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Abstract
Current methods for studying the genetic basis of adaptation evaluate genetic associations

with ecologically relevant traits or single environmental variables, under the implicit assump-

tion that natural selection imposes correlations between phenotypes, environments and

genotypes. In practice, observed trait and environmental data are manifestations of

unknown selective forces and are only indirectly associated with adaptive genetic variation.

In theory, improved estimation of these forces could enable more powerful detection of loci

under selection. Here we present an approach in which we approximate adaptive variation

by modeling phenotypes as a function of the environment and using the predicted trait in

multivariate and univariate genome-wide association analysis (GWAS). Based on computer

simulations and published flowering time data from the model plant Arabidopsis thaliana,
we find that environmentally predicted traits lead to higher recovery of functional loci in mul-

tivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than

individual environmental variables. Our results provide an example of the use of environ-

mental data to obtain independent and meaningful information on adaptive genetic

variation.

Author Summary

Finding genes involved in adaptation to the environment has long been of interest to evo-
lutionary biologists and ecologists. Most commonly, researchers look for loci whose differ-
ences in allelic state correlate with differences in a particular trait or environmental
variable such as temperature. The implicit assumption behind such methods is that natural
selection by the environment will shape variation in adaptive traits through associated
changes in allele frequencies. This means that both environmental and phenotypic varia-
tion are relevant for detecting adaptive genes, although we have incomplete knowledge of
how the two types of variation relate to adaptation. Here we present a method that aims to
identify adaptive genes by combining phenotypic and environmental data. We first predict
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trait variation from a set of environmental variables as a way to extract the most biologi-
cally relevant information from the environment and then look for genes associated with
both the predicted and observed trait. Using simulations and published data from the
model plant Arabidopsis thaliana, we show that this approach may find adaptive genes
more effectively compared to existing methods. We also demonstrate that predicted traits
can be used to identify relevant loci in individuals for which no phenotypic data is
available.

Introduction
The genetic basis of environmental adaptation in natural and agricultural populations is a
topic of growing interest and urgency. Conventionally, the search for adaptive genes involves
testing for associations of genomic markers with either ecologically relevant traits measured in
common garden experiments [1] [2] [3] [4] or with environmental variables [5] [6] [7] [4] [8].
These two approaches reflect the assumption that traits, environment and genotype are corre-
lated due to natural selection, as is indeed expected under local adaptation [9] [10] [11]. In
practice, observations and measurements are subject to error and may not accurately reflect
the actual variables involved in adaptation [6]. At best therefore, empirical data on traits and
environment provide independent approximations of the parameters defining ecological adap-
tation, offering limited power to detect causative genes when used in isolation. An obvious
improvement would be to combine both types of data to better approximate the adaptive pro-
cess. One example is to identify the most probable selective forces from a set of environmental
variables based on their correlation with traits of interest and use these variables in association
mapping, as was done recently in Arabidopsis thaliana [7]. Although attractive, the reliance on
single variables means that this method cannot account for more complex relations between
traits and the environment and makes limited use of the independent information provided by
trait and environmental data.

An alternative approach, which we explore here, is to extract information from ecological
data by modeling traits as a function of multiple environmental variables [12] [13] and to use
the resulting trait prediction, conjointly with the observed trait, in a bivariate analysis of genetic
association. The reasoning behind this idea is as follows. We start from the usual assumption
that individuals from different geographic locations express location-specific, genetically deter-
mined trait values that are optimal with respect to some combination of environmental condi-
tions in their native habitat. Furthermore, as in other studies on environmental association, we
assume that clinal variation in selective forces causes corresponding differences in gene fre-
quencies across the landscape. Under these assumptions, the value of a trait and its defining
selective environment can be treated as two correlated aspects of an individual’s phenotype
with a shared genetic basis.

In the same way, observed variation in an adaptive trait and a function of environmental
variables explaining part of this variation can be treated as two genetically correlated character-
istics that are effectively repeated measurements of the underlying selective environment. As
has been shown for other genetically correlated traits, such repeated measurements may be
combined to increase the power to detect common causative loci by testing for genetic associa-
tions with both traits simultaneously using a multi-trait mixed model (MTMM) [14] [15]. We
propose that testing for genetic loci with an effect on both observed and predicted traits pro-
vides more power to detect genes of adaptive significance than mapping on individual traits or
environmental variables separately. In addition, environmentally predicted traits may be used
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in univariate association mapping to map adaptive loci in individuals for which only environ-
mental data is available. We will refer to these two applications of predicted traits as bivariate-
and univariate Environmentally predicted Trait Mapping (ETM) throughout the paper. We
demonstrate the potential of bivariate ETM by computer simulations and evaluate its perfor-
mance using phenotypic and high-density SNP data from a published association study on
flowering time in Arabidopsis thaliana [1]. Flowering time is known to affect fitness in A. thali-
ana [16] and shows strong geographic variation [17], making it an ideal trait for our purposes.
Moreover, its genetic and molecular basis is well understood [18] [19]. We compare the power
of bivariate ETM to recover known flowering genes to that of conventional univariate associa-
tion methods using single traits or environmental variables. In addition, we use univariate
ETM to map flowering genes in individuals without available phenotypic data [7], an approach
that may offer potential for allele mining germplasm collections for adaptive variation.

Results

Environmental Trait Mapping (ETM)
ETM first models the observed phenotype as a function of environmental data, producing a
combination of the environmental variables which we call the predicted phenotype. The trait
prediction model is fit on the set of accessions for which both phenotypic and environmental
data are available, but the resulting prediction can be extended to the accessions for which
there are only environmental data. In case of non-constant prediction, bivariate ETM then per-
forms multitrait association mapping on the observed and predicted phenotype, using all avail-
able accessions. In univariate ETM we perform single trait association mapping for the
accessions with missing phenotypic data.

Simulations
As proof of concept, we simulated a simple scenario in which an adaptive trait is modeled as a
linear function of a random subset of ten out of 30 simulated environmental variables (Materi-
als and Methods). The frequency of the causative SNP was set to be a monotone function of the
true adaptive trait. The observed trait was then defined as the sum of a SNP effect and poly-
genic and residual noise.

Four trait prediction methods were implemented: linear model (LM) prediction with back-
ward variable selection, elastic nets (EN) [20], random forests (RF) [21] and canonical correla-
tion analysis (CCA) [22]. For comparison, we also performed bivariate analysis using the trait
and the most correlated environmental variable, as well as univariate GWAS on the trait alone.
Bivariate mapping was performed both using a test for a common marker effect (‘common’)
and a test whether there is any marker effect (‘full’), described in the Materials and Methods
(see also [14]).

We first simulated a scenario where the heritability is 0.5 and the causative SNP explains 5%
of the phenotypic variance; correlations between true and observed environmental variables
was set to 0.8. For both types of tests, bivariate ETM using predicted traits shows a clear gain in
power over univariate mapping (Fig 1). Bivariate analysis using the environmental variable
most correlated to the observed trait performs well in the test for any marker effect, but poorly
when testing for a common marker effect, especially at lower significance thresholds. For the
four prediction methods the two types of tests perform similarly. Using the test for a common
marker effect, CCA showed the highest increase in power (e.g. 0.80 at a −log10(p) threshold of
5, versus 0.64 for univariate mapping). Other methods perform similarly with power ranging
between 0.68–0.73 at the same threshold, and achieving larger gains over univariate mapping
at higher −log10(p) thresholds.
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There is a clear relationship across simulated traits between the significance of ETM and
correlation between the predicted trait and the simulated true adaptive trait (S1 Fig): ETM is
most powerful for simulations where this correlation is large. At lower prediction accuracy the
difference with univariate p-values decreases, thus giving smaller differences in power at low
−log10(p) thresholds.

Similar differences between methods are observed in 8 additional scenarios with heritabili-
ties 0.2, 0.5 and 0.8 and the causative SNP explaining 2%, 5% and 10% of the phenotypic vari-
ance (S2a–S2i Fig). As expected, the advantage of ETM increases for larger proportions of
variance explained. In S2a–S2i Fig we also compared bivariate ETM with univariate mapping
on the predicted traits, the latter having lower power for most prediction methods, except for
low heritabilities. For CCA, univariate mapping also performs well for higher heritabilities.

Next, we modified the scenario of Fig 1 in the following ways: by lowering the correlations
between true and observed environmental variables to 0.5 (S3 Fig), by introducing genetic cor-
relations between the trait and some of the environmental variables (S4 and S5 Figs), and by
removing the association between the environmental variables and the causative SNP (S5 and
S6 Figs). In the first case, the larger measurement errors in the observed environmental vari-
ables leads to a decrease in power of ETM, which however is still more powerful than univariate
mapping (S3 Fig). We then performed simulations where the polygenic component of the trait
is correlated with the environmental variables defining the true adaptive trait, reflecting the
presence of adaptive loci elsewhere on the genome. When the SNP explains 5% of phenotypic
variance (as in the main scenario), differences among methods become smaller, in particular
between CCA and ETM with the correlated variable (S4 Fig). When the SNP does not affect

Fig 1. Power in simulations. The proportion of simulated traits for which the -log10(p) value of the causal SNP is above the threshold, for single trait
mapping (red), bivariate ETMwith the most correlated environmental variable (black), and bivariate ETM with 4 different prediction methods (LM, EN, RF,
CCA; respectively green, blue, brown and purple). Bivariate ETM was performed by testing for a commonmarker effect (left) and by testing whether there is
any effect on environment or trait (right). The causal SNP explained 5% of the variance of the simulated trait, while polygenic background and residual
variance explained respectively 45% and 50%.

doi:10.1371/journal.pgen.1005594.g001
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the phenotype, p-values appear randomly distributed on the unit interval (S5 Fig), indicating
that ETM adequately corrects for population structure. In our last scenario (S6 Fig), neither the
SNP under consideration nor the polygenic effect was related to the environmental variables.
In this case ETM has lower power than univariate mapping, as the SNP is only associated with
one the two variables. The largest loss in power then occurs in the test for a common effect,
while also the test for any marker effect is affected due to less degrees of freedom [14].

Given the similar performance of the two tests we chose to present all subsequent results for
the common marker effect only. We consider this test to be conceptually more appropriate for
the detection of loci associated with both the observed trait and its selective environment,
which are expected to be positively correlated.

Environmental prediction of flowering time in Arabidopsis
We used the statistical methods described above to predict flowering time variation among 149
Arabidopsis thaliana accessions [1], using public data for 61 environmental variables (S1 File).
These predictions will be used in bivariate and univariate ETM below. As expected [23] [17],
flowering time is strongly correlated with variables related to latitude such as day length, poten-
tial evapotranspiration and temperature (S7 Fig). Spring and summer day length are most cor-
related with flowering time [7], each explaining 40% of variation compared to 29% for latitude
itself. The importance of these variables is reflected in the trait predictions (S8–S11 Figs),
where day length is among the most important variables for all prediction methods. The contri-
bution of other variables varies between methods, with the LM and RF prediction assigning rel-
atively high importance to precipitation variables not strongly correlated with latitude (S8 and
S10 Figs). The highest correlation between the predicted trait and any single environmental
variable, summer day length in all cases, ranges between 0.71–0.84 for LM, RF and CCA but is
notably higher for EN (r = 0.98) (S8–S11 Figs). The EN-predicted trait may therefore offer little
advantage over day length when used in bivariate ETM. Notwithstanding the differences
between methods, trait predictions are highly correlated among themselves (r = 0.78–0.88) and
with the observed trait (r = 0.84 (CCA) to r = 0.68 (EN)), suggesting that ETM performance
will be similar for different prediction methods.

Bivariate ETM for flowering time
For the different methods, we measured the cumulative success in recovering 240 known flow-
ering genes (S2 File) as a function of the number of evaluated candidate genes. We thereby
assume that GWAS results are used to create a list of candidate SNPs or genes of a certain
length as a basis for further evaluation (see S12 Fig for recovery as a function of p-values for
comparison). SNPs were sorted by increasing p-value and candidates were defined as genes
overlapping with or being closest to any of the top 2000 SNP positions, evaluated successively
in order of significance (approximately 1% of all SNPs). We compared univariate association
mapping on observed flowering time, bivariate ETM and bivariate analysis using the most cor-
related trait (Summer day length). Significance of enrichment was calculated as the probability
of recovering the observed number of flowering genes by chance (see Materials and Methods).
All methods result in significant enrichment but recover only a modest number of genes, yield-
ing 27 flowering genes at most (Fig 2, left). Maximum significance of enrichment ranged from
5 � 10−3 to 4.9 � 10−6 and was achieved after evaluating varying numbers of genes (Fig 2, right).
Bivariate ETM outperforms univariate trait mapping over the entire range, with a maximum
difference in recovery of 9 flowering genes at 621 evaluated genes (Fig 2, left). ETM based on
LM and CCA trait prediction performs particularly well, with high and sustained recovery and
peaks of maximum significance of enrichment of 4.9 � 10−6 and 1.3 � 10−5 respectively. Overall,
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the recovery curves for EN prediction and summer day length are similar, as expected based on
the high correlation between the two variables.

For all prediction methods ETM p-values showed some inflation, which also occurred in
univariate mapping of the predicted traits, the individual environmental variables and to a
lesser extent the observed trait (S13–S14 Figs), and therefore does not appear to be an artifact
of our method. Inflation largely disappeared in univariate analyses with a multi-locus mixed
model [24](S15 Fig), suggesting that inflation is due to large effects of a small number of loci,
insufficiently captured by the kinship matrix.

Considering the top 400 candidate genes for each method, univariate mapping on observed
flowering time recovers 2 flowering genes within the first 16, with probabilities of 7.2 � 10−3,
but the total of 4 recovered genes does not represent a significant enrichment (p = 4.1 � 10−1).
Bivariate ETM, by contrast, recovers 9–13 flowering genes within the first 400 candidates
(p = 5.6 � 10−3 − 2.6 � 10−5), with all prediction methods providing higher enrichment than
summer day length (7 genes, p = 4.5 � 10−2). The four types of bivariate ETM all recover the
genes SVP, GA1, DFL2, LDL1, SPA2, FPF1, DOG1, within the first 400 candidates (Table 1).
The latter four genes are only recovered by univariate mapping after considering at least 100
additional genes.

Although different bivariate ETM analyses identify different sets of genes, overlap is rela-
tively high. Considering the top 400 candidate genes of each prediction method, an average of
249 (220–282) genes is shared between prediction methods (Fig 3), compared to an average of
199 between bivariate ETM and univariate mapping. Bivariate ETM and standard association
mapping thus recover different genes. These differences are unlikely to be due to chance, as
shown by the fact that bivariate ETM (LM prediction) with a simulated trait equally correlated
with the observed trait (i.e. r = 0.81) identifies only 5 unique genes compared to univariate
association mapping (Fig 3).

Fig 2. Bivariate ETM for flowering time in A. thaliana, for different predictionmethods (solid lines) and univariate analysis using observed
flowering time, the most correlated environmental variable and the different trait predictions (dotted lines). Left panel: number of known flowering
genes recovered, as a function of total number of genes considered. Right panel: corresponding enrichment probabilities (-log10(p)). The following methods
were used: CCA (purple), LM (green), RF (brown), EN (blue), analysis using summer day length and observed flowering time are marked in black and red
respectively. Enrichment is defined as the probability of recovering k out ofm genes by chance, under the hypergeometric distribution. The area in gray
marks the 5% upper and lower percentiles based on 200 permutations of the univariate/bivariate traits.

doi:10.1371/journal.pgen.1005594.g002
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Table 1. List of genes recovered by different types of bivariate ETM, containing all flowering genes assigned to any of the 2000 SNPs with the low-
est p-value for eachmethod.Numbers indicate the rank for each gene (1 being the gene with lowest associated p-value). un: univariate analysis on flower-
ing time, dl: bivariate analysis (MTMM) using summer day length and flowering time.

gene name LM EN RF CC un dl

AT4G11280 ACS6 621 826 760 217 - 1228

AT3G49700 ACS9 1223 - - - - -

AT4G22950 AGL19 - - - - - 1070

AT4G35450 ARK2A 347 539 351 913 1187 529

AT4G32980 ATH1 240 411 681 - - 313

AT2G31650 ATX1 372 162 44 1007 747 117

AT5G37260 CIR1 1253 - - 1018 - -

AT2G23380 CLF - - - 1319 - -

AT2G33540 CPL3 788 1035 - 1333 728 -

AT4G00450 CRP 387 449 - 353 332 562

AT2G38050 DET2 374 - 752 564 - 752

AT4G03400 DFL2 59 171 97 8 5 108

AT5G45830 DOG1 90 347 60 63 507 504

AT4G03430 EMB2770 208 343 694 143 837 213

AT4G15880 ESD4 - - 1028 - - -

AT5G01400 ESP4 - - - - - 974

AT1G04400 FHA - 518 888 - - 485

AT2G21070 FIO1 - - - - 868 -

AT5G10140 FLC - - - - 671 -

AT5G24860 FPF1 117 235 134 15 677 990

AT1G03160 FZL 422 535 664 836 - 412

AT4G02780 GA1 220 84 78 36 16 170

AT1G62830 LDL1 161 360 218 355 956 439

AT3G18165 MOS4 - - - 1201 - -

AT2G44170 NMT2 - - 834 - - -

AT2G43010 PIF4 - - - 542 - -

AT2G18790 PHYB - 943 - 1078 - -

AT3G12810 PIE1 - - - 668 - -

AT1G09530 PIF3 - 1258 - - - 757

AT3G62090 PIL2 - - 922 - - -

AT1G64520 RPN12a - - - 1160 - -

AT3G52180 SEX4 1274 830 - - - 1212

AT4G11110 SPA2 63 257 364 11 968 200

AT2G42200 SPL9 - - - 848 - -

AT1G16610 SR45 853 - - 1099 - -

AT3G28730 SSRP1 452 591 685 966 - 592

AT4G02700 SULTR3;2 - - 1253 - 410 1215

AT5G19600 SULTR3;5 1328 - - - - -

AT2G22540 SVP 72 126 173 139 147 198

AT3G22380 TIC 1041 - - 292 466 -

AT4G20370 TSF - - - 1089 1157 -

AT5G57380 VIN3 - - - - 1222 -

AT5G07200 YAP169 - - - - 822 -

doi:10.1371/journal.pgen.1005594.t001
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Mapping genes with incomplete phenotypic data using univariate ETM
Environmental prediction of trait values offers the possibility of association mapping when
phenotypic data is incomplete. Traits of interest can be predicted across geographic space
using geographic information and association mapping may then be performed on any set of
georeferenced individuals for which genotypic data are available. Fig 4 shows geographic maps
of predicted flowering time obtained by the four different prediction methods. Although the
importance of latitude is evident, in all cases the predicted trait surface clearly reflects the effect
of variables that are not strongly correlated with latitude. We compared the performance of
univariate ETM to that of (univariate) association mapping on summer day length and latitude,
for a dataset of 478 genotyped and georeferenced accessions for which no flowering time data
was available and whose range of predicted trait values did not exceed that observed for the 149
phenotyped individuals.

Recovery of known flowering genes is somewhat lower compared to bivariate ETM (Fig 5).
Although performance is only slightly higher compared to random permutations, maximum
enrichment is significant in all cases. Differences in performance between methods are small,
but ETM has higher recovery and enrichment within the first 400 genes compared to mapping
the two environmental variables individually. Within these top 400 candidates, SVP, CRP,
SPA2, DOG1, PIE1 and FRI are recovered by more than one method (Table 2) and for each,
ETM with LM prediction requires fewer candidate genes to be evaluated compared to mapping
the two environmental variables, although the best prediction method differed between genes.
FRI is a well studied, major flowering locus in A. thaliana[23] [25], which together with the
gene FLC affects the latitudinal cline in flowering time [26] [17] [27] [28]. FLC ranks 617 and
627 using RF and day length respectively, but is not recovered at all by latitude. The relatively

Fig 3. Venn diagram of the top 400 candidate genes. Left panel: overlap between genes identified by bivariate ETM using the four different prediction
methods. Right panel: overlap between univariate association analysis using observed flowering time, bivariate ETMwith observed and predicted (LM)
flowering time, bivariate ETM with observed flowering time and a randomly simulated variable correlated (r = 0.8) to observed flowering time.

doi:10.1371/journal.pgen.1005594.g003
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Fig 4. Geographic maps of predicted trait values for the different predictionmethods. Heatmaps
showing low to high values of predicted (scaled) flowering time as red (early) to yellow (late).

doi:10.1371/journal.pgen.1005594.g004

Fig 5. Univariate ETM for flowering time in A. thaliana, for different predictionmethods, compared to univariate mapping of summer day length
and latitude. Left panel: number of known flowering genes recovered, as a function of total number of genes considered. Right panel: corresponding
enrichment probabilities (-log10(p)). Enrichment is defined as the probability of recovering k out ofm genes by chance, under the hypergeometric distribution.
Colors represent ETMwith CCA prediction (purple), ETM with LM (green), ETM with RF (brown), ETM with EN (blue), univariate mapping of latitude (black),
univariate mapping of summer day length (red). Recovery and enrichment based on randomly sampled SNPs are shown as reference (grey dashed line).
The area in gray marks the 5% upper and lower percentiles based on 200 permutations of the univariate/bivariate traits.

doi:10.1371/journal.pgen.1005594.g005
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Table 2. List of genes recovered by different types of univariate ETM, containing all flowering genes assigned to any of the 2000 SNPs with the low-
est p-value for eachmethod.Numbers indicate the rank for each gene (1 being the gene with lowest associated p-value). dl: univariate analysis using sum-
mer day length. lt: univariate analysis using latitude.

gene name LM EN RF CC dl lt

AT4G11280 ACS6 618 - - - 469 575

AT2G45660 AGL20 - - - - 1340 1224

AT4G36920 AP2 - - - 832 - -

AT5G24470 APRR5 1088 659 - - - -

AT3G10185 AT3G10185 - - - - 466 443

AT1G18450 ATARP4 1276 - - 213 - -

AT3G51780 AtBAG4 - - - 1172 - -

AT1G50960 ATGA2OX7 - - - - 1420 -

AT3G63010 ATGID1B - - - 647 - -

AT4G32980 ATH1 - - 986 - - -

AT5G03790 ATHB51 - - - - 1356 1406

AT3G03090 AtVGT1 - - 690 568 1350 -

AT2G31650 ATX1 997 1146 890 - - -

AT2G33540 CPL3 - 946 - - 949 -

AT4G20910 CRM2 - 1436 - - 688 808

AT4G00450 CRP 5 1120 85 11 - -

AT5G03730 CTR1 - - - 890 - -

AT1G12610 DDF1 - - - - - 832

AT1G63030 DDF2 - - 319 - - -

AT4G03400 DFL2 - - - 349 - -

AT5G45830 DOG1 1 23 31 87 21 36

AT5G62640 ELF5 - - 689 - 888 1201

AT4G03430 EMB2770 - - - 1166 - -

AT5G11530 EMF1 479 - - - - -

AT1G04400 FHA - - - - - 456

AT5G10140 FLC - 839 617 963 627 -

AT3G10390 FLD - - - - 429 292

AT4G00650 FRI 181 14 332 5 493 1087

AT5G63980 FRY1 - - - - 878 840

AT1G03160 FZL - - - 914 - -

AT4G02780 GA1 - - 1367 - - -

AT1G80340 GA4H - - - - 1090 669

AT1G22770 GI - - 583 - - -

AT2G39810 HOS1 - - - 818 - -

AT1G09700 HYL1 - 856 - - - -

AT5G67100 ICU2 - 163 - - 1270 -

AT3G18165 MOS4 - - - - 461 193

AT4G24020 NLP7 - 915 - - - -

AT5G48150 PAT1 490 - - - 1354 1407

AT3G28860 PGP19 1337 - - - - -

AT2G18790 PHYB 1039 765 924 - - -

AT4G16250 PHYD - - 633 - 537 568

AT3G12810 PIE1 320 225 98 - - -

AT3G62090 PIL2 - 904 238 - - -

AT2G01570 RGA1 - - - 127 - -

(Continued)
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weak recovery of FLC, FRI, SVP and DOG1 with latitude is surprising since all have been
reported to show allelic variation with latitude [29]. This suggests that predicted traits used in
ETMmay be better correlated with the underlying gene frequency at these loci than latitude
itself. We confirmed this by estimating the geographic frequencies of the SNP distinguishing
the two functional haplotypes at FLC and FRI [16] and of the SNPs with the lowest p-values at
SVP and DOG1, and correlating these to the different variables including latitude (Fig 6). In
each case, the best trait prediction (i.e. yielding highest r2 with SNP frequency) has a higher
correlation with SNP frequency than either summer day length or latitude. In fact, our data
provides no evidence for a latitudinal trend for either FRI or FLC, while the correlation with
predicted flowering time is weak but significant (p< 1 � 10−9).

Discussion
We have explored the use of environmentally predicted traits for genome-wide mapping of
genes underlying adaptive trait variation. This is basically an extension of the concept of
phenotype to include the environment. That idea is not new, in the sense that it has been
implicit in most studies relating environment to gene frequency. The novelty of our
approach lies in the fact that this extension is made explicit and is used in conjunction with
the observed trait of interest to obtain a better approximation of the selection gradient
responsible for trait variation. Although this may seem counter-intuitive at first, its merit
becomes apparent when considering that information on correlated environmental variables
can be used to reduce the effect of experimental error in the same way as correlated traits can
[30] [14] [31]. We thereby take advantage of so-called latent variables, which are factors
indirectly related to the trait of interest and that are generally considered a source of spurious
associations [32].

Although selective forces determining trait variation may sometimes shape allele frequen-
cies at non causal loci (e.g. those affecting an unmeasured adaptive trait), independent esti-
mates of these selective forces can at the same time help to find true associations,
particularly when combined with the trait itself. Bivariate ETM is designed to detect genes
whose frequencies correlate with selective forces that have shaped a trait of interest. These
are likely to affect the target trait directly, although they may also be genes affecting corre-
lated adaptive traits. In our case an average of 87% of the top 2000 SNPs for bivariate ETM
had p-values below 0.05 for flowering time itself. Since our primary aim is to find genes

Table 2. (Continued)

gene name LM EN RF CC dl lt

AT2G47310 simtoFCA - - - 199 - -

AT5G46910 simtoREF6 - 1113 - - - -

AT4G33280 simtoVRN1 - - 1310 - - -

AT4G11110 SPA2 34 239 534 745 91 94

AT3G28730 SSRP1 - - - 608 - -

AT4G02700 SULTR3;2 - - - 1137 1254 -

AT1G23090 SULTR3;3 - 412 - - 1345 -

AT2G22540 SVP 36 6 2 241 39 53

AT3G22380 TIC - 1427 1123 - - -

AT1G17110 UBP15 - - 800 - - -

AT4G16845 VRN2 1179 - - - 717 751

AT5G57360 ZTL - - 1242 1125 - -

doi:10.1371/journal.pgen.1005594.t002
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Fig 6. Correlation (Pearson r2) with estimated SNP frequency at 4 important flowering loci. Scatter plots showing (structure corrected) SNP
frequencies against predicted flowering time, summer day length and latitude, for 478 accessions without phenotypic observations. In case of predicted
flowering time, the prediction method yielding the highest significance is shown for each gene (from top to bottom: RF, CCA, LM, RF). Estimates of SNP
frequency were obtained using the program SCAT [43].

doi:10.1371/journal.pgen.1005594.g006
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related to adaptation however, any gene that is affected by the same selective environment is
of interest, regardless of its causal relation to the trait.

The success of this approach does require that traits and the environment provide comple-
mentary estimates of underlying selective forces, something that may not always be the case.
The result that enrichment for known flowering genes is higher for bivariate ETM than for uni-
variate mapping on the trait itself, and that this is not observed for randomly simulated vari-
ables with the same correlation to the observed trait, suggests that predicted and observed
traits indeed complement each other. One thing to observe, is that our definition of recovery as
the closest gene to a detected SNP, deviates from Atwell et al.’s decision to consider SNPs
within 20kb of their candidate genes [1]. Our criterion was chosen to avoid calling multiple
genes per evaluation position and reflects the fact that in the Arabidopsis genome, LD is esti-
mated to decay within 10kb on average [33].

Another application of environmental trait prediction is the mapping of adaptive genes in
individuals with missing phenotypic information. It offers potential for mining the growing
genomic data available for many species without the need for complete phenotypic data, and
exploiting the wealth of publicly available geographic and environmental data. Our results on
mapping flowering genes in unphenotyped individuals are encouraging in the sense that more
genes are found than expected at random. On the other hand, the improvement achieved over
single environmental variables such as latitude is rather modest. This probably reflects the fact
that environmental variables related to latitude are the dominant selective agents affecting
flowering time, making it hard to improve over the use of well chosen single environmental
variables. Nonetheless, at several genes with known association with latitude, estimated gene
frequencies are more strongly correlated with predicted flowering time than with latitude. This
observation provides evidence that mapping on predicted traits has the potential of producing
more relevant association results than single environmental variables chosen a priori.

In conclusion, we have provided evidence that integrating environmental and phenotypic
data can improve our ability to map genes of adaptive significance. We have thereby explored
several statistical methods for modeling traits as a function of the environment. We do not con-
sider our results conclusive with respect to the best prediction method and more work remains
to be done in that respect. Alternatives such as sparse multivariate methods [34] may be worth
exploring. In addition, it is conceivable to integrate prediction into the MTMM step of our
approach, and target the combination of environmental variables with the highest genetic
rather than phenotypic correlation. This however implies an optimization problem for which
no algorithms currently seem to be available. Alternatively, bivariate MTMM could be replaced
by multivariate MTMM, including all environmental variables individually (as well as the
observed trait), but state-of-the art approaches [15] currently cannot perform GWAS on more
than 10 traits.

Another issue is that of inflation, which may affect the distribution of p-values in any
GWAS study due to confounding of the polygenic background with population structure [35]
[36] or the occurrence of large effect loci [24]. Although we adopt the standard MTMM
approach of correcting for population structure by a marker-based kinship matrix it is clear
that for traits like flowering time there is a certain degree of residual inflation. The fact that
inflation for most traits was adequately controlled in a univariate multi-locus mixed model
(MLMM), suggests there is scope for the development of a multi-locus version of MTMM.

In terms of application, it will be interesting to test the added value of our approach for traits
that are more weakly correlated with known environmental factors, such as is the case for dis-
ease or drought resistance. We hope that the present work may serve as a first step in moving
adaptation mapping beyond the traditional univariate analysis of traits and environmental var-
iables and towards a more integrated use of all available data.
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Materials and Methods

Arabidopsis data
We used two datasets from two highly cited examples of trait association and environmental
association in A. thaliana [1] [7]. The first set consisted of 199 phenotyped accessions of which
we retained 149 individuals with available Eurasian geographic coordinates and no missing
data for any of the included traits. We reduced data on flowering time measured at 10, 16 and
22 degrees Celsius to a single principal component explaining 90 percent of total variation,
which was used in all subsequent analyses, unless stated otherwise. The second set consisted of
948 georeferenced accessions, sampled across Eurasia, of which we excluded 39 accessions with
non-terrestrial coordinates.

High-density Single Nucleotide Polymorphism (SNP) data, using the Affymetrix 250K
SNP-tiling array was available for both studies [29]. SNP positions and gene annotations were
based on version 10 of the Arabidopsis genome annotation (TAIR10). A list of 240 mapped
candidate genes for flowering time was obtained from [1] and [37], complemented with a sub-
set of genes derived from the list of known Arabidopsis flowering genes available from the
Prof. Coupland lab (MPIPZ, Cologne, Germany; https://www.mpipz.mpg.de/14637/
Arabidopsis_flowering_genes). SNP positions with the highest frequency differentiation at
functional variants of the flowering genes FLC and FRI were identified based on 85 accessions
for which functional haplogroups were available [16].

Environmental data and analyses
We compiled georeferenced climatic, soil and vegetation data from a variety of public sources
(S1 File), resulting in a final set of 61 environmental variables with a spatial resolution ranging
from 0.5 to 50 km. Remote sensing data were mosaicked, time averaged and converted to GIS
raster layers with custom R scripts, using functions from the programs cdo [38],MRT [39] and
the package Raster [40]. Average day length for different seasons was calculated from latitude
[41]. Visualization of geographic data and assignment of environmental variables to sample
locations was done using the QGIS software [42]. Estimates of continuous allele frequencies
across the landscape were produced using the program SCAT [43].

Environmental Trait Mapping (ETM)
Our ETM procedure can be summarized as follows. First we predict the observed phenotype as
a function of environmental data. Below we describe four possible prediction methods, but in
principle any method can be used here. Provided this prediction is not constant we then per-
form bivariate GWAS on the observed and predicted phenotype (bivariate ETM), or univariate
GWAS on the predicted phenotype alone (univariate ETM). In the case of bivariate ETM, we
consider the test for a common marker effect (details given below), but the test for any marker
effect is possible as well.

Modeling traits using environmental data. Wemade environmental trait predictions
using standard linear regression with backward selection (LM), elastic nets (EN), random for-
ests (RF) and canonical correlation analysis (CCA), which we describe below. Suppose that for
accessions i = 1, . . ., n we have observations (yi, x1,i, . . ., xp,i) on the standardized phenotype y
and standardized environmental predictors x1, . . ., xp. Let X = [x1 . . . xp] be the n × p predictor
matrix, and let Xi 2 R

p (i = 1, . . ., n) denote its rows.
For most of our examples, between 10 and 50 predictors are available. This number is

smaller than the number of accessions, but to avoid over-fitting and allow for interactions,
some form of variable selection is desirable. LM, elastic nets and random forests select, in

Genetic Mapping of Adaptation Using Environmentally Predicted Traits

PLOS Genetics | DOI:10.1371/journal.pgen.1005594 October 23, 2015 14 / 23

https://www.mpipz.mpg.de/14637/Arabidopsis_flowering_genes
https://www.mpipz.mpg.de/14637/Arabidopsis_flowering_genes


different ways, the environmental variables most relevant for prediction. CCA does not per-
form variable selection. In the case of elastic nets and random forests we also include the sec-
ond moments x21; . . . ; x

2
p and the first order interactions xj xj0, 1� j< j0 � p, giving in total 2p +

p(p − 1)/2 predictors. Since this number exceeds the sample size, we did not include interac-
tions for LM and CCA. For ease of notation, we will now assume that p is the total number of
predictors (either the total number of variables (in case of LM and CCA) or the total number
of variables plus the number of interactions (EN and RF)).

Linear regression with backward selection assumes the linear model y = X(S) β(S), where X(S)

is X restricted to a certain subset S� {1, . . ., k} of environmental variables, and β(S) the corre-
sponding vector of regression coefficients. We start with the complete set of predictors con-
tained in X and then perform backward selection using Akaike’s information criterion (AIC
[44]), using the R-function stepAIC. The final model is that with the lowest AIC. Note that
since both y and the columns of X are standardized, no intercept is contained in the model.

In case of elastic nets [20], variable selection is achieved by penalized likelihood, and the
regression coefficients are estimated by

b̂ ¼ argmin
b

1

s2

Xn
i¼1

ðyi � XibÞ2 þ l
1� a
2

Xp

j¼1

b2

j þ a
Xp

j¼1

jbjj
 !( )

;

where λ> 0 is the amount of penalization and α 2 [0, 1] determines the weight of the L1- and
L2-penalty. The term

Pp
j¼1 jbjj forces some coefficients βj to be exactly zero. We fixed α = 0.5

and chose λ by 10-fold cross-validation. We used the implementation in the R-package
glmnet [45].

Random forests, introduced in [21], combine bagging (bootstrap aggregation; [46]) and tree
based methods. Although initially used for classification, random forests are now also com-
monly used for prediction. A large number (e.g. 500) of bootstrap samples is drawn, and for
each bootstrap sample a regression tree is ‘grown’. This tree recursively divides the predictor
space in hypercubes.

Finally, we used canonical correlation analysis (CCA), which is particularly appealing when
several correlated traits y are available. CCA constructs pairs of linear combinations of y’s and
x’s (canonical variables) that have maximal correlation with one another. We then model the
traits by the linear combination of environmental predictors from the first pair of canonical vari-
ables. In case of the Atwell et al. data the three flowering traits measured at 10, 16 and 22 degrees
Celsius were included, and the linear combination from the first pair of canonical variables was
subsequently used in bivariate ETM. In the simulations CCA was performed with a single trait.

LM, EN, RF and CCA all model the observed phenotype as a function of environmental pre-
dictors, using accessions for which both phenotypic and environmental data are available. If
there is a second set of accessions with only environmental data, predictions are made using
the model obtained using the accessions with complete data. In case of LM and EN for

instance, the vector of estimated regression coefficients b̂ gives predictions Xi0 b̂, Xi0 containing
the environmental predictors for accession i0 with missing phenotypic data.

Genome wide association analysis. We adopt the multi-trait mixed model (MTMM)
framework of [14] and [15], which allows for both genetic and environmental correlations
between traits. Marker effects are modeled as a combination of effects that are common to both
traits and trait-marker interaction effects. Following the notation of [14], it is assumed that

y1

y2

" #
¼ s1m1 þ s2m2 þ xbþ ðx � s1Þaþ v; ð1Þ
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where si is the column vector which is one for observations on trait i and zero otherwise, and x
is the vector of 2nmarker scores. As in [14], we have trait-specific means μ1 and μ2, and a
Gaussian vector v with covariance

CovðvÞ ¼
s2
g;1K rgsg;1sg;2K

rgsg;1sg;2K s2
g;2K

 !
þ

s2
e;1In rese;1se;2In

rese;1se;2In s2
e;2In

 !
; ð2Þ

given a n × n genetic relatedness matrix K. The environmental correlation ρe is only to be
included in the model if both traits are measured on the same individuals. In the present con-
text, we consider an observed and a predicted trait. Since the latter is a function of the observed
trait and environmental data, we considered including ρe in the model. This however resulted
in either numerical instabilities or estimates ρe close to zero; we therefore dropped ρe from the
model. The marker under investigation has a common effect β on both y1 and y2. The effect α
is specific to the first trait. Following [14], the following tests were performed for each marker:

1. for any genetic effect (‘full’): the full model against the null-model (α = β = 0).

2. for a common genetic effect (‘common’): the model with α = 0 against the null-model
(α = β = 0).

[14] also proposed a test for trait-specific effects (the full model against the model with α = 0),
which will not be considered here. In Eqs (1) and (2) we assumed that for each individual,
observations on the two traits are available. It is however straightforward to extend the model
to situations with disjoint or only partially overlapping sets of individuals (see [14], Supple-
mentary note).

Analysis of flowering gene recovery
For all methods (bivariate/univariate ETM, univariate mapping) SNPs were ordered by their
significance and the 2000 SNPs with lowest p-values were considered as candidate SNPs. We
assigned each of these SNPs to the gene(s) overlapping with its position or to the closest gene
in the case of non-genic SNPs. This criterion differs from that used by Atwell et al. (2010) [1],
who assigned genes within a 20kb window around each SNP as candidates. Our criterion was
designed to minimize the number of genes evaluated per SNP, without requiring arbitrary deci-
sions on relevant window size (See S16 Fig for a comparison of results using different criteria).

We counted how many out of the 240 known flowering genes were recovered as a function
of the number of unique genes considered when going down the ordered list of candidate
genes. At each point, enrichment was calculated as the hypergeometric probability of finding
(at least) the number of unique flowering genes, given the number of genes evaluated so far,
the total of flowering genes (240) and the total of 29,477 genes assigned to any of the SNPs.

Simulations
We simulate traits and environmental variables for a fixed set of n = 300 accessions taken from
the regmap, of which we randomly selected 100 Swedish, 100 French, 50 German and 50 Czech
accessions. Each simulation consists of k = 30 simulated environmental variables and 1 simu-
lated trait.

Each simulation starts by drawing a Gaussian n × kmatrix XT, containing the true (unob-
served) environmental variables at the locations of origin of the accessions. XT specifies what
we will call the true environment. First we randomly draw a subset S� {1, . . ., k}, containing
s = 10 environmental variables, which will later form the environmental gradient. We will use
the notation XT(S) for the submatrix of XT with columns defined by S.
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To model confounding with population structure, the variables in XT contain polygenic
components, such that their heritabilities are 0.5. Specifically, XT is the sum of Genv and Eenv,
which are drawn from zero mean matrix variate normal distributions (see e.g. [15]). Genv is
simulated together with the column (n × 1) vector Gtrait, such that (Genv, Gtrait) is matrix variate
normal with column covariance matrix VG and row covariance given by a marker-based kin-
ship matrix K. Gtrait is the polygenic signal in the observed trait yO (defined below). VG is the (k
+ 1) × (k + 1) covariance matrix of (Genv, Gtrait). The off-diagonal elements of VG are chosen
such that for each pair of variables in S, the genetic correlation is 0.5. Also the genetic correla-
tions between environmental variables from the complement of S are set to 0.5, while it is zero
for all variables j 2 S and j0 2 Sc. The correlation between Gtrait and the columns of Genv(S) is
either 0 or 0.5. In the latter case, this reflects the assumption that Gtrait is to a certain extent
adaptive. The correlation between Gtrait and the columns of Genv(S

c) is always 0. The row and
column covariance matrices of Eenv are both diagonal.

Given the outcome of XT we then simulate XO, the observed environmental variables, by
adding random Gaussian errors with variance chosen as to achieve a correlation of 0.80, for
each corresponding pair of columns in XT and XO.

We then define the environmental gradient as yT = βXT(S), where β1, . . ., βs are drawn inde-
pendently from a uniform distribution on the interval [−1, 1]. For simplicity we assume that yT
is the (unobserved) adaptive phenotype, although more complex relations between environ-
mental gradients and phenotypes can be expected in nature.

The vector f of causal allele frequencies at each simulated location, is defined as f ðyTÞ ¼
elyT=ð1þ elyT Þ with λ = 3, and hence has a correlation of 1 with yT. A corresponding genotypic
vector g is formed by sampling a single allele for each location from a Bernoulli distribution
with probability f. Finally, we simulate the vector of observed phenotypes yO = βsnp g + Gtrait +
Etrait, where βsnp represents the SNP-effect on the trait, Gtrait is the polygenic effect defined
above, and Etrait is residual noise.

We performed the following sets of 2000 simulations:

• The main set (Fig 1), where βsnp and the variance of Etrait are chosen such that the SNP
explains 5% of the phenotypic variance, while Gtrait and Etrait explain respectively 45% and
50%, i.e. the heritability of the observed trait is 0.5. The correlations between Gtrait and
Genv(S) are set to 0.

• In S2a–S2i Fig, we repeated the simulations from the main set, for heritabilities of 0.2, 0.5
and 0.8, and the causal SNP explaining 2%, 5% and 10% of the phenotypic variance.

• In S3 Fig, we repeated the simulations from the main set, lowering the correlations between
true and observed variables to 0.5.

• In S4 Fig, we repeated the simulations from the main set, the correlations between Gtrait and
Genv(S) being 0.5.

• In S5a and S5b Fig, we repeated the simulations from the main set, the correlations between
Gtrait and Genv(S) being 0.5. Additionally, the SNP effect (βsnp) was set to 0, and Gtrait

explained 50% of the variance.

• In S6 Fig, we repeated the simulations from the main set, but sampled the vector g of SNP
scores randomly from independent Bernoulli(0.5) distributions, i.e. independent of any envi-
ronmental variable.

In all cases, ETM p-values from simulations yielding constant trait predictions were set to
their corresponding univariate GWAS p-values.
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Supporting Information
S1 Fig. Simulation results showing the relation between performance gain of bivariate
ETM (LM) and the Pearson correlation of the predicted trait and true environmental gradi-
ent. The regression line is shown in red and the line marking equal performance of the two
methods is marked in blue. Only results for non-constant predictions are shown.
(PDF)

S2 Fig. Power in simulations for single trait mapping (red), bivariate ETM with the most
correlated environmental variable (black), bivariate ETM with 4 different prediction meth-
ods (LM, EN, RF, CCA; respectively green, blue, brown and purple solid lines), and single
trait mapping with the 4 predicted traits (same colors, dashed lines). Bivariate ETM was per-
formed by testing for a common marker effect (top) and by testing whether there is any effect
on environment or trait (bottom).
(a) h2 = 0.2. The causal SNP explained 2% of the variance of the simulated trait, while polygenic
background and residual variance explained respectively 18% and 80%. Correlations between
true and observed environmental variables were 0.8.
(b) h2 = 0.2. The causal SNP explained 5% of the variance of the simulated trait, while polygenic
background and residual variance explained respectively 15% and 80%. Correlations between
true and observed environmental variables were 0.8.
(c) h2 = 0.2. The causal SNP explained 10% of the variance of the simulated trait, while poly-
genic background and residual variance explained respectively 10% and 80%. Correlations
between true and observed environmental variables were 0.8.
(d) h2 = 0.5. The causal SNP explained 2% of the variance of the simulated trait, while poly-
genic background and residual variance explained respectively 48% and 50%. Correlations
between true and observed environmental variables were 0.8.
(e) h2 = 0.5. The causal SNP explained 5% of the variance of the simulated trait, while polygenic
background and residual variance explained respectively 45% and 50%. Correlations between
true and observed environmental variables were 0.8.
(f) h2 = 0.5. The causal SNP explained 10% of the variance of the simulated trait, while poly-
genic background and residual variance explained respectively 40% and 50%. Correlations
between true and observed environmental variables were 0.8.
(g) h2 = 0.8. The causal SNP explained 2% of the variance of the simulated trait, while polygenic
background and residual variance explained respectively 78% and 20%. Correlations between
true and observed environmental variables were 0.8.
(h) h2 = 0.8. The causal SNP explained 5% of the variance of the simulated trait, while poly-
genic background and residual variance explained respectively 75% and 20%. Correlations
between true and observed environmental variables were 0.8.
(i) h2 = 0.8. The causal SNP explained 10% of the variance of the simulated trait, while poly-
genic background and residual variance explained respectively 70% and 20%. Correlations
between true and observed environmental variables were 0.8.
(PDF)

S3 Fig. Power in simulations (h2 = 0.5), correlations between true and observed environ-
mental variables being 0.5. Colors represent single trait mapping (red), bivariate ETM with
the most correlated environmental variable (black), and bivariate ETM with 4 different pre-
diction methods (LM, EN, RF, CCA; respectively green, blue, brown and purple). Bivariate
ETM was performed by testing for a common marker effect (top) and by testing whether there
is any effect on environment or trait (bottom). The causal SNP explained 45% of the variance
of the simulated trait, while polygenic background and residual variance explained respectively
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45% and 50%.
(PDF)

S4 Fig. Power in simulations, the genetic correlation between the observed trait and each of
the 10 environmental variables defining the environmental gradient being 0.5. Colors rep-
resent single trait mapping (red), bivariate ETM with the most correlated environmental
variable (black), and bivariate ETM with 4 different prediction methods (LM, EN, RF,
CCA; respectively green, blue, brown and purple). Bivariate ETM was performed by testing
for a common marker effect (top) and by testing whether there is any effect on environment or
trait (bottom). The causal SNP explained 5% of the variance of the simulated trait, while poly-
genic background and residual variance explained respectively 45% and 50%.
(PDF)

S5 Fig. QQ-plots of −log10(p) values in simulations without a SNP effect, for single trait
mapping, bivariate ETM with the most correlated environmental variable, and bivariate
ETM with 4 different prediction methods. The SNP scores were independently drawn from
the Bernoulli(0.5) distribution. Polygenic background (adaptive) and residual variance each
explained 50% of the phenotypic variance. The genetic correlation between the observed trait
and each of the 10 environmental variables defining the environmental gradient was 0.5. (a)
Bivariate ETM performed by testing for a common marker effect. (b) Bivariate ETM was per-
formed by testing whether there is any effect on environment or trait.
(PDF)

S6 Fig. Power in simulations with a non-adaptive SNP, for single trait mapping (red),
bivariate ETM with the most correlated environmental variable (black), and bivariate ETM
with 4 different prediction methods (LM, EN, RF, CCA; respectively green, blue, brown
and purple). Bivariate ETM was performed by testing for a common marker effect (top) and
by testing whether there is any effect on environment or trait (bottom). The causal SNP
explained 5% of the variance of the simulated trait, while polygenic background and residual
variance explained respectively 45% and 50%. Correlations between true and observed envi-
ronmental variables were 0.8.
(PDF)

S7 Fig. Scatter plots of 61 environmental variables against observed flowering time. Num-
bers in red indicate squared Pearson correlations.
(PDF)

S8 Fig. Scatter plots of 61 environmental variables against predicted flowering time (LM).
Numbers in red indicate squared Pearson correlations.
(PDF)

S9 Fig. Scatter plots of 61 environmental variables against predicted flowering time (EN).
Numbers in red indicate squared Pearson correlations.
(PDF)

S10 Fig. Scatter plots of 61 environmental variables against predicted flowering time (RF).
Numbers in red indicate squared Pearson correlations.
(PDF)

S11 Fig. Scatter plots of 61 environmental variables against predicted flowering time
(CCA). Numbers in red indicate squared Pearson correlations.
(PDF)
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S12 Fig. Recovery results as a function of -log10(p) values. Colors are as in Fig 2.
(PDF)

S13 Fig. QQ-plot of −log10(p) values for univariate mapping of the observed trait (first
principal component of 3 flowering traits; top) and summer day length (bottom).
(PDF)

S14 Fig. QQ-plots of −log10(p) values for univariate mapping of the predicted trait (left col-
umn), for bivariate ETM with the test for a common marker effect (middle column) and
for bivariate ETM with the test for any marker effect (right column). Four different predic-
tion methods were used (LM, EN, RF, CCA, from top to bottom).
(PDF)

S15 Fig. QQ-plots of −log10(p) values for univariate mapping with MLMM (multi-locus
mixed model; Segura et al. (2012)). The numbers of co-factors selected using the extended
BIC criterion were 1,2,0,1,3 and 2, for respectively the observed traits (first row) and for pre-
dicted traits (LM and EN (middle row); RF and CCA (bottom row)).
(PDF)

S16 Fig. Results comparing enrichment for flowering genes between our method of calling
the gene closest to a candidate SNP (shown in blue) and calling all genes within windows of
different sizes, 80kb (brown), 40kb (red), 20kb (orange) and 10kb (yellow). The bottom
right panel shows results for univariate mapping of the observed trait when calling a maximum
of one gene per SNP (i.e. correction for “double hits”).
(PDF)

S1 File. List of environmental variables used for trait prediction.
(XLS)

S2 File. List of flowering genes used in enrichment analysis.
(CSV)
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