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Abstract

West Nile virus (WNV) is an arbovirus that was first reported in North America in New York in 

1999 and, by 2003, had spread more than 4,000 km to California. However, variation in viral 

genetics associated with spread are not well understood. Herein, we report sequences for more 

than 100 WNV isolates made from mosquito pools that were collected from 2003 – 2011 as part of 

routine surveillance by the California Mosquito-borne Virus Surveillance System. We performed 

phylogeographic analyses and demonstrated that 5 independent introductions of WNV (1 WN02 

genotype strain and 4 SW03 genotype strains) occurred in California. The SW03 genotype of 

WNV was constrained to the southwestern U.S. and had a more rapid rate of spread. In addition, 

geographic constraint of WNV strains within a single region for up to 6 years suggest viral 

maintenance has been driven by resident, rather than migratory, birds and overwintering in 

mosquitoes.
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INTRODUCTION

West Nile virus (WNV) is an arbovirus of the family Flaviviridae that was first identified in 

North America in 1999. In the U.S., Culex mosquitoes are the primary vectors for WNV (1–

4), and passerine birds are the most common avian host (1, 5). As incidental hosts, humans, 
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equines, other mammals, and many bird species do not contribute to the enzootic cycle or 

evolution of WNV.

WNV was first reported in New York and reached the West Coast within 4 years. Beginning 

in July 2003, mosquito pools from California tested positive for WNV (6). In addition, three 

autochthonous human cases of WNV in southern California were reported to ArboNET in 

2003. Human WNV disease cases in northern and southern California were reported to 

ArboNET the following year, and, by the conclusion of the 2004 transmission season, WNV 

had been detected in every county in the state of California (7).

The ecology of California has presented WNV with physical and climatic barriers as well as 

an assortment of vector and host communities. Although much of California has a 

Mediterranean climate with cool, rainy winters and dry summers, it is a very long state 

extending 1,240 km from the dry SE deserts at the Mexican border to the NW coastal rain 

forests at the Oregon border. The state is divided longitudinally by the Coast Range and the 

Sierra Nevadas, which form the east and west boundaries of the intense Central Valley 

agroecosystem, respectively, and by the Tehachapi and San Gabriel mountains, which 

enclose the southern end of the Central Valley and isolate the highly urbanized Los Angeles 

basin and San Diego areas from the remainder of the state. Natural physical divisions have 

altered mosquito and avian host communities. Culex tarsalis Coq., the primary rural vector 

throughout most of the state, is divided into distinct clades found in the SE Desert biome and 

the northern areas of the state (8). Culex pipiens L complex populations vary longitudinally, 

and recent genetic studies have detected four major groups based on structure analysis: Cx. 

p. quinquefasciatus south of the Tehachapi Mountains, Cx. pipiens form pipiens and Cx. 

pipiens form molestus in urban areas near San Francisco and Sacramento, and admixtures of 

all three forms in the Central Valley (9).

By mapping the sampling location and date of WNV-positive mosquito pools, a single 

introduction of WNV into southern California, followed by northward expansion, was 

proposed as the route for WNV emergence in California (6). The large-scale spatial 

dynamics of WNV emergence in the U.S. also was determined using sequence data from 

isolates collected across the country between 1999 and 2006 (10). In this analysis, the virus 

was shown to have spread from the East Coast to the West Coast at an average diffusion rate 

of 1,200 km/year, which includes a phase of increasing rate from 1999 to 2003 followed by 

a reduced rate of diffusion from 2004 to 2006. The high rate of WNV dispersal in the U.S. 

could be explained by WNV infection of migratory birds that travel long distances annually 

(11); however, evidence for infection in vernal northbound migrants has been limited for 

WNV (12, 13) as well as other North American encephalitides (14, 15). In contrast, 

movements by resident birds have also been shown to be important for WNV enzootic 

maintenance and movement (16). Furthermore, the phylodynamics of two emergent WNV 

genotypes, WN02 and SW03, have not been studied. These genotypes are characterized by 

the amino acid substitutions E-V159A and NS4A-A85T, respectively (17–19). WN02 

genotype isolates have a shorter extrinsic incubation period in Culex mosquitoes than the 

founding NY99 strain (17, 20, 21), and WN02 and SW03 genotype isolates replicate to 

higher peak titers in house sparrows compared to the original NY99 genotype (22), 

suggesting that WNV transmission dynamics may differ by genotype.
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In the current study, we used a consistent sampling method of collecting WNV isolates from 

mosquitoes, followed by sequence analysis, to evaluate WNV dynamics during its 

emergence in California from 2003 to 2011. We show evidence for multiple introductions of 

WNV into California. Next, we compared the rate of dispersal of WN02 and SW03 

genotypes to infer adaptive phenotypes. Finally, using isolates collected during winter 

months, we provide evidence for overwintering of WNV in mosquitoes in southern 

California.

MATERIALS AND METHODS

Mosquito pools

Mosquitoes were collected and pooled by species during routine surveillance by California 

mosquito control agencies from 2003 to 2011. Pools were triturated, and viral RNA was 

extracted at the UC Davis Center for Vectorborne Diseases. Samples were screened for 

WNV using quantitative real time RT-PCR, as recently described (23). Pools were selected 

for further analysis based on Ct score and date and location of WNV RNA detection. 

Isolates were stratified by year and month of collection, genotype, or mosquito species. 

Significance was determined using a chi-square test.

Viral genome sequencing and assembly

Mosquito homogenates were passaged once on Vero or C6/36 cells. Viral RNA was 

extracted from clarified primary cultures using an ABI MagMax kit. RNA amplification was 

performed as previously described (24). Illumina library construction was performed using 

NexteraXT (Illumina) by following the manufacturer’s protocol. Sequencing was performed 

on the Illumina HiSeq2500 platform, generating paired-end 101 bp reads. The reads were 

assembled using the VICUNA assembly program (25). Sequences for 112 isolates were 

deposited into GenBank with accession numbers KR348915–KR349026 (http://

www.ncbi.nlm.nih.gov/Genbank/).

Phylogenetic analyses

143 previously sequenced full-length WNV genomes were selected from GenBank based on 

date and location of sampling and added to the dataset of 112 newly sequenced isolates, 

creating a final dataset of 255 sequences. These 143 previously-sequenced isolates were 

collected between 1999 and 2012. 23 out of the 143 isolates were collected in CA, and the 

remaining 120 isolates were collected across North America outside of CA. Latitude, 

longitude, and date were taken from GenBank entries or estimated as previously described 

(10). Dates were converted into decimals.

The coding regions of all 255 sequences were aligned using Clustal Omega (26) and edited 

manually. jModelTest2 was used to determine the most appropriate nucleotide substitution 

model, which was a generalized time reversible (GTR) model with a gamma (Γ) distribution 

of rate variation among sites (27, 28). Phylogenies were constructed using the Bayesian 

MCMC method in BEAST v1.8 (29) with a GTR + Γ substitution model, a lognormal 

relaxed molecular clock, and a time-aware smoothed GMRF Bayesian Skyride coalescent 

model (30, 31). Distances were calculated based on great circle distances. Spatial parameters 
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were estimated using relaxed random walks (RRW), a heterogeneous probability distribution 

of diffusion in order to allow for variation in dispersal rate, as previously determined to be 

most appropriate for WNV in North America (10). However, selection for the dispersal 

model was also performed by using the harmonic mean estimator (HME) to calculate log 

Bayes Factors for gamma, lognormal, and cauchy heterogeneous models and a homogenous 

Brownian model. The homogeneous model was rejected. A lognormal distribution of 

heterogeneous dispersal rates was used for further analyses because the cauchy RRW 

produced results that were very similar, and MCMC convergence was not reached with the 

analysis using a gamma RRW. MCMC chains were run for 200 million states, sampling 

every 20,000 states. Convergence was evaluated using Tracer v1.6. The maximum clade 

credibility (MCC) tree was determined using TreeAnnotator and visualized using FigTree 

v1.4.2 and SPREAD (32). Computing resources were used from the Cipres Science Gateway 

(33).

RESULTS

Sampling and sequencing of WNV from mosquito pools

A total of 192 mosquito pools that were collected between 2003 and 2011 in California and 

that were RT-PCR positive for WNV RNA were inoculated onto Vero cells. Of these, 

infectious virus was collected from primary passages of 136 pools, from which viral RNA 

was extracted and the consensus sequence determined. Full-length WNV genomes were 

successfully assembled from 112 mosquito pools from 10 mosquito control districts in 

California: Sacramento-Yolo (SAYO), Shasta (SHAS), Coachella Valley (COAV), Greater 

Los Angeles County (GRLA), Sutter-Yuba (SUYA), Kern (KERN), Contra Costa (CNTR), 

Imperial County (IMPR), Owens Valley (INYO), and San Bernardino (SANB).

WNV positive mosquito pools were first detected in California in 2003, and the number 

detected varied annually (Fig. 1A). Therefore, the number of WNV genomes sequenced 

from mosquito pools in this study also varied by year (Fig. 1B). In addition, the total number 

of sequenced isolates varied by month (Fig. 1C), mosquito species (Fig. 1D), and location of 

collection (Fig. 1E and Fig. 2A). Across the years sampled, the number of isolates that were 

sequenced was generally proportional to the total number of WNV positive mosquito pools 

detected in California. The number of sequenced isolates were underrepresented in 2006, 

likely due degradation of samples, and overrepresented in 2003 due to an attempt to 

understand the genetic composition of isolates at the presumed time of WNV introduction 

into California. The majority of sequenced WNV RNA-positive mosquito pools were 

collected during July, August, and September (Fig. 1C) in a manner proportional to the 

number of positive mosquito pools and human WNV disease cases reported to ArboNET 

from California. Most isolates were collected in 5 mosquito control districts: GRLA, KERN, 

COAV, SAYO, and CNTR (Fig. 2A), which together accounted for the locations of 50% of 

human WNV disease cases in CA. In total, isolates from ca. 1% of all WNV RNA-positive 

mosquito pools collected in CA between 2003 and 2011 were sequenced in this study.

Isolates were stratified by genotype (WN02 or SW03). Approximately 60% of WNV 

isolates were WN02 genotype, and 40% were SW03 genotype. Analyses of isolates based on 

genotype showed significant differences based on year of collection (p<0.001; Fig. 1C). 
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There were more WN02 genotype viruses than SW03 genotype viruses collected from 

2003–2005, indicating that the WN02 genotype was likely responsible for human outbreaks 

during these years. The distribution of SW03 genotype viruses was also restricted based on 

location, such that the proportion of WN02 and SW03 genotype viruses from southern CA 

was significantly different compared to northern CA (p<0.001; Fig. 1D). The majority of 

viruses collected in northern CA were WN02 genotype. The mosquito species represented 

by the isolates included Cx. pipiens and Cx. tarsalis in the north and Cx. quinquefasciatus, 

Cx. tarsalis, and Cx. stigmatosoma in the south (Fig. 2B). However, there was not a 

significant difference in the proportion of WNV genotypes by mosquito species.

Phylodynamics of WNV in California

The coding region of the 112 newly sequenced time-stamped WNV genomes from CA were 

aligned with 143 publicly available WNV genomes from GenBank. A Bayesian MCMC 

analysis was performed to infer their phylodynamic relationship. On average, WNV in the 

U.S. exhibited a mutation rate of 5.3×10−4 substitutions/site/year [95% highest posterior 

density (HPD) interval: 4.7×10−4 to 5.8×10−4 substitutions/site/year] from 1999 to 2012. 

The origin of the WNV epidemic in the U.S. was estimated to be 1998.4 (95% HPD interval: 

1997.9–1998.9) at 40.47°N, −72.59°W, which is near Long Island, NY. This estimate fits 

well with the onset of the first known case of human WNV disease in the U.S., which was 

August 5, 1999 (1999.6) in New York (34).

WNV was first identified in Imperial Valley, CA in July 2003 in mosquitoes, and then in 

sentinel chickens, dead birds, and humans at multiple locations throughout southern CA. 

WNV was contained south of the Tehachapi Mountains during 2003 but then spread rapidly 

throughout CA. The first detection of WNV outside of southern CA was in July 2004 near 

Fresno (6, 7). If a single introduction of WNV into CA was assumed, the time to most recent 

common ancestor (TMRCA) of CA WNV would indicate an undetected introduction of 

WNV into CA in 2000.3 (95% HPD interval: 1999.7–2000.9). However, surveillance 

programs had been actively testing for WNV in mosquitoes and sentinel chickens since 

2000, and WNV was not detected in CA until July 16, 2003 (2003.5) (6), making a single, 

undetected introduction of WNV into CA in 2000 very unlikely. Instead, if multiple 

introductions of WNV into CA were allowed, a more reasonable time of introduction could 

be estimated. In this scenario, there was genetic evidence of 1 introduction of WNV 

genotype WN02 in 2002.3 between the GRLA and COAV districts (95% HPD interval: 

2001.9–2002.7) and 2 introductions of WNV genotype SW03 in the GRLA district 

approximately 1 year later in 2003.3 (95% HPD interval: 2002.8–2003.8) and 2003.5 (95% 

HPD interval: 2003.0–2003.9), followed by at least 2 more introductions of SW03 in 2005 

and 2006 in the COAV district (Fig. 3). The WN02 genotype virus spread to northern CA at 

least three times during the year after its initial introduction into CA. However, only the first 

of the four SW03 introductions spread to northern CA, and this occurred several years later 

in 2006.5. The other three introduced SW03 viruses remained locally near the site of 

introduction in southern CA (COAV or GRLA). Co-circulation of WN02 and SW03 

genotypes was evident in most locations from 2006 through 2008, although the SW03 

genotype appeared to have displaced the WN02 genotype in COAV and GRLA by 2009. 

This apparent displacement is unlikely to be due to sampling bias, as nearly twice as many 
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isolates were sequenced per year in the COAV and GRLA districts after 2008 as compared 

to before 2008.

Phylogeography of WNV in California

During 2003, WNV was only detected in the 6 most southern counties of California. The 

most likely sources of the WNV strains introduced into CA were the western and southern 

states, primarily Arizona and Texas (Fig. 4A and B). Isolates from Mexico that were 

included in this analyses were also derived from Arizona (SW03 genotype) or CA (WN02 

genotype) and were introduced in 2002–2003 (Fig. 4A and B).

Previous studies have shown that WNV followed a heterogeneous dispersal pattern during 

emergence in the U.S., in which rapid dispersal from 1999–2003 was followed by a much 

slower rate of dispersal from 2003–2006, with an average rate of 1200 km/year (10). Using a 

heterogeneous dispersal model, in this study WNV had an average rate of dispersal of 130 

km/year (95% HPD: 118–142 km/year) from 1999–2012, which was much slower than the 

previous estimate for WNV spread during emergence. This suggests that the long-range 

movements that drove high WNV dispersal rates early in the epidemic were no longer 

characteristic of WNV once it became endemic. However, a homogeneous model of 

dispersal was still rejected. Excluding the CA WN02 genotype isolates from the analysis, 

WNV had an average rate of dispersal of 167 km/year (95% HPD interval: 150–185 km/

year), suggesting that CA WN02 genotype viruses had a rate of dispersal that is lower than 

the average for North American isolates. Excluding the SW03 clade from the analysis, 

WNV had an average rate of dispersal of 113 km/year (95% HPD interval: 100–124 km/

year). This suggests that SW03 genotype viruses had a rate of dispersal that is higher than 

average for North American isolates. The SW03 clade spread at a dispersal rate that was 

10% higher than the relative rate of dispersal of the CA WN02 clade.

The SW03 genotype was estimated to have first arisen in New Mexico in 2001, whereas the 

WN02 genotype was estimated to have first arisen in Connecticut in 2000. Interestingly, the 

SW03 genotype evolved independently on at least 3 other occasions in the southwest: in 

GRLA between 2005.8 and 2007.3, in Dallas, Texas between 2010.5 and 2011.9, and in 

Colorado between 2003.5 and 2004.6. Based on the 80% HPD estimates for the location of 

ancestral nodes, the SW03 genotype thrived in New Mexico, Arizona, southern CA, and 

northern Mexico (Fig. 4B). In contrast, the WN02 genotype was not found among the 10 

isolates from Arizona included in the analysis and was restricted in its diffusion in the 

southwest (Fig. 4A). However, it spread within northern CA to a much greater extent than 

the SW03 genotype (Fig. 4A). This suggests that the observation in Fig. 1E that the SW03 

and WN02 genotypes were found in different proportions based on location may be due to 

genetic determinants of viral spread within the different climates, mosquito subspecies, or 

avian hosts in the southwestern U.S.

Overwintering of WNV in mosquitoes

Despite the collection of most mosquito pools during summer and fall, the seasons of 

greatest WNV transmission, two mosquito pools containing WNV were collected during 

December 2007 and February 2011 in the GRLA and COAV districts, respectively. If WNV 
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had been maintained in southern California through the winter by mosquitoes, these winter 

isolates should phylogenetically cluster with viruses collected at the end of one transmission 

season and viruses collected at the beginning of the next transmission season. In addition, 

spatial clustering of these WNV variants would be expected.

In Fig. 5A, isolate COAV 179_2011, which was collected on Feb. 15, 2011 from Culex 

tarsalis, is highlighted on an MCC Bayesian phylogeny. This winter isolate, which clustered 

with the SW03 genotype viruses, clustered temporally between isolates collected during the 

2010 and 2011 WNV transmission seasons (Fig. 5B). COAV isolates were also 

geographically clustered north of the Salton Sea for 6 years. Similar results were found for a 

second winter isolate (GRLA 6143_2007, SW03 genotype, collected Dec. 5, 2007 from Cx. 

quinquefasciatus), also highlighted on the MCC Bayesian phylogeny (Fig. 5A). This isolate 

was phylogenetically and geographically clustered in the same location for 2 years (Fig. 5C). 

These data indicate the overwintering of WNV amongst winter Culex mosquitoes in 

southern CA.

While no winter isolates were collected from northern CA, there was phylogenetic clustering 

of WN02 isolates from SAYO, SUYA, SHAS, and CNTR districts from 2005 to 2011. This 

indicates that WNV was also likely maintained in northern CA, rather than reintroduced 

annually from southern CA.

DISCUSSION

By sampling mosquitoes from the same locations throughout the emergence and 

maintenance of WNV in California (Fig. 1 and 2), a unique dataset of viral isolates was 

created to evaluate the spatial and temporal evolution of WNV. With this dense sampling 

strategy, we were able to determine that WNV was introduced into California at least 5 

times via southern CA, with the majority of introductions occurring around 2003 and by 

SW03 genotype viruses (Fig. 3). The first three of the introduced WNV strains (one WN02 

and two SW03 genotype viruses) were maintained in California through the most recent 

sampling dates in 2011, and the first two of the introduced strains also spread to northern 

California (Fig. 3). These studies build upon previous reports of the variable rate of 

diffusion of WNV (10) by adding a genetic component to this heterogeneous dispersal 

pattern. SW03 genotype viruses had a higher dispersal rate than the average of all WNV 

isolates, and SW03 and WN02 genotype viruses occupy different spatial niches in the U.S. 

(Fig. 4). Horizontal transmission of WNV during winter months has previously been shown 

to occur in southern California in birds (35) and Culex tarsalis mosquitoes (36). The 

phylogeographic continuity of WNV evolution (Fig. 5) confirmed that overwintering 

contributes to enzootic maintenance. Together, these analyses suggest that the spread and 

maintenance of WNV is dependent on viral genetics and climate.

Since the introduction of WNV to the U.S., only two non-synonymous mutations in WNV 

have risen to high frequencies. The E-V159A substitution (WN02 genotype) has been found 

in all sequenced WNV isolates for several years. The NS4A-A85T substitution (SW03 

genotype) has arisen independently at least four times in the southwestern U.S. While WNV 

lacked strong spatial clustering during its emergence in the U.S., likely due to a complex 
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enzootic cycle involving birds, the isolates from CA showed evidence of spatial restriction 

based on genotype. Although there were no differences between WN02 and SW03 

genotypes in the location of their introductions into California (Fig. 4), SW03 genotype 

viruses were more frequently located in southern CA than WN02 genotype viruses (Fig. 1), 

were introduced more frequently to CA than WN02 genotype viruses (Fig. 3), and were 

estimated to have a higher dispersal rate than WN02 genotype viruses (Fig. 4). These 

seemingly contradictory characteristics of a spatially restricted yet more diffuse virus 

suggest that the amino acid substitution that defines the SW03 genotype, NS4A-A85T, may 

be a temperature-sensitive adaptive mutation that drives a higher dispersal rate only in 

warmer climates. The mechanism by which SW03 viruses could diffuse faster than WN02 

viruses is unknown but may be due to faster kinetics of viral replication or higher 

competence in mosquitoes (17, 21) or peridomestic passerine birds such as house sparrows 

(22) compared to WN02 genotype viruses. In addition, the warmer climate in southern CA 

may naturally decrease the extrinsinic incubation period of WNV in mosquitoes.

Other WNV mutations that have been previously characterized include several that are 

known to increase temperature sensitivity of WNV (37). These mutations were only found 

in CA isolates from 2003 through 2005. The decreased ability of WNV isolates containing 

these temperature-sensitive mutations to replicate at the high temperatures that are generated 

during corvid infections (38) may have contributed to the disappearance of these mutations. 

Therefore, temperature sensitivity is a critical phenotype to consider in the analysis of WNV 

spread.

In this dataset, there is evidence of few long-distance WNV dispersal events after the virus 

was introduced to CA. While the introduction of WNV into a naïve location may be more 

visibly dependent on migrating birds, the maintenance of WNV in an endemic area is likely 

dependent on resident birds, which contribute only small-scale movements. In order to 

understand whether the differential dispersal of emergent WNV genotypes in the U.S. is due 

to differences in host or vector competence, the replication dynamics of the WNV genotypes 

will need to be compared in multiple avian and mosquito species.
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Figure 1. 
Temporal distribution of WNV isolates sequenced in this study. (A) The number of WNV 

positive mosquito pools identified in California (dashed line) and number of human WNV 

disease cases per year in California (solid line). (B) The number of sequenced WN02 (filled 

bars) and SW03 isolates (open bars) that were collected per year. (C) The number of 

sequenced WN02 (filled bars) and SW03 (open bars) isolates that were collected each 

month. (D) The number of WN02 (filled bars) and SW03 (open bars) isolates stratified by 

mosquito species. (E) The number of WN02 (filled bars) and SW03 (open bars) isolates 

collected in northern or southern CA.
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Figure 2. 
Spatial distribution of WNV isolates sequenced in this study. (A) A map showing the 

location of WN02 (filled circles) and SW03 (open circles) isolates sampled in this study, 

with locations of mosquito control districts indicated. (B) A map showing the location of 

isolates sampled in this study stratified by mosquito species.
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Figure 3. 
Phylogenetic relationship between WNV isolates. A MCC phylogeny constructed from the 

open reading frame of 196 WNV isolates is shown. Nodes with >0.9 posterior probability 

are indicated by filled circles. Isolates from California are highlighted in gray. The two 

emergent genotypes of WNV are indicated on the phylogeny by color: WN02 in blue lines 

and SW03 in orange lines.
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Figure 4. 
Dispersal of WNV isolates in California from 2002 – 2010 (A through E). Solid lines 

represent the MCC tree of WNV isolates, with 80% HPD regions for the location of 

uncertain nodes shown by clouds. The two emergent genotypes of WNV are indicated by 

color: WN02 in blue and SW03 in orange.
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Figure 5. 
Overwintering of WNV in southern CA. (A) The MCC phylogeny of WNV, with the areas 

of interest highlighted. (B) A close-up view of one branch from the MCC phylogeny, with 

winter isolate COAV179_2011 highlighted. (B) A close-up view of another branch from the 

MCC phylogeny, with winter isolate GRLA6143_2007 highlighted. Isolate names include 

location of collection, isolate number, and date of collection in decimal format.

WNV was introduced into California at least 5 times.

The SW03 genotype of WNV was constrained to southern California.

The SW03 genotype spread with a more rapid dispersal rate than the WN02 genotype.

The overall dispersal rate of WNV has decreased dramatically since its emergence.

WNV overwintered in California in Culex mosquitoes.
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