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Neurodegeneration is a chronic progressive loss of neuronal cells leading to deterioration of central nervous system (CNS)
functionality. It has been shown that neuroinflammation precedes neurodegeneration in various neurodegenerative diseases. Matrix
metalloproteinases (MMPs), a protein family of zinc-containing endopeptidases, are essential in (neuro)inflammation and might be
involved in neurodegeneration. Although MMPs are indispensable for physiological development and functioning of the organism,
they are often referred to as double-edged swords due to their ability to also inflict substantial damage in various pathological
conditions. MMP activity is strictly controlled, and its dysregulation leads to a variety of pathologies. Investigation of their
potential use as therapeutic targets requires a better understanding of their contributions to the development of neurodegenerative
diseases. Here, we review MMPs and their roles in neurodegenerative diseases: Alzheimer’s disease (AD), Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and multiple sclerosis (MS). We also discuss MMP inhibition as a

possible therapeutic strategy to treat neurodegenerative diseases.

1. Introduction

In the past two decades, the function of matrix metallopro-
teinases (MMPs) in the central nervous system (CNS) has
gained much attention. MMPs are calcium (Ca**) dependent
zinc (Zn**) containing endopeptidases produced in latent
forms. Once activated, they participate in the regulation of
diverse physiological and pathological processes [1]. MMPs
are involved in the degradation of extracellular matrix (ECM)
components, remodeling of tissues, shedding of cell surface
receptors, and processing of various signaling molecules.
MMPs are essential for brain development due to their
association with important neurophysiological functions,
such as synaptic plasticity [2, 3] and long-term potentiation
[4, 5]. In the adult brain under normal conditions, MMPs are
expressed at basal but detectable levels. Increased expression
of MMPs is observed in a variety of pathological conditions,
including neurodegenerative diseases such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), amyotrophic lateral

sclerosis (ALS), Huntingtons disease (HD), and multiple
sclerosis (MS) and in neuroinflammatory conditions such
as traumatic brain injury, stroke, and meningitis. As part
of the neuroinflammatory response, MMP activity at CNS
barriers contributes to the increase in permeability by altering
the properties of ECM and tight junctions. This results in
aggravation of neuroinflammation-induced brain damage.
On the other hand, activation of MMPs is known to help in
tissue repair, angiogenesis, and neurogenesis. In this review,
we focus on both beneficial and detrimental roles of MMPs
in neurodegenerative diseases.

2. Matrix Metalloproteinases (MMPs)

MMPs, together with adamlysins and astacins, belong to
metzincins, a family of Zn**-dependent, Ca®*-containing
endopeptidases (24 members in mammals) [1]. MMPs are
multidomain proteins consisting mostly of the following
domains: N-terminal signal peptide (which is cleaved in
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F1GURE I: Classification of the MMPs based on their domain organization. MMPs are grouped into four major groups: gelatinases, matrilysins,
archetypal MMPs, and furin-activatable MMPs. The typical structure of MMPs consists of a signal peptide, propeptide, a catalytic domain,
hinge region, and a hemopexin domain. In addition, members of the gelatinases family have extra fibronectin type II motif repeats in the
catalytic domain, and matrilysins have neither a hinge region nor hemopexin domains. Furin-activatable MMPs contain a furin recognition
motif and are subcategorized into either secreted or membrane bound. Based on the type of membrane attachment, they are subdivided into
type I transmembrane MMPs, GPI-linked MMPs, and type I transmembrane MMPs. Type-II transmembrane MMPs lack a cysteine switch.
Instead, they have a cysteine rich domain and IgG-like domain. C, C-terminal domain; FN, fibronectin; GPI, glycophosphatidylinositol; MMP,

matrix metalloproteinases; N, N-terminal domain.

the secretory pathway), propeptide (which maintains latency
of MMPs), catalytic domain (holds the Zn*" ion), hinge
region (connecting sequences), and C-terminal hemopexin-
like domain (required for substrate and TIMP recognition)
[6] (Figure 1). Besides these common domains, some MMPs
have alternative peptide structures and different additional
domains [7]. MMPs are produced as zymogens (pro-MMP)
that are activated by other enzymes or free radicals through
the cysteine switch mechanism. The thiol group of a cysteine
residue in the N-terminal prodomain binds to and blocks
the active-site Zn*" atom; activation occurs when the thiol
group is blocked or removed [8]. It has been shown that
MMPs play an important role in various physiological and
pathological processes in the body. Active MMPs can degrade
ECM components. ECM is a dynamic structure that supports
multiple physiological processes. It acts as an adhesion site
for various cells and serves as a storage site for different
signaling molecules, growth factors, and proteins in general,
thus influencing development and migration of the cells.
ECM consists mainly of glycosaminoglycans, proteoglycans,

and fibrous proteins (collagen, laminin, and fibronectin).
MMP cleavage of ECM influences cell migration, embryo-
genesis, and other processes during development as well as
in the adult organism. In the brain, MMPs are involved in
tissue remodeling after injury, neurogenesis, axonal growth,
angiogenesis, CNS barrier disruption, myelinogenesis, and
demyelination. Additionally, MMPs play an active role in
immune processes by cleaving various molecules, including
growth factors, death receptors, chemokines, and cytokines
[9,10]. For example, several MMPs can activate tumor necro-
sis factor (TNF) [11-15] and transforming growth factor-
beta (TGE-f3) [16], while other MMPs degrade interleukin-
18 (IL-1p) [17]. Ultimately, MMP cleavage of chemokines
and cytokines can lead to either pro- or anti-inflammatory
processes [18].

Based on their domain organization, MMPs are classified
into four major subgroups: (1) gelatinases (MMP-2, MMP-9),
(2) matrilysins (MMP-7, MMP-26), (3) archetypal MMPs,
and (4) furin-activated MMPs (Figure 1 and Table 1). The
archetypal MMPs contain different types: stromelysins
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TaBLE 1: Classification and structure of MMPs.

Family MMPs Structure
Signal peptide, propeptide, catalytic domain with
Gelatinases MMP-2, MMP-9 fibronectin type II motif repeats, hinge region, and
hemopexin domain
Matrilysins MMP-7, MMP-26 Signal peptide, propeptide, and a catalytic domain
Stromelysins
MMP-3, MMP-10
Archetypal MMPs Collagenases Sigpal peptide, propept‘ide, a caj[alytic domain, hinge
MMP-1, MMP-8, MMP-13, MMP-18 region, and a hemopexin domain
Other

MMP-12, MMP-19, MMP-20, MMP-27

Secreted

MMP-11, MMP-21, MMP-28
Type-I transmembrane
MMP-14 (MT1-MMP), MMP-15

(MT2-MMP), MMP-16 (MT3-MMP), and

Furin-activatable MMPs MMP-24 (MT5-MMP)

Type-II transmembrane

MMP-23

GPI-anchored

MMP-17 (MT4-MMP), MMP-25
(MT6-MMP)

Signal peptide, propeptide, furin recognition motif, a
catalytic domain, hinge region, and a hemopexin
domain

GPI, glycosylphosphatidylinositol; MMP, matrix metalloproteinase.

(MMP-3, MMP-10), collagenases (MMP-1, MMP-8, MMP-
13), and other MMPs (MMP-12, MMP-18, MMP-20,
MMP-27). Similarly, the furin-activated MMPs are divided
in secreted MMPs (MMP-11, MMP-21, MMP-28); type-I
transmembrane MMPs (MMP-14, MT1-MMP, MMP-15,
MT2-MMP, MMP-16 (MT3-MMP), and MMP-24 (MT5-
MMP)), type-II transmembrane MMPs (MMP-23), and
GPI-anchored MMPs (MMP-17 (MT4-MMP), MMP-25
(MT6-MMP)).

MMPs are stringently regulated because in their active
state they can be detrimental. MMPs are modulated on
several levels: transcriptional activation, removal of the
prodomain, interaction with ECM components, and inhibi-
tion by endogenous inhibitors such as tissue inhibitors of
metalloproteinases (TIMPs) [19]. Four TIMPs can reversibly
block MMP activity. TIMPs are proteins of 21-28 kDa which
bind the active site of MMPs in a one-to-one ratio [7,
20]. Besides TIMPs, also «-2 macroglobulin and receptor
mediated endocytosis can prevent activated MMPs from
exerting their effects. MMPs can be activated by different
stimuli. Proinflammatory cytokines (e.g., TNF«a and IL-
1) and several growth factors can initiate an intracellular
signaling cascade leading to the activation of AP-1, NF-
kB, or ETS transcription factors, with consequent MMP
transcription [21]. On the level of MMP-zymogen activation,
mostly serine proteases and other MMPs are involved in
initiating proteolytic cleavage of the prodomain; for example,
MMP-3 can cleave pro-MMP-9 [22]. Additionally, high levels
of reactive oxygen species (ROS) and reactive nitrogen
species can induce activation of MMPs [23]. It has been

observed that MMPs in the CNS are secreted by microglia,
astrocytes, and neurons [24]. In physiological conditions,
MMPs are either absent or present at undetectable levels in
the mature brain, and deregulation of their activity could
shift the balance and induce perpetuation of chronic inflam-
mation. This has been shown in different peripheral chronic
diseases, such as atherosclerosis and rheumatoid arthritis
[25, 26], and neuroinflammatory diseases, such as cerebral
ischemia, stroke, and bacterial meningitis [27]. MMPs are
known to be involved in CNS barrier maintenance and to
increase the permeability of the barriers in inflammation.
The proposed mechanism involves degradation of ECM
components (e.g., laminin and collagen), which normally
support cellular structures and limit the passage of different
molecules and cells into the blood through the barriers [28-
30]. Additionally, increased MMP activity is known to nega-
tively affect tight junction functionality at the CNS barriers
[30-33]. Alternatively, several MMPs have been shown to
activate proinflammatory cytokines and free radicals, which
enhances inflammation and subsequently induces disruption
of the CNS barriers [27, 34, 35]. MMPs are secreted upon
inflammation, for example, by peripheral neutrophils, which
thereby contribute to aggravation of the inflammation and
disruption of the barriers [36]. Compromise of CNS barrier
integrity due to activation of MMPs has been observed in
cerebral ischemia, traumatic brain injury (TBI), and other
diseases associated with neuroinflammation [37]. In this
review, we focus on the role of different MMPs in the major
neurodegenerative diseases, AD, PD, ALS, HD, and MS
(Figure 2; Tables 2 and 3).
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FIGURE 2: Schematic representation of the activation of MMPs, their interactions with cytokines and chemokines, and the outcome of
the interactions. MMPs are induced and activated in the presence of an external trigger (e.g., inflammatory stimuli) or abnormal proteins
(e.g., protein or peptide aggregates). The activated MMPs can alter the properties of cytokines and chemokines. They also interact with the
extracellular matrix, cell surface receptors, growth factors, integrin, signaling molecules, and tight junction proteins and alter their properties.
This affects neuroinflammation, cell death or survival, growth, and regeneration. ECM, extracellular matrix; MMP, matrix metalloproteinase;

TJs, tight junctions.

3. Neurodegenerative Diseases and
Neuroinflammation

3.1. Neurodegenerative Diseases. During the previous cen-
tury, prolongation of the human lifespan led to an increase in
the proportion of elderly people in the population, which has
given rise to an increased incidence of age-related diseases
such as neurodegenerative disorders. Neurodegenerative dis-
eases share common features, such as progressive loss of
neurons and deterioration of the structure and function of
the central and/or peripheral nervous system. These chronic
illnesses impose a heavy economic and social burden and
affect both patients and caregivers. Since all neurodegen-
erative diseases are incurable, the outcome in most cases
is death. AD represents 60-70% of all neurodegenerative
cases [38]. Worldwide, 47 million people are living with
AD and other dementias, including more than 5 million in
the United States alone [39], where the number is expected
to rise to 71 million in 2025 [40]. The estimated costs

of medical care exceed 214 billion dollars annually [39].
Furthermore, there are large numbers of patients with other
neurodegenerative diseases, including AD, PD, ALS, HD, MS,
and frontotemporal dementia [41].

The major problem in the management of neurodegen-
erative diseases is the lack of adequate information on their
pathogenesis and absence of mechanism-based treatments.
However, interaction of genetic and environmental factors,
as well as advanced age, is known to contribute to disease
onset. Generally, all neurodegenerative diseases share certain
molecular and cellular mechanisms, including protein aggre-
gation and formation of inclusion bodies.

The traditional classification of neurodegenerative disor-
ders is based on clinicopathological features and has been
formulated through “consensus criteria,” that is, a set of diag-
nostic criteria on which experts in the field agree, along with
specific molecular characteristics. This traditional classifica-
tion was established during the early stages of the research on
neurodegenerative diseases and was based on a rather small
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number of cases [96]. One of the categories used for classi-
fication is the presence of certain molecules in brain lesions
associated with the disorder, for example, 3-amyloid (A ) for
AD and «a-synuclein for PD. For several neurodegenerative
diseases, mutations in specific genes have been found, for
example, presenilin genes (PSEN 1 and 2) for AD. However,
in certain cases diagnosis is difficult due to the coincidence
of clinicopathological features of several neurodegenerative
diseases [97-99]. Nowadays, with the increasing amount of
molecular and genetic data and the continuing efforts to find
other common characteristics of neurodegenerative diseases,
questions have arisen about the distinction between these
diseases, making their classification even more problematic
[99-101]. The early classifications divided neurodegenerative
diseases into either taupathies (including AD, PicKs dis-
ease (PiD), argyrophilic grain disease (AGD), progressive
supranuclear palsy (PSP), corticobasal degeneration (CBD),
and FTDP-17) and synucleinopathies (including PD, demen-
tia with Lewy bodies (DLB), and multiple system atrophy
(MSA)) [102]. Today, different, nosological classifications of
neurodegenerative diseases exist, taking into account clinical
presentation, affected brain regions and cell types, altered
proteins involved in the pathogenesis of the disease, genetics,
and possible overlaps between diseases [96, 103].

3.2. Neuroinflammation. Neuroinflammation is defined as
inflammation of nervous tissue, which occurs as a biological
response to different signals, such as infection, CNS injury,
autoimmunity, and toxic compounds. Although it is initiated
primarily as a beneficial reaction of the CNS to the harmful
stimulus, it could eventually aggravate the disease. Neuroin-
flammation is characterized by the initiation of a cascade of
events, including production of cytokines and chemokines
accompanied by the release of free radicals and proteases,
resulting in a chronic inflammatory state in the organism.
Four CNS barriers separate blood from CNS parenchyma
to block entrance of immune cells and various molecules
into the brain from the periphery: blood-brain barrier (BBB),
blood-cerebrospinal fluid barrier (BCSFB), arachnoid bar-
rier, and blood-spinal cord barrier (BSCB) [104, 105]. All
CNS barriers are dynamic structures that allow passage of
immune-related molecules and cells upon specific stimuli
(e.g., proinflammatory cytokines) [106, 107]. Furthermore,
immune functions in the brain are conveyed by microglia,
innate immune cells that are constitutively present in the
brain, but astrocytes can secrete many molecular mediators
of the immune response [108]. Microglia are of myeloid
origin and normally reside in a ramified, resting state in the
CNS, where they monitor the surrounding environment in
the brain and spinal cord. Opposite to immune cells in the
periphery, microglia are predominantly involved in limiting
inflammation. When triggered by various immunological
stimuli, microglia morphologically transform into ameboid
cells and start to proliferate and secrete inflammatory media-
tors [109, 110]. Besides, they start to mimic antigen presenting
cells (APC), which are immune cells in the periphery, by
upregulating major histocompatibility complex (MHC) class
II and becoming phagocytic [111]. The presence of the MHC
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is important for prolongation of the immune response in the
CNS. Activated microglia engage in different processes, both
protective and harmful. It has been shown that microglia
are involved in neuron survival [112], neurogenesis [113],
facilitation of brain repair via guidance of stem-cell migration
to the site of inflammation or injury [114], and clearance of
cell debris [115]. Nevertheless, when overactive, microglia can
inflict severe damage to the brain by excessive production
of molecules such as MMPs, proinflammatory cytokines
and chemokines, and cytotoxic molecules such as ROS and
nitric oxide (NO) [116-118]. Astrocytes too play a role in
the inflammatory response of the CNS. They also pro-
duce different inflammatory mediators, including cytokines,
chemokines, and complement components [119]. For exam-
ple, both microglia and astrocytes secrete IL-2 and IL-1f,
thereby stimulating CD4+ T helper cells to produce GM-
CSE which contributes to perpetuation of the inflammation
processes by recruitment of CDIlb-positive myeloid cells
[120]. Also T cells can secrete cytokines and MMPs that are
known to disrupt the BBB and permit the entry of immune
cells from periphery, converting acute inflammation into a
chronic inflammatory state. Although microglia have been
implicated in neurodegenerative diseases, the mechanisms
responsible for activating microglia are unknown [121].

4. Role of MMPs in
Neurodegenerative Diseases

4.1. Aging. All neurodegenerative diseases are multifactorial
and caused by complex interactions of genetic and environ-
mental factors. By far the most prominent risk factor for
most neurodegenerative diseases is aging, so the prevalence
of these disorders is high above the age of 65 years. Aging
is influenced by interaction and balance between various
protective and harmful factors over the lifespan of an indi-
vidual. These factors include genetics, nutrition, psychosocial
influences, and exposure to toxic compounds [122]. However,
it is not yet clear how aging acts on the development of
neurodegenerative diseases and other age-related diseases
[123]. Two of the most prominent characteristics of aging are
immunosenescence (deterioration of immune responses) and
inflammaging (presence of chronic low grade inflammation)
(124, 125]. Physiological aging is associated with a progressive
increase in the number of activated microglial cells in the
brain and spinal cord [126-128] accompanied by transition
from normal microglial morphology to microglial dystrophy
[129]. It has been shown that aged microglia secrete IL-
153 [130] and increase MHC class II expression [131]. Low-
level systemic inflammation during aging has also been
linked to the presence of active microglia and increased
proinflammatory cytokines levels in the brain [132-134]. One
of the characteristics of aging is accumulation of advanced
glycation end products (AGE), which are also elevated in AD.
Activation of the receptor for AGE (RAGE) leads to release
of proinflammatory cytokines and free radicals, further
contributing to inflammatory processes [135]. Data are scarce
on the role of MMPs in brain aging. Nevertheless, changes
in the physiological balance between MMPs and TIMPs
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have been related to age-related vascular diseases [136]. One
theory of aging suggests that vascular-derived insults initiate
and/or contribute to aging and to some of the age-related
diseases, such as AD [137, 138]. In a comparative study, RNA
expression of 22,626 genes was monitored in the heart and
cerebellum of young and aged mice of several strains. Two
potential biomarkers of aging present in both structures were
identified: complement component C4 and TIMP-2 [139].
Using magnetic resonance imaging, Romero et al. found
that upregulation of MMP-9 was associated with aging and
circulating levels of MMP-9 and TIMP-1 in patients with
brain ischemia and aging [140]. Liu et al. observed that MMP-
12 increased in the aging brain and that MMP-12 deficiency
led to a reduction of neuroinflammaging. This finding is
linked to aggravation of neuroinflammation associated with
aging via the induction of the migration of bone marrow
derived microglia to the brain [141]. Furthermore, Safciuc
etal. showed that microvessels in the brain of aged rats exhibit
decreased MMP-2 activity and appearance of MMP-9 [142].

4.2. Alzheimer’s Disease (AD). AD is the most common neu-
rodegenerative disorder. Its prominent characteristics include
brain atrophy, caused by neuronal cell death, and decreased
dendritic arborization in the cerebral cortex and other
subcortical areas. The hallmarks of AD include presence of
amyloid plaques and neurofibrillary tangles, which are linked
to cerebral atrophy [143]. Amyloid plaques, also called senile
plaques, appear in brain parenchyma as extracellular deposits
consisting of A fibrils of 37-43 amino acids, originating
from alternative processing of APP protein [144]. Although
A deposition is considered a signature lesion for AD, it
also occurs in Downs syndrome, possibly due to triple
multiplication of amyloid precursor protein (APP), as well
as in certain cases of dementia with Lewy bodies [145, 146].
Additionally, occurrence of A3 pathology has been observed
in several other neurodegenerative diseases, such as PD, PicK’s
disease (PiD), progressive supranuclear palsy (PSP), and cor-
ticobasal degeneration [147], as well as in ALS [148]. Besides,
deposition of A occurs in the cerebral vasculature in both
cerebral amyloid angiopathy (CAA) and in 90% of patients
with AD [149]. Af originates from the transmembrane
protein APP, which undergoes amyloidogenic processing by
B-secretase to produce 3-C terminal fragments (CTFs). These
fragments are cleaved by y-secretase to release Af in the
extracellular space and APP intracellular domain (AICD)
into the cytoplasm. In the physiological nonamyloidogenic
pathway, a-secretase cleaves APP at a different site, pro-
ducing a-CTFs. These fragments are cleaved by y-secretase,
resulting in the cytoplasmic peptide fragment AICD and
the extracellular p3 peptide. In contrast to A peptides,
p3 peptides have a low propensity to assemble into stable
oligomers and they have no known harmful effects on brain
cells [150]. It has been shown that some of the members of the
metalloproteinase family, including the ADAM (a disintegrin
and metalloproteinase) proteins ADAM-17 (also called tumor
necrosis factor-a-converting enzyme or TACE), ADAM-9
and ADAM-10, can cleave APP at the a-secretase cleaving
site [150]. Released Af3 can act as a monomer, but it can

dimerize or oligomerize. Af-induced synaptic dysfunction
has been noted in AD [151-154]. A8 oligomers are nonfibrillar
B structures, and further aggregation of A oligomers results
in the formation of protofibrils and eventually fibrils. These
structures form a base for formation of A plaques [155-157].
Ap deposits are typically surrounded by dystrophic neurites,
reactive astrocytes, and activated microglia, forming dense-
core plaques in the brain parenchyma [158].

Also considered hallmarks of AD are neurofibrillary tan-
gles (NFT), intercellular deposits of a hyperphosphorylated
form of Tau protein [159]. Physiologically, Tau protein plays
a role in the assembly and stabilization of microtubules
in neurons [160]. Cases of dementia with abundance of
NFTs and a few amyloid plaques have been classified as a
nonspecific type of neurodegenerative disorders, called NFT
dementia [161]. However, the etiology of AD is complex, and
neither A nor NFT alone should be considered responsible
for the disease manifestations. Therefore, other proposed
mechanisms and manifestations of the disease should also
be taken into account [162]. Some authors point to the role
of an imbalance in ROS formation and cellular antioxidant
activity in AD [163]. The idea is that overproduction of free
radicals could be a driving force behind neurodegeneration,
and given the large number of possible stressors, such as
aging, inflammation, hypoxia, and cerebral hypoperfusion,
there is ample opportunity for overproduction of free radicals
[164]. On the other hand, advocates of the inflammatory
hypothesis propose a central role for activated microglia
nearby amyloid plaques in the brain. Their notion is that
activated microglia produce large amounts of inflammatory
cytokines and chemokines, which sustain a chronic inflam-
mation in the brain that ultimately leads to neuronal cell
death [165]. Furthermore, it has been shown that besides
the established direct neurotoxic effect [166], A3 can exert
indirect proinflammatory effects via microglial activation,
which results in secretion of NO, TNF«, and superoxides
[167, 168]. Interestingly, clustering of activated microglia
around Af aggregates has been observed even before the
development of AD symptoms [169-171].

In view of the relationship between MMPs and AD [62]
(Figure 3) and in order to distinguish AD from vascular
dementia, Bjerke et al. proposed MMP-9 and TIMP-1 as
biomarkers of AD, next to T-tau, P-tau, Af3;_,,, and white
matter lesions [52]. Strikingly, a correlation between cognitive
impairment and MMP-9 activity was observed in patients
with mild cognitive impairment [53]. In agreement with that
correlation, Lorenzl et al. observed higher levels of MMP-
9 in serum of AD patients [54]. MMP-9 expression was
shown to be induced in AD patients in neuronal cytoplasm,
neurofibrillary tangles, amyloid plaques, and vascular tissue
[56], as well as in astrocytes upon Af stimulation [57].
Additionally, MMP-9 was found in pyramidal neurons of the
brains of AD patients, and near amyloid plaques and it was
shown that MMP-9 is able to cleave Af,_, [58]. Moreover,
Yan et al. showed that MMP-9 can degrade A fibrils in
vitro, as well as amyloid plaques in brain slices from APP/PS1
mice [55]. Using intracerebroventricular (icv) injections of
different Af peptides in animal models, Mizoguchi et al.
showed an increase in MMP-9 activity in hippocampus,
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FIGURE 3: Schematic representation of the involvement of MMPs in Alzheimer’s disease pathology. Af3 peptides produced from APP
processing form oligomers that subsequently form amyloid deposits or plaques in the brain parenchyma. A oligomers activate inflammatory
cellsin the brain (astrocytes, microglia, and choroid plexus epithelium). Once activated, microglia change their shape, migrate close to plaques,
and begin to secrete proinflammatory cytokines and MMPs. Secreted MMPs degrade A3 and, on the other hand, exacerbate inflammation in
the brain, leading to death of neurons. These cytokines and MMPs also affect the endothelial tight junctions, alter the pericyte phenotypes, and
contribute to increased BBB permeability. Similarly, oligomers in the CSF activate the choroid plexus epithelium, which leads to the release
of proinflammatory cytokines and MMPs. These secreted MMPs further damage the tight junctions at the BCSFB. Af3, f-amyloid; BBB,
blood-brain barrier; BCSFB, blood-cerebrospinal fluid barrier; CSE, cerebrospinal fluid; MMP, matrix metalloproteinase; TJs, tight junctions.
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related this increase to Ap-induced cognitive impairment,
and confirmed the results using MMP inhibitors and MMP-
9 knockout mice [59]. Notably, another study showed that
MMP-3, by remodeling the ECM, is crucial for synaptic
plasticity and learning [48]. It has been shown that MMP-9
can act through NMDA receptor signaling via an integrin 31
dependent pathway [60]. Li et al. showed in primary astrocyte
cultures insignificant levels of MMP-9 in medium after treat-
ment with Af oligomers, accompanied with a decrease in
MMP-2 activity. On the contrary, in the brain of APP/PS1 AD
mice, they observed increased MMP-2 and proinflammatory
cytokine levels. They proposed that Af can decrease the
expression and activation of MMP-2 in astrocytes directly,
while stimulating microglia to produce proinflammatory
cytokines, which in turn again induce MMP-2 expression and
aggravate the disease [43]. However, in the study of Bruno
et al,, no elevation of MMP-2 activity was observed in AD
patients [53]. In a transgenic mouse model of AD, expression
of MMP-2 and MTI-MMP, a potent MMP-2 activator, was
found in reactive astrocytes around amyloid plaques [45], and
higher levels of AB,_,, increased the production of MMP-
3, MMP-12, and MMP-13 in microglia [47]. Additionally,
MMP-12 exacerbates the cascade of proteolytic processes
by subsequent activation of other MMPs such as MMP-2
and MMP-3 [47]. Kook et al. looked into the effects of Af
on endothelial cells and BBB integrity and linked this to
MMP activity. They observed increased BBB permeability
in cultured endothelial cells linked to decreased zonula
occludens-1 (ZO1) levels, one of the major components of
TJs. Moreover, there was an increase in MMP-9 and MMP-
2 activity, and broad-spectrum MMP inhibition reversed the
ApB-induced BBB disruption. Additionally, they confirmed
these results in a transgenic mouse model of AD by showing
enhanced immunoreactivity of MMP-9 near cerebral cap-
illaries and alterations in tight junction components. The
proposed mechanism of Af activity is through activation of
RAGE, which is physiologically expressed on endothelial cells
and activates the intracellular calcineurin (CaN) signaling
pathway, which ultimately results in activation of MMPs and
TJ cleavage [172]. In the same year, another group showed that
interaction of A with RAGE induces MMP-2 via the ERK
and JNK pathways in brain endothelial cells [44].

Besides aging, the most prominent genetic risk factor for
developing late onset AD is the presence of apolipoprotein
E &4 allele (APOE &4) in the genome [173]. The group
of Zlokovic reported that, both in transgenic mice and in
humans, APOE &4 leads to BBB breakdown by activating
the proinflammatory cyclophilin A (CypA)/MMP-9 pathway
in brain pericytes, which are important components of the
neurovascular unit and guardians of BBB integrity [61, 174].
This eventually results in degradation of the BBB tight
junctions and basement membrane proteins [61, 174].

As far as the role of stromelysins in AD is concerned,
MMP-3 levels were significantly upregulated in plasma,
similar to what was observed in CSF of AD patients [49].
In contrast, Mlekusch and Humpel observed downregulation
of MMP-3 and MMP-2 in CSF of AD patients, but it should
be noted that these patients had lower A levels [175]. In
other studies, it has been shown that MMP-3 is expressed
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in microglia, astrocytes, and endothelial cells in the brain, as
well as near senile plaques in AD [62]. Deb and Gottschall
showed that MMP-3 was induced and its activity increased in
astrocyte and neuronal cell cultures upon Ap,_,, stimulation
[46]. As reported for MMP-9, MMP-3 can degrade A3 [47, 50,
176]. Moreover, a correlation was found between MMP3%5A
and APOE 4 alleles, and the presence of both is a risk
factor for developing AD [177]. Interestingly, we recently
reported that icv injection of Af3,_,, oligomers induces loss of
barrier integrity at the blood-CSF barrier, and this was linked
to increased MMP-3 expression and MMP activity [32].
Moreover, the Af3;_,, oligomer-induced leakage of the BCSFB
could be prevented by a broad-spectrum MMP inhibitor and
did not occur in MMP-3 deficient mice [32].

Other MMPs have been implicated in AD. Leake
et al. reported a notable increase in MMP-1 in brain
of AD patients [42]. Langenfurth et al. found upregu-
lated microglial/macrophage expression in tissues from AD
patients, as well as in a mouse model of AD [178]. Finally,
levels of TIMP-1 and C-reactive protein (CRP) were found to
be increased in AD patients, and they decreased remarkably
after treatment with acetylcholinesterase inhibitors (AchEIs),
one of the few available therapies of AD [179].

4.3. Parkinson’s Disease (PD). PD is the second most preva-
lent neurodegenerative disease and the most common neu-
rodegenerative movement disorder, with an estimated 7-
10 million people worldwide suffering from it. Like AD,
its prevalence increases with age, and due to the severity
and long duration of the disease, its costs in the US alone
are estimated at 25 billion dollars per year. A prominent
characteristic of PD is the presence of intracellular protein
inclusions called Lewy bodies in affected brain areas. These
inclusions are formed of fibrillar, misfolded proteins com-
posed of a-synuclein, parkin, synphilin, synaptic vesicle pro-
teins, and neurofilaments. The biological significance of these
inclusions is unclear [180]. Interestingly, inclusions similar to
Lewy bodies were found in 22% of cases of familial AD, and
they occur also in dementia with Lewy bodies (DLB) and
in multiple system atrophy (MSA) [181]. Another hallmark
of PD is selective and progressive loss of dopaminergic
neurons in substantia nigra pars compacta. The substantia
nigra, being part of basal ganglia together with the striatum,
globus pallidus, and subthalamic nucleus, modulates motor
activity in the brain [182]. Thus, due to dopaminergic neuron
cell death, one of the clear manifestations of the disease is
loss of control over movements, resting tremor, bradykine-
sia, and rigidity [183]. Additionally, PD is accompanied by
sensory dysfunction, mood and sleep disorders, dementia,
and partial autonomic nervous system impairment [184].
This multifactorial disorder is known to be influenced by
genetic factors, such as multiplication or missense mutations
in the a-synuclein gene, which is a major risk factor for
familial PD [185]. Additionally, mutations in parkin, PINKI,
and LRRK2 have been identified as possible causes of other
cases of familial PD [186, 187]. Nevertheless, most cases of
PD are sporadic, and the onset of the disease has been shown
to be caused by complex interaction of environmental and
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genetic factors. PD is characterized by chronic inflammation
persisting over the years of disease progression. Thus, some
hypotheses propose that neuroinflammation could play a
pivotal role in promotion and aggravation of the disease
[188-190]. Studies on postmortem tissue of PD patients, as
well as in vivo imaging, revealed astrogliosis, overactivation
of microglia, and infiltration of peripheral immune cells
into brain regions affected by PD [191-195]. In PD patients,
active microglia have been observed in most of the regions
with Lewy bodies, and in vivo imaging revealed microglial
activation throughout the different stages of the disease,
indicating chronic microglial activation [196]. The substantia
nigra seems to be particularly susceptible to inflammation
due to the presence of the largest number of microglia in
this brain area, so relevant stimuli lead to the activation of
large numbers of microglia [197]. In agreement with these
findings, activated microglia have been found in substantia
nigra in patients with sporadic or familial PD [196,198] as well
as after exposure of humans to 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) [65]. The same effect was seen
in the substantia nigra and striatum in animal models of PD
based on MPTP injection [199-202]. Microglial activation
was also found in other PD models [203] and in other
brain regions in PD patients, including putamen, hippocam-
pus, transentorhinal cortex, cingulate cortex, and temporal
cortex [204]. Hirsch and Hunot described early microglial
activation after MPTP injection, followed by later neuronal
cell death and infiltration of T cells and astrogliosis [189].
Other evidence for the role of microglia in PD comes from
studies using anti-inflammatory drugs to inhibit microglial
activation, which was protective against neurodegeneration
induced by MPTP or 6-OHDA [205]. Active microglia are
known to secrete inflammatory mediators, and accordingly,
increased proinflammatory cytokine levels were increased
in the substantia nigra [206, 207] and CSF in PD [208].
Furthermore, IL-13 and IL-6 were found to be elevated in CSF
of Parkinson’s disease patients [209, 210].

It has been speculated that prolonged overactivation
of microglia and production of proinflammatory cytokines
could lead to neuronal degeneration in PD [207, 211]. It is
also speculated that oxidative stress could be generated from
dopaminergic metabolism, mitochondrial dysfunction, and
microglial activation, which could be influenced beforehand
by various toxins and mutations in Parkin, PINK1, DJ-
1, or HtrAl, which are important for physiological mito-
chondrial functioning [212]. Other evidence for the involve-
ment of active microglia in triggering neurodegeneration of
dopaminergic neurons in the substantia nigra comes from
studies on injection of lipopolysaccharide (LPS) systemically
or directly in the substantia nigra [213-215]. Intriguingly,
GABAergic and serotonergic neurons remained unharmed,
while dopaminergic neurons were lost [216]. This could be
explained by specific susceptibility of dopaminergic neurons
to oxidative stress due to the presence of tyrosine hydrox-
ylase and monoamine oxidase, which are ROS-generating
enzymes, as well as excessive production of easily oxidized
cytosolic dopamine [217, 218]. The mechanism of microglial
activation remains unclear. However, it is speculated that
initial neurotoxic insult to dopaminergic neurons results in
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the release of certain factors that activate microglia and
convert them from beneficial into harmful [121]. It has been
shown that damaged dopaminergic neurons can activate
microglia by releasing «-synuclein [219] and neuromelanin,
causing them to produce ROS [220].

MMP-3, produced by neurotoxin-stressed dopaminergic
neurons, seems to be a self-sufficient player in microglial
activation in the absence of any other inflammatory molecule.
It has been suggested that this mechanism plays an impor-
tant role in apoptosis. On the one hand, MMP-3 could
cleave the connections between apoptotic cells and ECM,
thereby facilitating subsequent phagocytosis. On the other
hand, it could activate microglia, leading to the release of
cytokines and receptors for phagocytosis of apoptotic cells
[64]. In an in vitro study, Kim et al. observed that the
ERK signaling pathway is induced in microglia after MMP-3
stimulation. Additionally, they hypothesized that both active
MMP-3 and catalytically active recombinant MMP-3 could
activate microglia to produce proinflammatory cytokines,
which in turn aggravate neuronal apoptosis of damaged
cells, leading to further induction of apoptosis in neigh-
boring dopaminergic neurons. This hypothesis is supported
by postmortem studies describing progressive dopaminergic
neuronal degeneration in humans and monkeys treated with
MPTP for 10 years [65, 221]. Using MMP-3 deficient mice
and a broad spectrum MMP inhibitor, it has been shown
that depletion of MMP-3 can significantly reduce MPTP-
induced degeneration of nigrostriatal dopaminergic neurons
in the brain [66]. Furthermore, MMP-3 activated microglia
produce superoxide, known to be involved in facilitation of
dopaminergic neuronal cell death in vitro [222, 223] and
in vivo [224]. Using siRNA, another group confirmed that
MMP-3 is actively secreted by neurons [51]. Also upregulated
MMP-9 activity, produced by neurons and microglia, was
found in both striatum and substantia nigra after MPTP
treatment, and pharmacologic inhibition of MMPs protected
against MPTP neurotoxicity [69]. Earlier, the same group
analyzed postmortem brain tissue from PD patients and
found no change in the activities of MMP-9 and MMP-1
in substantia nigra, cortex, or hippocampus, whereas MMP-
2 was significantly reduced in the substantia nigra. Addi-
tionally, they showed that MMP-9 was localized primarily
in neurons and MMP-2 in astrocytes and microglia. In the
same study, TIMP-2 levels did not change, whereas TIMP-
1 was upregulated in substantia nigra but not in the cortex
and hippocampus [63]. The increase in MMP-9 expression
in substantia nigra was later confirmed by Annese et al,
who also demonstrated MMP-9 expression in striatum. The
data showed that MMP-9 is expressed in reactive microglia
and astrocytes, pinpointing MMP-9 as a key molecule for
the onset of neuroinflammation in PD. Experiments done
in MMP-9 deficient mice confirm that active glia dimin-
ish neuronal survival since decreased numbers of active
microglia correlated with increased numbers of functional
dopaminergic neurons [70]. In a primate model of PD
(MPTP-injected macaques), an increase in MMP-9 labeled
striatal neurons and astrocytes was also found.

BBB leakage was found in animal models of PD solely in
brain regions and was associated with microglial activation
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and dopaminergic neurodegeneration [225, 226]. Recent evi-
dence suggests that the proteolytic activity of MMPs might be
involved in alteration of a-synuclein protein conformation,
thus contributing to aggregation, Lewy body formation,
and microglial activation [227]. In an in vitro study on a
dopaminergic neuronal cell line, Sung et al. observed MMP-
dependent proteolysis of a-synuclein, followed by increased
aggegate formation. In this process, MMP-3 was particularly
efficient, but MMP-1, MMP-2, and MMP-14 showed similar
properties [68]. Levin et al. further studied the MMP-
specific a-synuclein cleavage and showed that both MMP-
1 and MMP-3 mediate increased «-synuclein aggregation in
comparison to trypsin and proteinase K [228].

4.4. Amyotrophic Lateral Sclerosis (ALS). ALS, also known
as Lou Gehrig’s disease, is characterized by degeneration of
motor neurons in the brain, brainstem, and spinal cord. All
voluntary muscles are affected, and the muscle weakness and
atrophy are followed by paralysis, and finally respiratory fail-
ure and death [36]. Some other neurodegenerative diseases
share similar etiology, such as progressive lateral sclerosis
(PLS), progressive muscular atrophy (PMA), ALS dementia,
and ALS frontal lobe dementia [229]. Interestingly, one-third
ofall ALS patients exhibit symptoms or pathology resembling
those of AD [148]. The incidence of the disease is relatively
rare (2.08 people per 100,000 in Europe), and the prevalence
is mostly in people between the ages of 45 and 65 years
[230]. Familial occurrence of the disease is only 5-10% of all
ALS cases, and the cause of the sporadic form of ALS is still
unknown. Some familial and sporadic cases are caused by
mutation in the gene for copper-zinc superoxide dismutase
1 (SOD1) [231]. Additionally, ALS is associated with protein
inclusions composed mostly of transactive response DNA-
binding protein 43 (TDP-43) in the cytoplasm in the affected
areas of the brain and spinal cord [232]. However, occurrence
of TDP-43 is not characteristic of only ALS but was found
in several patients with frontotemporal lobar degeneration
with TDP proteinopathy (FTLD-TDP), as well as in fron-
totemporal dementia, AD, and some other neurodegenera-
tive diseases [96]. The etiology of the disease is unknown,
but various mechanisms have been proposed, including
neuroinflammation, glutamate excitotoxicity, oxidative stress
damage and mitochondrial dysfunction, protein misfolding
and aggregation, and deficits in neurotrophic factors [233].
Besides, in ALS, active microglia were also observed in brain
areas such as motor cortex, pons, dorsolateral prefrontal
cortex, and thalamus. Interestingly, activation of microglia
was correlated with progression of the disease [234]. In the
in vitro work of Swarup et al., microglia overexpressing TDP-
43 increased their secretion of proinflammatory cytokines
upon LPS treatment in comparison to wild type microglia
[235]. One of the theories suggests that BBB and BSCB
breakdown could contribute to the motor neuron damage,
due to the importance of these barriers in maintenance of
homeostasis in the CNS. Indications of the involvement of
MMPs, key players in barrier alteration, come from early
studies on neocortex and spinal cord of ALS patients, in
which MMP-2 was found in astrocytes, and MMP-9 was
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found in pyramidal neurons in the motor cortex and motor
neurons in the spinal cord. Additionally, MMP-2 activity
was decreased in motor cortex whereas MMP-9 activity
was increased in spinal cord [236]. Since BSCB disruption
in ALS [237-239] is accompanied by downregulation of
mRNA for tight junction proteins [240], Miyazaki et al.
speculated that MMP-9 is involved in barrier disruption
[241]. Another group showed reduced MMP-9 activity during
disease progression, with the peak at the onset of ALS, and
described a similar profile for MMP-2 [74]. Two separate
groups found significant increases in both pro-MMP-9 and
active MMP-9 in serum of ALS patients relative to healthy
controls [242, 243]. Niebroj-Dobosz et al. reported that in
mild cases of ALS, expressions of MT-MMP-1, MMP-2,
MMP-9, and TIMP-1 are elevated in serum compared to CSE,
where MT-MMP-1, MMP-2, and TIMP-1 were upregulated
or unchanged while MMP-9 levels were decreased [75].
Furthermore, Fang et al. found increased levels of MMP-
9 in CSF from patients suffering from rapidly progressing
ALS. They speculated that this finding is associated with
progression of the disease, poor survival of the patients,
and neuronal degeneration. Nevertheless, MMP-2 showed a
slow but progressive decrease with the development of the
disease [71]. In the study by Kaplan et al., diminishing MMP-
9 function by genetic, viral, or pharmacological intervention
was shown to prolong survival in a SOD1 mouse model of
ALS [244]. Moreover, MMP-9 was preexpressed only in fast
motor neurons, which have been shown to be particularly
susceptible to degeneration in patients suffering from ALS.
These results show that MMP-9 is a key player in the onset of
the disease and point to it as a therapeutic target.

Kaplan et al. focused on the early stage of the disease and
expression of MMP-9 by neurons, whereas Kiaei et al. studied
later stages of the disease and observed expression of MMP-
9 by activated microglia, giving support to the hypothesis
that the pathology is mediated by cytokines secreted by
microglia. Since the depletion of MMP-9 gene does not rescue
transgenic SODI1 mice from death, ALS indeed has complex
background [73].

4.5. Multiple Sclerosis (MS). MS is a chronic, autoimmune,
and inflammatory disease of the CNS. The hallmarks of the
disease are demyelinated areas, with moderate preservation
of axons. There are about 2.5 million cases worldwide, with
approximately 400,000 in the US alone, and MS is twice
as common in women as in men [245]. In contrast to
most neurodegenerative disorders that are prevalent in aged
individuals, MS occurs in people between 20 and 45 years of
age [246]. The cause of the disease is unknown, but genetic
and environmental factors contribute to its development.
Interestingly, epidemiological studies revealed a correlation
with smoking, exposure to UVB radiation, and intake of
unsaturated fatty acids [247]. Four major categories of MS
exist. (1) Relapsing-remitting MS (RRMS) occurs in about
85% of patients suffering from MS. The disease alternates
between remission (periods of improvement) and relapses
(periods of deterioration). (2) Secondary progressive MS
(SPMS), which is characterized by continuous worsening of
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the symptoms, affects some patients suffering from RRMS.
(3) Primary progressive MS (PPMS) is manifested in about
10% of MS patients. This group shows constant aggravation
of the disease with no remissions or relapses. (4) Progressive-
relapsing MS (PRMS) is the rarest type, present in less
than 5% of patients. Although it is progressive from the
beginning, it shows relapses occasionally, but without periods
of remission.

At onset, RRMS is characterized as a neuroinflammatory
state [248]. However, with the progression of the disease and
occurrence of relapses, certain residual disability develops.
Over ten years, most patients enter SPMS, which is then
observed more as neurodegeneration state resulting in per-
manent disability [249].

Although inflammation is considered as primary in MS,
this disease is recently being acknowledged as a neurode-
generative disorder too because of recent findings. It has
been observed that disability related to MS is correlated with
axonal damage and neuronal cell loss more than with inflam-
mation. The new hypothesis that emerged resembles the pre-
viously proposed mechanism for the other neurodegenerative
disorders: perpetuated inflammation leads to triggering of
neurodegenerative processes [250]. Interestingly, certain case
reports have noted patients suffering from MS and ALS at the
same time [251].

In MS, the BBB is disrupted, leading to peripheral
blood leukocyte infiltration, followed by focal degradation
of myelin, and finally axonal disruption and neuronal cell
loss. Data show involvement of MMPs in each of these
processes [252-255]. It has been shown that the BBB function
in MS is lost in both relapsing-remitting and progressive
phases. Nevertheless, BBB dysfunction is a temporary event,
although recurrence is highly possible [256]. Functional
changes in the BBB were observed in postmortem brains
of MS patients [257]. In fact, local BBB changes that follow
the pattern of the lesions help diagnose MS by observing
brains using magnetic resonance imaging (MRI) with con-
trast agents that easily leak into the affected parts of the
brain [258]. Some of the data suggest that BBB breakdown
precedes infiltration of the immune cells, but this event is
not definitively the primary cause of lesion formation [258].
Morgan et al. showed in a common animal model of MS
called experimental autoimmune encephalomyelitis (EAE)
that occludin dephosphorylation preceded visible signs of
disease onset, which indicates that BBB breakdown is one of
the first events in MS [259]. Alterations in tight and adherent
junction morphology in MS have also been described [258].

It is known that in MS, various brain and immune cells
can secrete MMPs, thus contributing to the BBB breakdown
[260, 261]. Cossins et al. observed expression of MMP-
7 by macrophages and MMP-9 in blood vessels in active
lesion sites of postmortem brain samples [82]. Another group
confirmed this finding and also showed expression of MMP-
3 in endothelial cells, MMP-1, MMP-2, MMP-3 and MMP-9
in macrophages, and to a lesser extent in astrocytes, around
active and necrotic lesions [80].

Lepert et al. examined CSF samples from patients suf-
fering from both RRMS and PPMS and found an increase
in MMP-9 in all the RRMS cases throughout both phases
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of the disease. However, in PPMS patients, MMP-9 was
increased in only about half of the samples and in significantly
smaller amounts than in the relapsing-remitting form. They
argued that this points out that T-cells and macrophages
are responsible for the secretion of MMP-9 in MS. Addi-
tionally, they proposed that constant elevation of MMP-9
throughout the progress of the disease could contribute to
the surrounding tissue damage and neuronal cell loss [83].
In their work using the EAE model, Kieseier et al. showed
that the increase in MMP-9 and MMP-7 expression in blood
vessels and parenchyma strongly correlated with the peak of
the disease [262].

Elevated levels of MMP-9 were also observed in serum
of MS patients, together with an increase in TIMP-1 and
TIMP-2. In the same study [84], the authors pointed out
an association of these increases with the number of lesions
observed by MRI. However, the study of Waubant et al.
found increased levels of MMP-9 in serum but no elevation
of TIMP-1 levels. Also, by univariant analysis they found
that an increase in MMP-9 and a decrease in TIMP-1 levels
preceded the appearance of new lesions [263]. Another group
compared the mRNA levels of MMP-1, MMP-3, MMP-7,
MMP-9, MMP-14, and TIMP-1 in blood monocytes of MS
patients with those of controls. They found that all except
MMP-14 were upregulated [81]. In an interesting study by
Althoff et al. using the EAE model, transgenic mice that
constitutively express TIMP-1 in the CNS had a normal
phenotype but EAE symptoms were diminished [264]. Inter-
estingly, other studies done using the EAE model showed
limited BBB restoration and amelioration of the clinical pic-
ture after administration of broad-spectrum MMP inhibitors
[90, 265]. Finally, MMP-9 knockout mice were shown to
be less susceptible to induction of EAE [266]. Besides the
occurrence of the leakage, the BBB also becomes activated,
meaning that cells making up the BBB, including endothelial
cells, astrocytes, and potentially pericytes, start expressing
and secreting various factors involved in the recruitment
and functioning of leukocytes [258]. Constant leukocyte
migration occurs through the BBB in active MS lesions and
this migration is normally strictly regulated by a number of
molecules, such as cell adhesion molecules (CAM), integrins,
cytokines, and chemokines. The leukocyte infiltration further
aggravates BBB breakdown, as shown in in vitro studies
[267]. In one in vitro study, interferon 3 treatment downreg-
ulated MMP-9 expression and abolished MMP-2 expression,
thereby diminishing subsequent migration of T-cells [268].

Involvement of MMPs in demyelination and axonal
injury has been reported by several groups. Nevertheless,
the mechanism of MMP action in MS remains unknown.
Newman et al. showed that microinjection of activated MMPs
into white matter leads to axonal injury. Of the several MMPs
tested, the most potent was MMP-9, followed by MMP-2,
and finally MMP-7 [269]. The proposed mechanism of MMP
action is via degradation of the ECM, since MMPs have an
established role in the apoptosis of different cell types by the
same mechanism [270]. Additionally, MMP-activated axonal
degeneration was hardly observed in peripheral nervous
system, possibly due to the presence of resilient ECM and
higher TIMPs expression [271].
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Beneficial roles of MMPs have also been noted in MS
[253]. For example, MMP-9 has a distinctive role in oligo-
dendrocyte process growth [272]. It has been speculated that
this could be a cause of reduced remyelination and decreased
number of mature oligodendrocytes in MMP-9 and MMP-
9/-12 null mice [273].

4.6. Other Neurodegenerative Diseases. MMPs have been
implicated in other neurodegenerative diseases as well. Hunt-
ington’s disease (HD) is an inherited neurodegenerative dis-
order that decreases muscle coordination and mental ability.
The disease has been linked to a mutation on chromosome
4 in a gene coding for a protein called huntingtin (Htt).
While the exact role of Htt is not clear yet, it has been
speculated that proteolysis of mutant Htt participates in the
pathology [274]. Besides caspases and calpains acting as
proteases in HD, it seems that MMPs also have a distinctive
role in cleavage of Htt. Miller et al. have shown that knocking
down MMP-10, MMP-14, and MMP-23 in cultured striatal
cells expressing mutant Htt diminishes toxicity. Additionally,
MMP-10 can directly cleave Htt, and the production of toxic
Htt fragments is reduced upon silencing of MMP-10 [77].
Analysis of deceased patients with HD revealed an increase
in MMP-9 in comparison to controls, as well as upregulation
of cytokine levels (IL-6, IL-8) in cortex and cerebellum [78].
In striatum, the main area affected in HD, only CCL2 and
IL-10 were upregulated. Other evidence for involvement of
MMP-9 in HD comes from the 3-nitropropionic acid animal
model of the disease [79]. The authors showed that MMP-
9 is accountable for the BBB disruption that occurs in the
disease. Moreover, significantly elevated levels of MMP-9
were found in plasma of patients suffering from HD, as well
as in the R6/2 mouse HD model [275]. The authors proposed
MMP-9 (along with IL-6, VEGE and TGF-f) as a potential
biomarker of HD. As far as TIMPs are concerned, Lorenzl
et al. found increased TIMP-1 and TIMP-2 levels in CSF of
patients suffering from HD [276].

As far as other neurodegenerative diseases are concerned,
different MMPs were found to be dysregulated in people
suffering from dementias. Decreased levels of TIMP-2 were
found in serum of patients with frontotemporal dementia,
and downregulated TIMP-1 was shown in patients with
vascular dementia [54]. Intriguingly, patients with vascular
dementia have been noted to have higher levels of MMP-9 in
CSF even compared to patients suffering from AD [277]. In
CSF from patients suffering from Creuztfeldt-Jakob disease,
a rare type of dementia, there were increased levels of pro-
MMP-9 and active MMP-2, as well as TIMP-1 and TIMP-2
[278].

5. Therapeutic Opportunities

For decades, conventional wisdom has taught us that MMPs
play a pivotal role in the dissemination of cancer: they
degrade the connective tissue between the cells and allow
the cancer cells to leak from the primary site of tumor
formation. During the past decade, the role of MMPs became
well appreciated in neurodegenerative diseases as well. More
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than a dozen of MMPs have been shown to be involved in
progression of neurodegenerative disorders, thereby opening
up the possibility of therapeutically targeting MMPs. In most
neurodegenerative disorders, neuroinflammation is observed
either before or during the development of the pathological
characteristics of the disease. During neuroinflammation,
MMPs often increase the permeability of the CNS barriers
by destroying the stability of the tight junction proteins or
degrading the ECM, which in turn leads to infiltration of
immune cells into the brain and cell death [279]. On the
other hand, in certain neurodegenerative diseases such as
AD and MMPs, and, in particular, MMP-3 and MMP-9, were
shown to degrade A3 plaques [50, 58], justifying the view of
MMPs as a double-edged sword. Therefore, drugs that inhibit
MMPs could have unforeseen effects that need to be well
understood and avoided before we employ them for therapy
(Figure 4). MMP activity in neurodegenerative diseases can
be inhibited at various stages of disease progression. MMP
expression is usually triggered by an inflammatory stimulus
(e.g., infection, burns, or protein aggregates), which induces
an inflammatory cascade. At this stage, anti-inflammatory
drugs will be effective in eliminating the expression or acti-
vation of MMPs. Subsequently, the available synthetic broad-
spectrum inhibitors might be used to inhibit MMPs (Table 3).
However, more-specific MMP inhibitors could be more
desirable. Indeed, selective MMP inhibition might avoid the
unwanted side effects of broad-spectrum MMP inhibition.
MMP inhibitors can be broadly classified as macromolecular
inhibitors (including TIMPs and monoclonal antibodies) and
both synthetic and natural small molecules [280, 281]. In
general, MMP inhibitors act by binding to the Zn*" atom in
the active site. Early studies conducted using broad spectrum
MMP inhibitors such as batimastat on mice injected with
human cancer cells gave compelling results of extending the
life of the mice from six- to sevenfold, thereby paving the way
for the potential use of MMP inhibitors in other diseases [1].
MMP inhibitors yielded beneficial results in animal studies
of lung inflammatory diseases [282], multiple sclerosis [265],
meningitis [283-285], vascular dementia [52], stroke [286],
acute cerebral ischemia [287, 288], and sepsis [1, 15, 289, 290].
Finally, interfering with the substrates downstream of MMPs
might also have therapeutic value.

Alzheimer’s Disease. The potential use of MMP inhibitors
in AD is very speculative and is based on the seemingly
beneficial effect of MMP-9, due to its role in degradation of
amyloid plaques and hence its contribution to the clearance
of Af from the brain. Furthermore, it has been reported that
MMP-2 can cleave A at the a-secretase site [291]. In another
similar study, it was reported that MMP-2 also can cleave
full-length APP [292], indicating that it can produce a-APPs
at the plasma membrane or degrade Af in the ECM, which
leads to reduction of Af burden in the brain. In contrast to
those reports, other authors were unable to show a similar
MMP-2 activity, but they found that MMP-2 might possess f3-
secretase like activity, which might shift the balance towards
the amyloidogenic pathway. However, whether MMP-2 can
cleave APP remains debatable [291, 293]. Other evidence
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FIGURE 4: Strategies for targeting MMPs. Inflammatory triggers or protein aggregates in neurodegenerative diseases initiate an inflammatory
cascade. At this early stage, various pharmacological anti-inflammatory drugs are effective in eliminating the downstream consequences.
Increased inflammation induces and/or activates MMPs, and various broad spectrum inhibitors are available to inhibit MMPs. However, due
to the fact that MMPs have both beneficial and detrimental effects, specific MMP inhibition might be a better approach. Finally, it is also
possible to interfere at the level of the cleaved substrates, either by reconstitution of crucial substrates or by blockage or removal of effector

molecules.

highlighted the role of MMP-2 and MMP-9. Mice deficient
in MMP-2 or MMP-9 appeared to have higher levels of Af
than wild type animals. Likewise, treatment with the broad-
spectrum MMP inhibitor GM6001 resulted in an increase in
Ap in transgenic mice overexpressing the Swedish variant
of APP [85]. In an in vitro study, GM6001 was shown to
block the A 3-induced alterations in ZO-1 expression and BBB
permeability. Similarly, GM6001 was also able to prevent the
A oligomer-induced degradation of the blood-CSF barrier
integrity [32]. Moreover, in another study on a transgenic
mouse model of AD, it was reported that inhibition of MMPs
with GM6001 reduced the oxidative stress associated with
CAA [86]. TIMPs, the endogenous inhibitors of MMPs, were
found to be localized near the A plaques and neurofibrillary
tangles of AD-affected brain samples. It has been speculated
that MMPs and TIMPs contribute to the evolution of these
lesions. Similarly, it has been shown that MMPs are produced
in excess at lesion sites by the immune cells surrounded by
the effected regions, and that TIMPs might be localized in
these places as well to control the activity of MMPs. It is
evident that deregulation of TIMPs also leads to progression
of AD [294]. The importance of MMPs and TIMPs in
AD is not established. Thus, to validate MMPs and TIMPs
as possible candidates for therapeutics development, it is
important to investigate whether they are amyloidogenic or
prevent A3 accumulation. So far, no MMP inhibitor has been
developed successfully as drug for AD. This is mainly because
of potential harmful side effects of broad spectrum MMP
inhibitor activities, which pose a big hurdle [1].

Parkinson’s Disease. As far as therapeutic opportunities
of MMP inhibition in PD are concerned, Lorenzl et al.
reported the expression of MMPs such as MMP-1, MMP-
2, and MMP-9 and also TIMP-1 and TIMP-2 in substan-
tia nigra of postmortem PD brain samples [63]. Hence,
MMP inhibitors might hold promise for management of PD
because death of dopaminergic neurons seems to be linked

with release of MMPs. Apoptotic dopaminergic neurons
release MMP-3, which in turn activates microglia in vitro,
indicating that MMP-3 could serve as a signaling molecule
as well. The activated microglia release proinflammatory
cytokines, such as TNE, that lead to neuronal cell death [64].
Treatment of mouse mesencephalic cells with tetrahydro-
biopterin (BH4), a selective dopaminergic neuronal toxin,
decreased cell survival. However, when cells were exposed
to a selective MMP-3 inhibitor, NNGH (N-isobutyl-N-[4-
methoxyphenylsulfonyl]-glycylhydroxamic acid), cell sur-
vival was extended via the decrease of TNF-« release from
activated microglial cells [51].

Amyotrophic Lateral Sclerosis. Similarly, several hypotheses
were proposed regarding the role of MMPs in the develop-
ment of ALS. Furthermore, selective MMP inhibitors might
be potential targets for treatment of ALS. Kiaei et al. reported
that by crossing G93A SODI mice with MMP-9 knockout
mice, immunoreactivity was increased and expression of
MMP-9 was elevated in spinal cord tissue of G93A SODI
mice, a model of familial ALS [73]. Reduced MMP-9 activity
was shown to prolong survival in the ALS mouse model
expressing mutant SODI, pointing to MMP-9 as a poten-
tial therapeutic target [244]. Generally, MMP-9 stimulates
neuronal TNF-« by cleaving it from its membrane-bound
form, and it also contributes to neuronal cell death by
activating other proinflammatory cytokines [73]. Abnormally
high levels of MMP-9 and possible degradation of the matrix
components contribute to ALS progression [236].

Multiple Sclerosis. There are several reports on the use of
synthetic MMP inhibitors to ameliorate the symptoms of
EAE, and protease inhibitors were used to treat EAE as
early as 1982 [295]. MMP activity was shown to increase
threefold in the CSF in two acute models of EAE [90]. Broad-
spectrum MMP inhibitors such as GM6001 [87, 89], RO31-
9790 [90], UK221,316 [88], d-penicillamine [91], and BB1101
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[92] were shown to be beneficial in EAE. MMP-9 was shown
to be elevated at the lesion sites [82] and in the CSF of
MS patients [296]. Similarly, association of MMP-9 with the
disruption of the BBB was also reported in MRI studies
[297]. When GM6001 was administered after the clinical
onset of the disease, it inhibited the development of EAE,
and it also reversed the clinical symptoms in SJL/J mice.
Likewise, there was a reduction in MMP-9 activity in the
treated mice [89]. It was also speculated that MMP inhibition
results in restoration of damaged BBB, thereby decreasing
the inflammation rather than inhibiting demyelination. In
a similar study by Hewson et al., using RO31-9790 reduced
the clinical signs in the EAE model of MS when given on
the day of disease induction or three days after induction.
RO31-9790 was less effective in controlling the disease in
animals with more severe clinical signs [90]. BB1101, another
broad-spectrum inhibitor, reduced disease severity in Lewis
rats [92] and reversed acute symptoms in SJL/J mice [90].
BBI101 was also shown to be effective in chronic relapsing
EAE in SJL/] mice, in which BBI101 treatment reduced
the glial scar and demyelination. Further, B1101 treatment
shifted the cytokine profile from a proinflammatory to an
anti-inflammatory state [265]. An antirheumatic drug, d-
penicillamine, was also shown to partially protect against
EAE in SJL/] mice, but in chronic relapsing EAE in Biozzo
mice, treatment with d-penicillamine resulted in attenuation
of disease progression after disease induction [91]. The ther-
apeutic efficacy of minocycline, a semisynthetic derivative
of tetracycline, was tested in MOG35.55 peptide-induced
EAE in C57BL/6 mice [93]. It reduced both the activity
and expression of MMP-9 in T-cells and reduced disease
severity. In the same study, minocycline inhibited MMP-
2. Interestingly, an antioxidant molecule, a-lipoic acid, was
found to be beneficial in suppressing EAE and reducing
disease severity after disease induction. This effect was linked
with reduced infiltration of T cells into the CNS, which led
to speculation that «-lipoic acid could be inhibiting MMP-9
[298]. So far, no molecular mechanism has been identified
to explain how MMP inhibition ameliorates MS disease
symptoms, but it is speculated that broad-spectrum MMP
inhibition inhibits transmigration of immune cells into the
CNS via the BBB. That would result in reduced demyelination
and reduced levels of TNF through inhibition of ADAMI17
[299].

6. Conclusion

There is currently no clinically available therapy to treat or
delay neurodegenerative diseases. Therefore, novel strategies
are needed to harness the ability of neuroprotective mecha-
nisms to slow down or stop the progression of the disease in
order to prolong the healthy lifespan of patients. More basic
research is required to fully understand the diverse roles of
MMPs in the pathophysiology of neurodegenerative diseases
in order to design specific MMP inhibitors and therapeutic
strategies for these chronic diseases of the nervous system.

Although the potential causes and etiology of neurode-
generative diseases remain largely elusive, MMPs clearly have
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a pivotal role in the progression of neurodegenerative dis-
eases such as AD, PD, ALS, HD, and MS, and their functions
in these diseases seem to be much more complex than
previously thought. Targeting MMPs will be of much interest
for the treatment of these disorders. In most clinical cases, the
function of MMPs is difficult to predict. Hence, it is necessary
to explore the role of the different MMPs in depth to be able to
develop more therapeutic options. More than a dozen MMPs
were shown to be involved in neurodegenerative diseases,
including MMP-2, MMP-3, and MMP-9, and they seem to be
important players in most of the diseases mentioned in this
review. The mechanisms of action by which they contribute
to the aggravation of neurodegenerative diseases are slowly
starting to unfold. MMPs participate in a common pathway
of pathological changes in the CNS homeostasis, that is,
accumulation of proinflammatory molecules or aggregated
proteins and peptides, leading to increased permeability of
CNS barriers and consequently to cell death. On the other
hand, these enzymes have many vital roles in physiological
processes. The dual roles of MMPs hinder efforts to use
broad-spectrum MMP inhibitors as therapeutics. However,
a strong indication that selective MMP inhibitors could
have therapeutic opportunities already exists. Consequently,
investigation of MMPs and TIMPs as potential biomarkers
and therapeutics in neurodegenerative diseases needs to be
continued.
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