
RESEARCH ARTICLE

Myocardial Integrated Backscatter in Obese
Adolescents: Associations with Measures of
Adiposity and Left Ventricular Deformation
Lijian Xie1,2☯, Elim Man2☯, Pik-to Cheung2, Yiu-fai Cheung2*

1 Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China, 2 Department of
Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong,
China

☯ These authors contributed equally to this work.
* xfcheung@hku.hk

Abstract

Background

Myocardial fibrosis has been proposed to play an important pathogenetic role in left ventricular

(LV) dysfunction in obesity. This study tested the hypothesis that calibrated integrated back-

scatter (cIB) as a marker of myocardial fibrosis is altered in obese adolescents and explored

its associations with adiposity, LVmyocardial deformation, and metabolic parameters.

Methods/Principal Findings

Fifty-two obese adolescents and 38 non-obese controls were studied with conventional and

speckle tracking echocardiography. The average cIB of ventricular septum and LV posterior

wall was measured. In obese subjects, insulin resistance as estimated by homeostasis

model assessment (HOMA-IR) and glucose tolerance were determined. Compared with

controls, obese subjects had significantly greater cIB of ventricular septum (-16.8±7.8 dB vs

-23.2±7.8 dB, p<0.001), LV posterior wall (-20.5±5.6 dBvs -25.0±5.1 dB, p<0.001) and their

average (-18.7±5.7 dB vs -24.1±5.0 dB, p<0.001). For myocardial deformation, obese sub-

jects had significantly reduced LV longitudinal systolic strain rate (SR) (p = 0.045) and early

diastolic SR (p = 0.015), and LV circumferential systolic strain (p = 0.008), but greater LV

longitudinal late diastolic SR (p<0.001), and radial early (p = 0.037) and late (p = 0.002) dia-

stolic SR than controls. For the entire cohort, myocardial cIB correlated positively with body

mass index (r = 0.45, p<0.001) and waist circumference (r = 0.45, p<0.001), but negatively

with LV circumferential systolic strain (r = -0.23, p = 0.03) and systolic SR (r = -0.25, p =

0.016). Among obese subjects, cIB tended to correlate with HOMA-IR (r = 0.26, p = 0.07).

Conclusion

Obese adolescents already exhibit evidence of increased myocardial fibrosis, which is asso-

ciated with measures of adiposity and impaired LV circumferential myocardial deformation.
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Introduction
Childhood obesity has become a global epidemic involving not only developed but also devel-
oping countries.[1] Among the various co-morbidities, left ventricular (LV) dysfunction
remains to be the most significant cause of morbidity and mortality.[2, 3] Importantly, myo-
cardial fibrosis has been proposed to play an important pathogenetic role in ventricular dys-
function in obesity.[4–6] Experimental studies have provided evidence of dysregulation of the
myocardial fibrotic process in obesity and metabolic dysfunction, which probably involves the
activation of renin-angiotensin-aldosterone system and induction of oxidative stress.[7–9]

Whether increased myocardial fibrosis occurs in obese children is, however, unknown. Lim-
ited data suggest that this may be the case in obese adults. Myocardial biopsy to quantify the
amount of fibrous tissue is invasive and impractical. On the other hand, noninvasive assess-
ment of myocardial fibrosis by echocardiographically-derived calibrated integrated backscatter
(cIB) has been used in both adults [10, 11] and children [12] to provide an estimate of myocar-
dial fibrosis.

Alteration of myocardial composition and architecture may affect myocardial mechanics.
Conventional echocardiographic assessment of LV function in obese subjects has nonetheless
relied on measuring LV ejection fraction, which often yielded normal results.[13] On the other
hand, direct interrogation of myocardial deformation compared with simple quantification of
ventricular volume changes has been shown to be more sensitive in the early detection of subtle
ventricular dysfunction.[14] In particular, two-dimensional strain imaging by speckle tracking
echocardiography (STE) is increasingly used to evaluate ventricular performance in children
with congenital [15,16] and acquired [17] heart diseases.

In the present study, we aimed to test the hypothesis that cIB is altered in obese adolescents
compared with non-obese subjects. Furthermore, we explored its associations with measures of
adiposity, indices of LV myocardial deformation, and, in obese adolescents, metabolic parame-
ters including homeostasis model assessment of insulin resistance (HOMA-IR) and glucose
tolerance.

Methods

Subjects
A total of 52 obese adolescents and 38 non-obese healthy adolescents aged 14 to 20 years were
studied. Obese subjects were recruited consecutively from the paediatric clinic, while non-
obese controls are friends of hospital staff and volunteers recruited from the community. The
obese phenotype is defined by body mass index (BMI) at or above 95 percentile for children
and adolescents of the same age and sex. Exclusion criteria included documented congenital or
acquired heart diseases and current use of cardiovascular medications. Weight and height were
measured and BMI was calculated accordingly. Waist circumference was measured at the mid-
point between the lowest part of costal margin and highest point of the iliac crest in the mid-
axillary line. Blood pressure of the right arm was measured three times with an automated
oscillometric device (Dinamap, Critikon Inc, Tampa, USA) after the subjects had taken a rest
for at least 15 minutes, and the average was used for analyses.

Ethics statement
This study was approved by the Institutional Review Board of The University of Hong Kong/
Hospital Authority West Cluster, Hong Kong and informed written consent was obtained
from all subjects and parents on behalf of minors.
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Conventional and tissue Doppler echocardiographic assessment
Echocardiographic examination was performed using Vivid 7 ultrasound machine (GE Medi-
cal System, Horten, Norway). Acquired data were stored digitally and analyzed offline using
the EchoPAC software (GE Medical System, Horten, Norway). Average values of echocardio-
graphic indices based on readings from three cardiac cycles were used for statistical analyses.

M-mode echocardiography was performed from the standard parasternal short-axis view
for measurement of the following indices: LV end-systolic and end-diastolic dimensions, short-
ening fraction, septal and LV posterior wall thickness, and LV mass.

From the four-chamber view, pulsed-wave Doppler examination was performed to deter-
mine transmitral peak early (E) and late (A) diastolic velocities, E wave deceleration time, and
E/A ratio. Colour tissue Doppler imaging of the LV lateral wall was performed with frame rates
>100 Hz. With the sample volume positioned at the LV lateral wall-mitral annular junction,
the mitral annular peak myocardial velocities at systole (s), early diastole (e), and late diastole
(a) were measured and the mitral E/e ratio was also calculated. The relatively load-independent
index of ventricular systolic function, myocardial acceleration during isovolumic contraction
(IVA), was also measured as reported.[18]

Speckle tracking echocardiography
Left ventricular myocardial deformation was assessed also using EchoPAC software (General
Medical System, Horten, Norway). From the four-chamber view, LV global longitudinal sys-
tolic strain and systolic and diastolic strain rate (SR) were measured. Based on the mid-ventric-
ular parasternal short-axis plane, LV global systolic circumferential and radial strain and
systolic and diastolic SR were measured. Our group has previously reported on high intra- and
inter-observer reproducibility of STE in measuring LV myocardial deformation.[19]

Calibrated integrated backscatter
Integrated backscatter of the ventricular septum and posterior LV wall at the mid-ventricular
level was determined at end-diastole from the parasternal short-axis view. The sample volume
was tracked manually to maintain the same region throughout the heart cycle. Myocardial cIB
was calculated as the difference between integrated backscatter at the two sites and that of the
pericardium. The average cIB at the two sites was derived for correlation analysis. The intra-
and interobserver variability for CIB measurement was 4.9% and 6.5%, respectively.

Assessment of glucose tolerance and insulin resistance
Oral glucose tolerance test was performed in the obese group in the morning after overnight
fasting after echocardiographic assessment. Normal and impaired glucose tolerance and diabe-
tes mellitus were defined according to standard guidelines.[20] The HOMA-IR was calculated
as fasting plasma glucose (in mmol/l) x fasting serum insulin (in mU/l) / 22.5.[21]

Statistical Analysis
Data are presented as mean±SD unless otherwise stated. Absolute values of strain and strain
rates are presented to facilitate interpretation and analyses. Demographic and echocardio-
graphic parameters between obese and non-obese cohorts were compared using unpaired Stu-
dent's t test. The LV mass was indexed by both body surface area and height1.7, the latter being
reported to be more sensitive for identification of obesity-related LV hypertrophy.[22] Pearson
correlation analysis was used to determine associations between myocardial cIB and measures
of body adiposity, indices myocardial deformation, and metabolic parameters. Adjustments of
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correlations for systemic blood pressure were made by linear regression analysis. A p value
<0.05 is considered statistically significant. All statistical analyses were performed using SPSS
version 16.0 (SPSS Inc, Chicago, Illinois, USA).

Results

Subjects
The 52 (25 males) obese adolescents were studied at 17.8±1.7 years, while the 38 (17 males)
non-obese controls were studied at 18.1±2.1 years (p = 0.39). Table 1 summarizes their clinical
characteristics. The BMI (p<0.001) and waist circumference (p<0.001) were expectedly
greater in the obese cohort. Systolic (p<0.001) and diastolic (p<0.001) blood pressures were
significantly higher in obese subjects compared with non-obese ones. Of the 52 obese subjects,
38 had normal glucose tolerance, 9 had type 2 diabetes mellitus, and 5 had impaired glucose
tolerance.

Conventional and Doppler echocardiographic parameters
Table 2 summarizes the echocardiographic parameters of the two groups. Compared with con-
trols, obese subjects had significantly greater septal (p<0.001) and LV posterior wall (p<0.001)
thickness at diastole and LV mass (p<0.001) even with adjustment of the latter for body sur-
face area (p<0.001). The LV end-diastolic (p<0.001) and systolic (p = 0.006) dimensions were
significantly greater in patients than controls, while their shortening fraction (p = 0.26) were
similar.

For Doppler parameters, obese subjects had significantly greater transmitral A velocity
(p = 0.008), mitral annular a velocity (p = 0.026), and E/e ratio (p = 0.034), but lower mitral
annular s velocity (p = 0.016) and e/a ratio (p = 0.013).

Myocardial cIB
Myocardial cIB of the ventricular septum (-16.8±7.8 dB vs -23.2±7.8 dB, p<0.001), LV poste-
rior wall (-20.5±5.6 dB vs -25.0±5.1 dB, p<0.001) and average cIB of the two sites (-18.7±5.7
dB vs -24.1±5.0 dB, p<0.001) were significantly greater in obese compared with non-obese

Table 1. Clinical characteristics of obese and non-obese subjects.

Obese subjects (n = 52) Non-obese subjects (n = 38) p

Age (year) 17.8±1.7 18.1±2.1 0.39

Male / Female 25/27 17/21 0.76

Height (cm) 167.5±8.8 164.3±7.3 0.21

Weight (kg) 87.5±13.2 53.2± 8.5 <0.001*

BMI (kg/m2) 31.5±3.7 19.6±2.1 <0.001*

Waist circumference (cm) 97.1±8.6 65.6±6.1 <0.001*

SBP (mmHg) 125±13 108±10 <0.001*

DBP (mmHg) 67±6 62±5 <0.001*

fasting glucose (mmol/l) 4.9±1.2

fasting insulin (mU/l) 24.0±15.4

HOMA-IR 5.0±3.2

Abbreviations: BMI, body mass index, DBP, diastolic blood pressure, HOMA-IR, homeostasis model assessment of insulin resistance, SBP, systolic blood

pressure

*statistically significant

doi:10.1371/journal.pone.0141149.t001
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subjects (Fig 1). Even with exclusion of the 9 obese subjects with diabetes mellitus, the remain-
ing 43 obese subjects had similarly greater average cIB compared with controls (-18.87±5.43
dB vs -24.08±4.97 dB, p<0.001).

Myocardial deformation
Fig 2 shows the strain and strain rate of the two groups in three dimensions. Compared with
controls, obesity subjects had significantly reduced LV longitudinal systolic SR (0.77±0.14 /s vs
0.83±0.14 /s, p = 0.045) and early diastolic SR (1.23±0.29 /s vs 1.38±0.30 /s, p = 0.015), and LV
circumferential systolic strain (14.1±3.4% vs 16.0±3.1%, p = 0.008). On the other hand, obese
subjects had significantly greater LV longitudinal late diastolic SR (0.52±0.11 /s vs 0.44±0.09 /s,
p<0.001), and radial early (2.18±0.56 /s vs 1.94±0.48 /s, p = 0.037) and late (1.20±0.46 /s vs
0.88±0.53 /s. p = 0.002) diastolic SR (Fig 2).

When stratified by the presence (n = 14) or absence (n = 38) of glucose intolerance in obese
subjects, no differences in myocardial deformation parameters were found (Table 3).

On the other hand, there were greater correlations between waist circumference and myo-
cardial deformation parameters than those between BMI and the latter (Table 4). Even after
adjustment for systolic and diastolic blood pressures, the waist circumference was found to cor-
relate negatively with LV longitudinal systolic strain (p = 0.027), systolic SR (p = 0.02), early
diastolic SR (p = 0.004) and circumference systolic strain (p = 0.007) and systolic SR (p = 0.05)
and positively with radial late diastolic SR (p = 0.002).

Correlates of cIB
For the entire cohort, the average myocardial cIB correlated positively with BMI (r = 0.45,
p<0.001), waist circumference (r = 0.45, p<0.001) and negatively with LV circumferential

Table 2. Comparison of echocardiographic indices between obese and non-obese adolescents.

Obese subjects (n = 52) Non-obese subjects (n = 38) p

M-mode LV EDD (mm) 48.6±4.7 43.9±4.3 <0.001*

LV ESD (mm) 31.5±4.6 29.0±3.6 0.006*

IVSd (mm) 7.8±1.4 6.0±0.9 <0.001*

LV PWd (mm) 7.3±1.2 5.9±0.9 <0.001*

LV shortening fraction (%) 35.2±4.9 34.0±5.2 0.26

LV mass (g) 138.4±41.1 81.6±27.3 <0.001*

BSA-indexed LV mass (g/m2) 68.5±16.8 51.9±15.3 <0.001*

LV mass/height1.7 (g/m) 57.9±15.1 34.8±10.8 <0.001*

Transmitral velocities E (cm/s) 92.7±14.8 88.7±13.9 0.20

A (cm/s) 46.9±9.1 41.6±8.9 0.008*

E/A ratio 2.1±0.5 2.2±0.5 0.11

E deceleration time(ms) 117.3±19.3 115.8±20.0 0.73

Mitral annular tissue velocities s (cm/s) 6.6±1.3 7.27±1.36 0.016*

e (cm/s) 10.4±2.6 10.75±2.01 0.45

a (cm/s) 5.4±1.3 4.71±1.54 0.026*

e/a ratio 2.0±0.8 2.4±0.7 0.013*

E/e Ratio 9.5±2.7 8.5±1.7 0.034*

IVA (cm/s2) 1.01±0.49 0.99±0.48 0.83

Abbreviations: A, transmitral late diastolic velocity, a, mitral annular late diastolic tissue velocity, BSA, body surface area, E, transmitral early diastolic

velocity, e, mitral annular early diastolic tissue velocity, EDD, end-diastolic dimension, ESD, end-systolic dimension, IVSd, interventricular septal thickness

at diastole, IVA, myocardial acceleration during isovolumic contraction, LV, left ventricular, PWd, posterior wall thickness at diastole

*statistically significant

doi:10.1371/journal.pone.0141149.t002
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systolic strain (r = -0.23, p = 0.030) and systolic SR (r = -0.25, p = 0.016) (Fig 3), but not with
other deformation parameters. The correlations between cIB and BMI, waist circumference,
and circumferential systolic SR remained significant even after exclusion of obese subjects with

Fig 1. Scatter plots showing calibrated integrated backscatter (cIB) of ventricular septum and left
ventricular (LV) posterior wall and the average of the two sites.

doi:10.1371/journal.pone.0141149.g001

Fig 2. Comparison of myocardial systolic strain and systolic (SRs), early diastolic (SRe), and late diastolic (SRa) strain rate in three dimensions
between obese and non-obese subjects (*p<0.05 vs controls).

doi:10.1371/journal.pone.0141149.g002
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diabetes mellitus (all p<0.05). Among obese subjects, cIB also tended to correlate positively
with HOMA-IR (r = 0.26, p = 0.07).

Discussion
The present study demonstrates increased myocardial cIB suggestive of myocardial fibrosis
and impaired LV myocardial deformation along the longitudinal and circumferential dimen-
sions in obese adolescents. Additionally, myocardial cIB was found to associate positively with
waist circumference and BMI and negatively with LV circumferential deformation.

In rodent models of obesity, cardiac remodeling with ventricular hypertrophy and increased
interstitial fibrosis have been described.[5, 23, 24] Direct histological evidence of myocardial

Table 3. Left ventricular deformation and fibrosis in obese subjects with normal and impaired glucose tolerance.

Normal glucose tolerance (n = 38) Abnormal glucose tolerance (n = 14) p

Longitudinal deformation Strain (%) 15.8±2.7 15.1±3.7 0.43

SRs (/s) 0.78±0.13 0.75±0.18 0.48

SRe (/s) 1.23±0.26 1.20±0.36 0.72

SRa (/s) 0.52±0.10 0.53±0.13 0.77

Circumferential deformation Strain (%) 14.1±3.5 13.9±3.3 0.84

SRs (/s) 0.80±0.18 0.80±0.18 0.95

SRe (/s) 1.07±0.34 1.11±0.38 0.76

SRa (/s) 0.35±0.14 0.34±0.11 0.87

Radial deformation Strain (%) 40.6±14.8 33.3±11.2 0.10

SRs (/s) 1.75±0.37 1.66±0.27 0.40

SRe (/s) 2.20±0.61 2.14±0.43 0.73

SRa (/s) 1.19±0.46 1.23±0.47 0.80

Myocardial Fibrosis cIB -18.5±5.5 -19.3±6.4 0.67

Abbreviations: cIB, calibrated integrated backscatter, SRa, late diastolic strain rate, SRe, early diastolic strain rate, SRs, systolic strain rate

doi:10.1371/journal.pone.0141149.t003

Table 4. Correlations betweenmeasures of adiposity and left ventricular deformation adjusted for systolic and diastolic blood pressure.

Body Mass Index Waist Circumference

β p β p

Longitudinal deformation Strain -0.29 0.17 -1.22 0.027*

SRs -7.05 0.09 -25.52 0.020*

SRe -4.76 0.017* -15.07 0.004*

SRa 10.55 0.05 26.50 0.07

Circumferential deformation Strain -0.50 0.006* -1.28 0.007*

SRs -6.05 0.06 -16.26 0.05

SRe -2.64 0.17 -8.53 0.09

SRa 0.46 0.92 -0.79 0.95

Radial deformation Strain -0.02 0.61 -0.03 0.80

SRs 2.66 0.12 4.79 0.29

SRe 1.13 0.32 2.99 0.31

SRa 3.63 0.002* 9.30 0.002*

Abbreviations as in Table 2.

*statistically significant

doi:10.1371/journal.pone.0141149.t004
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Fig 3. Scatter plots showing correlations betweenmyocardial calibrated integrated backscatter and (a) bodymass index, (b) waist circumference,
(c) circumferential strain, and (d) circumferential systolic strain rate (empty circles represent obese subjects, solid circles represent non-obese
controls).

doi:10.1371/journal.pone.0141149.g003
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fibrosis in human obese subjects is, however, limited. Nevertheless, previous clinical studies
have provided evidence of altered myocardial extracellular matrix turnover with possible pre-
disposition to increased interstitial fibrosis in adults. In premenopausal obese woman, altered
circulating profile of matrix metalloproteinases and their tissue inhibitors has been described,
[25] although the absence of histological specimens forbids prediction of the net result on
extracellular matrix turnover in this study. On the other hand, procollagen type III aminopep-
tide, a circulating marker of collagen synthesis, was found to be increased in obese adults and
to correlate positively with the severity of insulin resistance.[6] Recently, a randomized con-
trolled trial of aldosterone blockade in middle-aged obese adults showed reduction of circulat-
ing procollagen levels coupled with improved myocardial cIB and LV function, implicating a
possible pathogenetic role of myocardial fibrosis.[26] Little, however, is known on the myocar-
dial fibrotic process in obese children. To our knowledge, this is the first study to interrogate
myocardial fibrosis and its association with measures of adiposity and myocardial deformation
in obese children. The finding of greater myocardial cIB in obese adolescents suggests that
increased fibrosis of the myocardium starts since childhood.

Changes in extracellular matrix composition may have functional implications on LV
mechanics. Previous studies on LV systolic function in obese subjects by quantification of ejec-
tion fraction usually yielded normal results.[13] On the other hand, assessment of myocardial
mechanics by strain imaging may provide better assessment of ventricular contractility.[14]
The findings of impaired LV systolic deformation along the longitudinal and circumferential
dimensions in the obese cohort agree with those reported previously.[27, 28] Our additional
findings of negative correlations between myocardial cIB and circumferential systolic strain
and SR probably represent functional translation of altered myocardial extracellular matrix.
These findings corroborate the associations between cIB and basal septal strain and SR
reported in adults with metabolic syndrome [11] and provide evidence of interplay between
myocardial fibrosis and systolic dysfunction in obesity. Interstitial fibrosis has indeed been
linked to impaired LV contractile performance in the setting of aortic regurgitation,[29] while
perivascular fibrosis may reduce coronary flow reserve to cause contractile dysfunction.[30]

Fibrous tissue deposition may increase myocardial stiffness and lead to ventricular diastolic
dysfunction. This is the first study to explore diastolic myocardial deformation using STE in
obese children. While we did not find statistically significant correlations between cIB and indi-
ces of diastolic function, reduced LV longitudinal early diastolic SR and higher E/e ratio in our
obese cohort may reflect respectively ventricular relaxation abnormality and greater LV filling
pressure. The latter concurs with findings of previous studies in obese children.[27, 31] Fur-
thermore, the greater late diastolic transmitral and mitral annular velocities and late diastolic
longitudinal and radial SR implicate greater reliance on atrial filling in obese adolescents.
Reduced atrial deformation reported in obese children [31] may, however, limit the degree of
atrial compensation. The discrepant association between calibrated integrated backscatter with
ventricular systolic and diastolic deformation may perhaps be related to the degree of myocar-
dial fibrosis. Mild fibrosis may not significantly alter ventricular compliance and diastolic func-
tion, although subtle subclinical alteration of systolic deformation may already be detectable
using the sensitive speckle tracking echocardiography.

Associations of measures of body adiposity, in particular waist circumference, with myocar-
dial cIB and deformation indices even after adjustment of systemic blood pressure are of clini-
cal importance. Body mass index and waist circumference, with the latter having a greater
sensitivity, can predict clustering of traditional cardiovascular risk factors in children.[32, 33]
Our findings suggest potential inclusion of subclinical LV dysfunction to this list of risk factors.
While the mechanistic link between adiposity and myocardial fibrosis in our subjects is not
entirely clear, experimental studies have shown that the adipokine leptin could induce cardiac
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fibrosis through activation of the mTOF pathway, increase in oxidative stress, and finally pro-
duction of galectin-3 to stimulate collagen deposition.[9] The negative associations between
adiposity and longitudinal and circumferential deformation found in this study corroborate
the findings of Peterson et al, who reported on negative associations between BMI and systolic
and early diastolic myocardial velocities in obese women.[34] Whether the observed ‘dose-
response’ relationships between adiposity and subtle subclinical LV systolic and diastolic dys-
function is directly related to cardiac remodeling and alteration of myocardial extracellular
matrix or indirectly through the effects of systemic hypertension require further clarification.

Within our relatively small obese paediatric cohort, the HOMA-IR tended to correlate with
myocardial cIB. As aforementioned, in normotensive, non-diabetic obese adults, circulating
procollagen type III aminopeptide has been shown to be associated with insulin resistance.[6]
Recent cardiac magnetic resonance contrast-enhanced T1 mapping has also provided evidence
that diffuse myocardial fibrosis in diabetic patients contributes to systolic and diastolic ventric-
ular dysfunction.[35, 36]

Several limitations to this study warrants discussion. Firstly, the small number of patients
with glucose intolerance and diabetes limits the statistical power to perform subgroup analysis.
Further large scale studies of paediatric obese subjects are required to clarify the relationships
between markers of myocardial fibrosis, insulin resistance, and glucose homeostasis. Secondly,
the modality of T1 mapping, which is ideal for assessment of diffuse myocardial fibrosis, is not
available to us. It is worth noting, however, that conditions other than fibrosis may also influ-
ence extracellular volume measurements by T1 mapping.[37] Thirdly, we have not determined
circulating markers of collagen synthesis in the present study. The cardiac origin of these colla-
gen synthesis biomarkers is difficult to ascertain. More importantly, their levels vary with age
and growth,[38] which may confound the interpretation in paediatric studies. Allometric
indexation using approximate powers has been shown to allow more accurate normalization of
LV mass [22] and quantification of arterial load and ventricular-arterial coupling [39] in obese
subjects. It would have been ideal to adopt a similar approach in this study. However, a large
scale study to define a priori the normal relationships between parameters of myocardial defor-
mation and body size is required before allometric indexation is possible. We have nonetheless
compared the BMI indexed in an allometric manner between the two groups and showed sig-
nificant differences. Finally, differences among ethnic groups may potential exist due to inter-
actions of genetic, physiological, cultural, socioeconomic, and environmental factors in the
pathogenesis of obesity.[40, 41] Whether the results of the present study apply to obese adoles-
cents of other ethnicities require further clarification.

In conclusion, our findings suggest increased myocardial fibrosis in obese adolescents,
which is related to measures of adiposity and may have implications on subclinical LV systolic
and diastolic function. Whether weight reduction and anti-fibrotic strategies such as aldoste-
rone antagonism may alter myocardial acoustic properties and improve myocardial deforma-
tion in young subjects are topics for further studies.
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