include the inferior longi-
tudinal fasciculus (ILF), inferior frontal-occipital fasciculus
(IFOF), superior longitudinal fasciculus (SLF, temporal and
parietal), uncinate fasciculus (UF) and cingulum (superior
cingulate part, supracallosal). The projection fibers connect
the cortex to the lower parts of the brain and spinal cord,
and include the corticospinal tracts and anterior thalamic
radiation (ATR). Five ICA components from our data were
classified as the projection fibers.cmICA segmented the
corpus callosum into eleven segments based on the con-
nectivity of these regions (Fig. 4). The JHU atlas does not
provide the segments of the corpus callosum (CC), other
than forceps major and forceps minor. We did not find
any of atlases, JHU or others, that parcellate commissural
tracts across other CC locations, probably because it is
more difficult to track consistent commissural tracts in
varying orientations across different subjects. This is simi-
lar to Hofer’s tractography based findings [Hofer and
Frahm, 2006] but with a finer corpus callosum
segmentation.

cmICA Maps Correspondence to JHU

Tractography Atlas

All the spatial tract components were numerically com-
pared to the JHU 20 region white matter tract atlas, based
on the overlap of the ICA components to the JHU atlas
regions. Table II shows the percentage overlap of ICA
maps converted to an ROI to the JHU atlas (JHU-ICBM-
tracts-maxprob-thr0-1mm from the FSL atlas library) [Hua
et al., 2008; Mori et al., 2005; Wakana et al., 2007; Wakana
et al., 2004]. The ICA maps are rank ordered to indicate
the maximum two overlap regions of the JHU atlas. For
example, 68.8% of IC 18 overlaps with the left corticospi-
nal tract and 16.3% with left superior longitudinal fascicu-
lus. Figure 5 shows the 10 different ICA maps that had the
maximum overlap with the JHU atlas. These maps are
marked with asterisks on IC index in the first column of
Table II. Two other maps (IC26 and IC11) are also shown
in Figure 5 to make the left/right pairs complete. The
major part of IC11 is a commissural fiber segmenting the
corpus callosum.

High Model Order Tract Clusters S

As expected, at the higher order model of 100, seen in
Figure 6, the cmICA component split into finer regions.
However, the majority of these components could still be
associated with the broad atlas definitions, but with
smaller coverage. Figure 6B shows that the numbers of
association components, especially covering ILF and IFOF,
as well as thalamic radiations were significantly increased.
Some of the tracts that were not detected in lower order
model, such as infracallosal cingulum in the hippocampus
(Fig. 6B, component 18 and 27), were recovered at the
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Figure 3.

cmICA connectivity maps are shown for the low (30) model order. All S components are cate-

gorized into three groups consisting of commissural, association, and projection tracts. The

detailed subcategories (following JHU atlas) are shown as well. All atlas labels were found,

except the hippocampal part of cingulum and the left anterior thalamic radiation.
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higher order. Thalamic radiations (Fig. 6C) of different ori-
entations (anterior, superior, posterior) were also identified
instead of anterior regions only in the case of lower model
and in JHU atlas.

Figure 7 demonstrates a case of component splitting
related to UF because of the higher order choice. The left-
most and rightmost plots are component 6 and 12 from
model order 30, which cover tracts of the UF and partial
IFOF. The two plots in the middle are from model order
100, corresponding to the low order model precisely.
Besides increased splitting of the components, some of the
cluster definitions are refined in higher model order. For
example, components 10 and 12 in the model order 100
case show fine-grained tracts with more precise segmenta-
tion and better alignment to the UF (hook-shape only).

Each cmICA analysis gives components in an arbitrary
order. Hence, in order to compare the low order and the
high order cmICA analysis, the components have to be
sorted to match. Sorting of the components here was based
on three criteria: (1) high spatial correlation to the lower
model component above 0.5, (2) atlas regions overlapping
above 50% and (3) manual verifications. Out of one hundred
components, three were categorized as artifacts because the
mask was slightly larger and included parts of the cerebel-
lum and the spatial pattern is different compared to the use-
ful components (Supporting Information C). After artifact
removal, component IC94 (Fig. 6C Unsorted) was the only
one that covered two disjoint (projection) tract structures
(corticospinal and thalamic radiation, both on the left).

To ensure the validity of model order selections on our
dataset, we tested the convergence during ICA training
and the stability via ICASSO on both low and high model
orders (Supporting Information D). The results showed
that both model orders are fairly reliable.

S and R Comparisons

The group-specific components of S and R can both be
seen as the aggregated subject-specific tract maps Sk and
conjugate tract maps Rk. S defines the group independent
spatial components (parcels) of the predominant fiber bun-
dles from the entire brain, and R defines the common con-
nectivity profile or which (fiber) region of the brain that S

is most connected to. In Figure 8, we examine the correla-
tion between sk, the row of S, and rk, the column of R.
Each pair ðsk; rkÞ defines two different spatial maps, and
they contribute to the connectivity matrix through the
outer product rksT

k (Eq. [2]). High correlation between sk

and rk, means that sk is highly connected to itself, within
its own spatial map. An example of perfect correlation
between sk and rk makes it clearer. In this case rksT

k would
be a symmetric connectivity matrix which can be reor-
dered to give a tight connected cluster. A low correlation
between sk and rk means, that although sk defines a region
which has high structural connectivity, this region is also
connected to other regions not part of sk.

At low order model of 30, the majority of the S and R

pairs are highly correlated to each other (Fig. 8 A1), with

Figure 4.

This is an example of connectivity based segmentation of corpus

callosum. These eleven components belong to commissural fiber

tracts, and connect both hemispheres through the corpus cal-

losum. These tract components spread along different orienta-

tions, connecting different parts of cortical area to the corpus

callosum. These areas include prefrontal, premotor, motor, sen-

sory and parietal/occipital/temporal brain regions. [Color figure

can be viewed in the online issue, which is available at wiley

onlinelibrary.com.]
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the highest correlation of 0.982 for component 10 (Fig. 8
A2) and the lowest correlation of 0.671 for component 16
(Fig. 8 A3). At high order model of 100, correlations
decreased for many components because of more detailed
region definitions (Fig. 8 B1). The highest correlation was
0.979 for component 11 (Fig. 8 B2) and the lowest correla-
tion was 0.262 for component 54 (Fig. 8 B3). However, we
found that the patterns of components in the high order
case are similar to those of the matching components of
the lower model order case. For example, component 10 in
low order and component 11 in high order were either in
or close to the corpus callosum - forcep major tracts. This
was also true for component 16 in low order and compo-
nent 54 in high order for the IFOF/ILF tract. Finally, we
found that the low correlations between S and R was due
to R extending more broadly to neighboring regions,
meaning S was highly connected to itself as well as neigh-
bor fibers (e.g., low model order, component 16 in Fig. 8
A3); alternately, the low S and R correlation can be seem
when R reaches to the same tract region of S, but in the

opposite hemisphere (e.g., high model order, component
54 in Fig. 8 B3).

Group Difference Between Schizophrenia

Patients and Healthy Controls

One of the benefits of using cmICA is that it not only
detects similar patterns across the group, but at the same
time captures intersubject variability. Figure 9 illustrates
group differences between patients diagnosed with schizo-
phrenia and healthy controls as captured by low and high
order cmICA for components divided into three main cate-
gories of commissural, association, and projection fiber
bundles. Each category includes significant results from all
the components belonging to that category. After the
removal of age effects, FDR correction, and removal of clus-
ters smaller than 5 voxels, we found that: (1) the connectiv-
ity strength was significantly reduced in schizophrenia
across large regions of the brain. (2) The blank pictures for
S are there to indicate no significant regions. The group

TABLE II. Thirty-component cmICA maps correspondence to JHU tractography atlas

IC index Fiber type JHU atlas region % JHU atlas region %

IC 7a Association Superior longitudinal fasciculus L 90.4 Anterior thalamic radiation L 0.8
IC 9a Association Superior longitudinal fasciculus R 84.2 Inferior longitudinal fasciculus R 2.1
IC 1 Association Superior longitudinal fasciculus L 82.6 Corticospinal tract L 1.8
IC 13 Association Superior longitudinal fasciculus R 82.6 Superior longitudinal fasciculus (temporal) R 7.4
IC 4a Association Cingulum (cingulate gyrus) L 76.3 Forceps minor 2.4
IC 3a Commissural Forceps major 75.4 Inferior fronto-occipital fasciculus R 3.4
IC 5a Projection Corticospinal tract R 71.5 Superior longitudinal fasciculus R 17.3
IC 23a Commissural Forceps minor 69.4 Anterior thalamic radiation R 13.2
IC 18a Projection Corticospinal tract L 68.8 Superior longitudinal fasciculus L 16.3
IC 16a Association Inferior fronto-occipital fasciculus R 67.8 Anterior thalamic radiation R 10.9
IC 2a Association Cingulum (cingulate gyrus) R 64.5 Forceps minor 9.1
IC 29a Projection Anterior thalamic radiation L 63.2 Inferior fronto-occipital fasciculus L 22.3
IC 19 Commissural Forceps minor 62 Anterior thalamic radiation L 12.7
IC 20 Commissural Forceps minor 59.8 Uncinate fasciculus R 7.6
IC 26a Association Inferior fronto-occipital fasciculus L 48 Inferior longitudinal fasciculus L 11.6
IC 15 Association Inferior longitudinal fasciculus R 45.5 Inferior fronto-occipital fasciculus R 33.4
IC 14 Association Inferior longitudinal fasciculus L 44.1 Inferior fronto-occipital fasciculus L 25.6
IC 24 Commissural Forceps major 43.6 Inferior fronto-occipital fasciculus R 21.2
IC 28 Association Inferior longitudinal fasciculus L 37.6 Superior longitudinal fasciculus L 27.9
IC 21 Association Inferior fronto-occipital fasciculus R 35.4 Inferior longitudinal fasciculus R 17.1
IC 27 Projection Corticospinal tract R 33.6 Superior longitudinal fasciculus R 31.9
IC 30 Projection Superior longitudinal fasciculus L 30.1 Corticospinal tract L 24.2
IC 12b Association Inferior fronto-occipital fasciculus L 27.2 Inferior longitudinal fasciculus L 22.2
IC 6b Association Inferior fronto-occipital fasciculus R 21 Anterior thalamic radiation R 15.1
IC 22c Commissural Corticospinal tract R 17.8 Corticospinal tract L 17.5
IC 11 a,c Commissural Anterior thalamic radiation R 14.4 Forceps minor 12.1
IC 17c Commissural Cingulum (cingulate gyrus) L 13 Corticospinal tract L 11.7
IC 25c Commissural Anterior thalamic radiation L 11.6 Superior longitudinal fasciculus L 11.1
IC 10c Commissural Anterior thalamic radiation R 6.7 Anterior thalamic radiation L 6.1
IC 8c Commissural Anterior thalamic radiation L 5.4 Anterior thalamic radiation R 4.9

aMarks the components plotted in Figure 6.
bIC12 and IC6 have overlaps with uncinate fasciculus 17.4% and 14.1%.
cMarks the tracts not covered by JHU atlas (<20% overlap), which visually identified as commissural fibers across corpus callosum.
‘Fiber type’ is labeled based on the actual tract trajectory.
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differences in tract maps S are smaller (volume-size) than
in conjugate maps R. This is partially due to the group ICA
concatenation orientation, and in general R was more sensi-
tive than S, see discussion for details. (3) The group differ-
ences for the high order model were across more
components, but the overall regions (e.g., coverage and
intensity) are similar to those in the low order model. (4)
Most of the group differences were found in the right hemi-
sphere. The effect of interhemispheric coordination or later-
alization cannot be fully determined at this point. However,
it has been reported that one of the important trait markers
in schizophrenia is reduced laterality [Hoptman et al., 2012;
Oertel et al., 2010]. The significant components are pre-
sented in detail in Table III, including the identified cluster
sizes and the peak voxel coordinates and t values.

DISCUSSION

Structural Connectivity in Schizophrenia

There has been a growing interest in brain connectivity
studies [Allen et al., 2014; Cloutman and Ralph, 2012;

Deco et al., 2011; Honey et al., 2009] describing communi-
cation across different brain regions, in contrast to tradi-
tional analysis regarding properties of single brain regions
(ROIs), such as volumes, magnitudes, or diffusivities. Pre-
vious studies [Deco et al., 2011; Honey et al., 2009] suggest
a clear consensus that structural connectivity is highly
associated with functional connectivity, whereas functional
connectivity directly impacts normal cognition, cognitive
abnormality, and cognitive status. Our approach presents
a promising method to study how brain disease (e.g.
schizophrenia) is related to changes in brain structural
connectivity. Although a full discussion of various find-
ings and models of schizophrenia is beyond the scope of
this paper, it has been shown [Ashtari et al., 2007; Cam-
chong et al., 2006] that schizophrenia is associated with
reduced brain structural connectivity, as indicated by
reduced FA, a marker for fiber tract integrity. Diffusion
tensor model based calculations and FA brain maps are
believed to reflect the diffusion direction, myelin structure,
and fiber density. In addition FA is relatively easy and fast
to compute. However, we recognize that FA and connec-
tivity as measured here are sensitive to different tract
properties. Although, both FA and connectivity matrix are
calculated from diffusion data, FA is a measure of a local
tract property while connectivity is a larger scale interre-
gional tract property. The two quantities are related,
because local white matter damage, as indicated by a FA
decrease, can change a global connectivity measure. But
this need not be so, because brain can develop alternate
pathways connecting the two regions. The connectivity
matrix measures how well any two regions are connected
regardless of the exact local pathways. FA being a local
property can be more sensitive to detect changes in small
regional areas. These differences imply that FA and con-
nectivity provide different measures of white matter integ-
rity. Other anisotropy measures such as generalized
fractional anisotropy (GFA) [Tuch, 2004] have been
defined with high angular resolution diffusion imaging
(HARDI), but these measures are also local tissue proper-
ties (e.g. GFA is simply an extension of local FA with a
generalization to more than three eigenvalues [Cohen-
Adad et al., 2011; Tuch, 2004]), and are again ‘proxy’
markers for anatomical connectivity.

We observed significant decrease in white matter con-
nectivity in patients diagnosed with schizophrenia (com-
pared with healthy controls) in the corticospinal tract,
thalamic radiation, uncinate fasciculus, forcep major and
inferior fronto-occipital fasciculus. The affected tracts are
consistent with previous analysis based only on FA [Cam-
chong et al., 2011; Caprihan et al., 2011; White et al., 2011]
but the significant differences seen here in connectivity are
for broader spatial regions. An ICA based method has
been used previously to decompose FA maps into spatially
independent brain structures [Caprihan et al., 2011; Li
et al., 2012]. The group differences were seen in terms of
the loading coefficients, which was one number per map

Figure 5.

Ten cmICA tract maps are shown with maximum spatial over-

laps with the JHU atlas’ JHU-ICBM-tracts-maxprob-thr0-1mm in

FSL’s atlas library. These maps included forcep major (FMAJ), for-

cep minor (FMIN), right inferior-fronto-occipital fasciculus

(IFOF), left anterior thalamic radiation, and left and right hemi-

sphere superior longitudinal facsciculus (SLF), cortico-spinal tract

(CST), cingulated gyrus (CGC). We have also included left

inferior-fronto-occipital fasciculus (IFOF, IC 26) and right ante-

rior thalamic radiation (ATR IC 11) for completing the left/right

pairs. Table II computes all thirty cmICA components’ overlap-

ping percentage with JHU atlas regions. Six out of eleven com-

missural components that were not covered by the JHU atlas,

excluding FMAJ and FMIN, were labeled according to the atlas

region with which they had maximum correspondence. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 6.

cmICA connectivity maps are shown for the high (100) model

order. Ninety seven S components at model order of one hun-

dred are plotted in a format similar to that of Figure 4, with

commissural fibers shown in (A), association fibers in (B) and

projection fibers in (C). The tracts split into finer regions, but

overall follow the atlas definitions. One component (IC94) cov-

ered two disjoint atlas tracts. There were no missing JHU atlas

defined tracts in the ICA maps. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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per subject. In our present analysis, the loading coefficient
is itself a spatial map, and gives better localization of the
spatial region where there are connectivity differences. We
directly probe for connectivity differences.

The present tractography-based connectivity technique
is better in terms of identifying (major) axonal bundles.
The ICA components in our data-driven study matched
well with an established white matter tract atlas [Hua
et al., 2008; Mori et al., 2005; Wakana et al., 2007]; whereas
ICA components from FA based maps [Caprihan et al.,
2011] have only partial coverage of the brain, being
restricted to the white matter regions. Schizophrenia is
believed to be an information processing incapability or a
brain connectivity abnormality [Fitzsimmons et al., 2013].
Tractography should increase the sensitivity of capturing
the difference between patients diagnosed with schizo-
phrenia and healthy controls, because it provides informa-
tion regarding ‘connectivity’ within white matter tracts. To
fully understand the relative advantages of fractional Ani-
sotropy versus connectivity based analysis, it is still
required to compare on a common data set.

This study focused on probabilistic tractography and
cmICA to implement connectivity-based parcellations.
Probabilistic tractography has been used to segment thala-
mus, cortical regions or subcortical regions [Behrens et al.,
2003a; Jbabdi et al., 2009; Johansen-Berg et al., 2004;

O’Muircheartaigh et al., 2011]. Considering the plethora of
methods related to our work, we discuss some brief com-
parisons with two popular methods commonly used in
connectivity-based tractography studies, namely stream-
line tractography and spectral clustering [Cloutman and
Ralph, 2012]. Streamline tractography, which relies on a
deterministic model, does not perform well in regions
where we expect crossing fibers, and is not a good
approach for cortical parcellation due to the subthreshold
FA in gray matter. Spectral clustering, a graph-based seg-
mentation method, focuses on ‘all-or-nothing’ hard clus-
ters, which may cause false parcellations in regions
exhibiting crossing fibers. Comparing clustering with
cmICA and clustering with spectral clustering we note
that the cuts in spectral clustering depend heavily on the
similarity matrix measures and global normalization. This
can be especially inconsistent and inefficient when the
model order is high and the cut number increases. These
observations are consistent with many previous studies
[Behrens et al., 2007; Behrens et al., 2003b; Nadler and
Galun, 2006; Von Luxburg, 2007].

ICA in Connectivity

ICA has achieved great success in neuroimaging appli-
cations, particular in fMRI [Beckmann et al., 2005; Calhoun
and Adali, 2006; Greicius et al., 2004; Kiviniemi et al.,
2003; McKeown et al., 2003]. The goal of ICA for fMRI
analysis is to study the spatio-temporal structure of the
signal. One can choose to work with either spatially or
temporally independent components, but most applica-
tions use the former and recover maximally spatially inde-
pendent and temporally coherent sources. In this study,
ICA was applied to structural connectivity. In this case,
we sought components that were maximally spatially
independent in tract regions (Region A) but exhibited
shared connectivity profile (Region B). This approach
opens avenues to explore structural connectivity maps in a
data-driven way, which we believe is useful and straight-
forward, compared to other parcellation methods requir-
ing details in clustering priors and/or projections
[O’Muircheartaigh et al., 2011].

Standard single-subject ICA does not draw group infer-
ences from multiple subject analysis naturally [Calhoun
et al., 2001]. Different individuals may have very different
mixing ‘loadings’ (time courses in fMRI, connectivity pro-
file in connectivity) and matching components among sub-
jects is imperfect. Our implementation follows the
temporal concatenation approach in the GIFT toolbox,
which has been extensively studied and discussed in pre-
vious papers [Allen et al., 2014; Calhoun and Adali, 2012;
Calhoun et al., 2001; Erhardt et al., 2011]. The cmICA per-
forms ICA on connectivity matrices from the entire group,
capturing the common group components, then later back-
reconstructing into subject-specific components, making
subject variability and group difference comparisons

Figure 7.

This is an example of how a high model order analysis can split

components obtained from a low model order analysis and

improve the definition of the connected region. The component

IC6 (right hemisphere, and leftmost plot) and IC12 (left hemi-

sphere, and rightmost plot) are from low order analysis. They

cover uncinate fasciculus and parts of the inferior fronto-

occipital fasciculus. The corresponding high order analysis com-

ponents (shown in the middle) are IC10, IC14, IC58 (right hemi-

sphere) and IC12, IC42, IC78 (left hemisphere). They clearly

demonstrate the splitting of the low model order component,

and the better definition of the hook-shape of uncinate fascicu-

lus as captured by the high order components IC10 and IC12.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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relatively straightforward. In our case, cmICA assumes a
common model for the spatial tract maps to avoid the
single-subject ICA problem. The GIFT software has been
optimized to work with very large numbers of subjects
and is not limited by the RAM of the computer used
[Rachakonda and Calhoun, 2013]. To improve the execu-
tion of cmICA in large-scale structure connectivity, we
also chose ARPACK, a fast SVD method on large sparse
matrices, to support PCA, and used the infomax algorithm
to perform the ICA.

Compared to our strategy, another approach for per-
forming group inference with ICA is called tensorial ICA,
which was used in O’Muircheartaigh’s connectivity parcel-
lation for a similar goal [O’Muircheartaigh et al., 2011]. In

tensorial ICA it is assumed that each subject’s mixing
matrix is a common matrix scaled by the subject’s loading
coefficients. In fMRI this assumption is approximately
valid for a stimulus driven fMRI experiment with identical
timing among subjects but not for resting-state fMRI. A
similar limitation of tensorial ICA applies here, because
we are interested in regional differences of connectivity
profile, which are not captured in the tensorial ICA
approach beyond a simple amplitude parameter for the
entire component [Beckmann et al., 2005; Calhoun et al.,
2009; Guo and Pagnoni, 2008].

The ICA method has been applied previously to FA
maps [Caprihan et al., 2011] and on the maps generated
by TBSS analysis [Li et al., 2012]. The input data in our

Figure 8.

The spatial correlation between rows of S and the correspond-

ing columns of R for the low model order analysis (A) are com-

pared to those of the high model order analysis (B). A1 and B1

are the correlations between all S and R pairs for the two

model orders, A2 and B2 are the tract patterns of the pairs

with the highest correlation, and A3 and B3 are the tract pat-

terns of the pairs with the lowest correlation between S and R

pairs. The S part of component 16 (A3) is connected to a

broader region in R, lowering the correlation; whereas the S

part of component 54 (B3) is connected to regions in the oppo-

site hemisphere, lowering the correlation. [Color figure can be

viewed in the online issue, which is available at wileyonline

library.com.]
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Figure 9.

The regions with significant group differences (P< 0.05*)

between patients with schizophrenia and healthy controls are

separately illustrated for the low and the high order models,

and for S and R. The effect of age was removed, the significance

was after FDR correction and significant clusters larger than five

voxels are shown. The blank areas mean that there were no sig-

nificant differences found in these categories. [Color figure can

be viewed in the online issue, which is available at wileyonline

library.com.]
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method is a connectivity matrix, which is also based on
diffusion imaging, but the nature of the input data is dif-
ferent from the previous two applications. The connectiv-
ity matrix for each subject is two dimensional, and its ICA
decomposition segmented the brain and gave the connec-
tivity profile for each segment, which itself was an image.
In the previous applications of ICA to diffusion imaging
data the input was essentially one-dimensional and ICA
segmented the brain but only gave a scalar loading coeffi-
cient for each segment.

This is a general method to understand group differen-
ces in connectivity matrices. Connectivity matrices
obtained from resting-state fMRI data by an ICA or a seed
based analysis can be further analyzed by cmICA pro-
posed here for teasing out significant brain structures that
show group differences. Another important thing to note
is that once a whole brain connectivity matrix is calcu-
lated, we can extract an asymmetric submatrix between
two regions and perform cmICA. This would place greater
weight on the connections between the two specific
regions considered, and the conclusions will have greater
sensitivity to the connectivity between these two regions.
In our analysis we have noted that the connectivity matrix
had stronger values within white matter and consequently

tracts were obtained in these regions. If connectivity
between two regions within gray matter, or from white-to
gray matter needs to be emphasized then a connectivity
matrix can be obtained specifically for these regions.

Relationship Between S and R

From the results of Figure 9, it is apparent that the con-
nectivity profile maps R capture more differences than the
spatial tract maps S. The fundamental reason for this
result lies in the assumptions of group ICA in our model.
In a manner similar to the temporal concatenation
approach of fMRI data, ICA mathematical model assumes
spatial stationarity across subjects, i.e. assuming common
group spatial maps [Calhoun et al., 2001], while allowing
for unique time courses for each subject. Subject specific
spatial maps are calculated by some back-reconstruction
method. Although individual spatial maps can show dif-
ferences across subjects, the differences will be small
because of ICA’s stationarity assumption on S [Allen et al.,
2014] . A greater proportion of the difference is captured
by R. This is consistent with our observation that the R

maps are more sensitive than S maps in terms of inter-
subject variability, and therefore the former captures more
group difference than the latter.

The connectivity matrix properties that influence the
correlation between S and R to be lower or higher requires
further study. Regarding the decrease of correlations
between group-specific S and R maps in the higher order
model, we provide several possible explanations. First, a
high order model results in more S spatial map splitting,
consistent with fMRI studies [Abou-Elseoud et al., 2010;
Kiviniemi et al., 2009]. However, the corresponding R is
not necessarily following the same splitting pattern.
Instead, the subcomponents of R in the high order model
may share similar maps as in the original R in the low
order model. This has been observed in fMRI as well. For
example, in the high dimensional model, the default mode
network spatial component S may split into multiple non-
overlapping spatial sub-components, although they still
share high correlations on time course components R

[Allen et al., 2014] as well as with the R of the original
DMN component in the low order model. In this sense,
the high order model will decrease the original large spa-
tial correlation of S and R from the low order model. Sec-
ondly, we noticed that with the higher order model, S can
define a region in one hemisphere but its connectivity pro-
file R can capture connections to the opposite hemi-
spheres, see Figure 8, B3 component 54. We believe that
these tract components with low spatial correlations are
still physiologically significant. And finally, the high order
model captured more subtle ‘loose’ tract parcels S (e.g.,
thalamic radiations in different orientations beyond the
anterior), with lower connectivity strength which may not
be recovered in lower dimensional PCA. It is possible that
these tracts S were connected with more extensive regions

TABLE III. MNI table of group difference components

S Sizea Peak R Sizea Peak

Low order 30
Commissural

R 3 6 (215,51,18), 26.074
R 17 46 (20,31,28), 25.937
R 25 60 (215,61,48), 24.694

Association
R 6 18 (40,6, 227), 24.780
R 16 38 (25,61,28), 24.946

Projection
S 5 7 (35,21,28), 25.354 R 5 61 (5,31,73), 25.776

R 29 9 (5,21,-1), 25.889

High Order 100
Commissural

R 71 112 (25,51,23), 25.679
R 80 21 (215,31,48), 26.178
R 91 7 (235,31, 27), 23.895

Association
R 14 32 (40,6, 232), 24.760
R 39 6 (25,76,3), 24.315
R 51 8 (35, 219,3), 24.592
R 58 41 (10,16,3), 25.395

Projection
S 34 7 (35,21,28), 25.531 R 22 9 (15,16,13), 23.791
S 92 16 (5,16,8), 26.656 R 34 6 (35,21,23), 24.949

R 63 18 (25,36,33), 24.070
R 88 32 (25,36,33), 24.743
R 89 15 (5,21, 22), 26.017

a‘Size’ is calculated in units of voxels, 1 voxel 5 5 3 5 3 5 mm3.
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R than those ‘tight’ tract bundles (e.g., commissural fiber
tract bundles across corpus callosum) with high connectiv-
ity strength that shares the common S and R.

The above discussion refers to the case when Region A
and Region B are identical in the original connectivity
matrix. When these regions are not identical, such as in
the case of most commonly explored thalamo-cortical con-
nectivity matrix, cmICA will yield S and R in different
spaces as well. Theoretically, we can apply ICA in either
direction of the connectivity matrix, e.g. searching inde-
pendent maps S on thalamus (thalamic parcealltion) and
connected cortical areas R, or S on cortical regions (cortical
parcellation) and finding connected thalamic subset R.

Limitations and Future Work

One limitation of this study is that the diffusion
sequence used in our data collection, such as low b-values
of 800 s/mm2 and low gradient directions of 30. This
study was based on a previously collected data set fora
large schizophrenia study (http://cobre.mrn.org/). How-
ever our approach is generally applicable to other data
sets and the purpose of the paper is to introduce the
cmICA method. The low number of gradient directions
limits the number of multiple fiber orientations and the
angular resolution that can be resolved in a voxel, and
reduces the accuracy of the calculated connectivity matrix.
The bedpost algorithm used automatic relevance determi-
nation (ARD) to limit the number of multiple fiber orienta-
tion in the model to that supported by the data [Behrens
et al., 2007]. The cost of low b-value is to reduce the sensi-
tivity of diffusion coefficient estimation and the capability
of detecting intravoxel heterogeneity, therefore resulting in
reduced connectivity matrix accuracy. With these draw-
backs in mind, we would like to improve our sequence
quality in future. The present analysis also has a limitation
of 5mm spatial resolution used for the whole brain con-
nectivity calculation. We were interested in whole brain
analysis because we wanted to develop a ‘blind’ source
separation method that could look for connectivity differ-
ence not only between the white matter but also between
the white and the gray matter. The primary limitation of
5 mm spatial resolution was the memory to calculate SVD
of the connectivity matrix. The connectivity matrices are
sparse (Supporting Information A) and it may be possible
to use clever computational techniques for SVD calculation
which take advantage of this sparsity. We are working on
this and plan to relax this constraint in future work
[Rachakonda and Calhoun, 2013]. The proposed approach
is general and will work better as data quality and resolu-
tion is improved.

Although we tested our algorithm for both low model
order 30 and the high model order 100 in numerous ways
(see Methods), it is still hard to know the ideal number of
ICA components without the ground truth and further
simulation studies. It is difficult to compare our work with

previous approaches because they are sufficiently differ-
ent. Our review of previous work revealed that existing
work typically requires a seed ROI or terminal ROI or use
only a pre-defined subset of the brain region, and hence
are not purely data-driven [Anwander et al., 2007; Catani
and Thiebaut de Schotten, 2008; Cloutman and Ralph,
2012; Jin et al., 2014; Johansen-Berg et al., 2004; Lawes
et al., 2008; O’Muircheartaigh et al., 2011; Oishi et al.,
2009]. We did find one similar work that utilized ICA into
connectivity-based parcellation from O’Muircheartaigh
[O’Muircheartaigh et al., 2011], which was applied to
thalamus-cortical connectivity. In this paper, the authors
separated left-right hemispheres and ran ICA of model
order 30 (out of 1770 thalamic volumes) on each side with-
out further validation on model selection, and found that
ICA generated similar thalamus parcellations as Behrens’
hard segmentation method [Behrens et al., 2003a] in the
same datasets but with increased sensitivity. Using a simi-
lar approach, we ran ICA in our subset of thalamus-
cortical connectivity matrix, and found similar parcellation
results. However, we can also compare the thalamocortical
regional connectivity differences in our ICA model which
O’Muircheartaigh’s tensorial ICA doesn’t allow. These
results can be replicated and validated with multiple b-
value and higher number of gradient direction data sets,
as they become available.

In this study, we did not study the effect of distance on
connectivity. Long range connections will be weaker.
Although, the algorithm probtrackx/FSL gives on option
for calculating connectivity with a distance correction, we
have not studied it. This correction may alter the connec-
tivity group differences found in this study.

The patients and the control group of subjects were
matched based on age, gender, and race. They were also
matched on the basis of their parental socio-economic sta-
tus (SES), which has been indicated as a more unbiased
potential confounder associated with premorbid intelli-
gence in previous works [Calvin et al., 2011; Saykin et al.,
1991; Yeo et al., 2014]. However, both the WTAR and
WASI IQ scores of patients were significantly lower than
those of controls. Thus it is possible that connectivity dif-
ferences we see are because of cognitive differences and
not because of schizophrenia. All the patients are on some
form of medication and its effect on connectivity is another
confounding factor in this study.

CONCLUSION

This methods paper presents a general framework
(cmICA) to look for differences between connectivity mat-
rices of two groups of subjects. The connectivity matrix
can be functional or structural. Our focus was on connec-
tivity matrices derived from diffusion tractography. The
method to analyze the connectivity matrix is different
from other previous methods in that it gives a dual seg-
mentation of the brain (S and R). The previous
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connectivity matrix analysis methods have been used to
segment the brain but they do not give the connectivity
profiles of these segments. A whole brain connectivity
matrix based on diffusion data has not been studied
before. The whole brain connectivity matrix was symmet-
ric but as we discuss before this method can be used to
study connectivity between any two different regions. The
field of diffusion imaging based connectivity studies has
been advanced by this method to look directly at connec-
tivity rather than a local property such as fractional anisot-
ropy. Finally, we applied cmICA to probe for connectivity
differences between brains of patients diagnosed with
schizophrenia and healthy subjects and the differences
were in the connectivity profiles of tracts which included
forceps major, right inferior fronto-occipital fasciculus,
uncinate fasciculus, thalamic radiation, and corticospinal
tract.
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