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Reactive oxygen species (ROS) have been implicated in a wide variety of disorders ranging between traumatic, infectious,
inflammatory, and malignant diseases. ROS are involved in inflammation-induced oxidative damage to cellular components
including regulatory proteins and DNA. Furthermore, ROS have a major role in carcinogenesis and disease progression in
the myeloproliferative neoplasms (MPNs), where the malignant clone itself produces excess of ROS thereby creating a vicious
self-perpetuating circle in which ROS activate proinflammatory pathways (NF-𝜅B) which in turn create more ROS. Targeting
ROS may be a therapeutic option, which could possibly prevent genomic instability and ultimately myelofibrotic and leukemic
transformation. In regard to the potent efficacy of the ROS-scavenger N-acetyl-cysteine (NAC) in decreasing ROS levels, it is
intriguing to consider if NAC treatment might benefit patients with MPN. The encouraging results from studies in cystic fibrosis,
systemic lupus erythematosus, and chronic obstructive pulmonary disease warrant such studies. In addition, the antioxidative
potential of the widely used agents, interferon-alpha2, statins, and JAK inhibitors, should be investigated as well. A combinatorial
approach using old agents with anticancer properties together with novel JAK1/2 inhibitors may open a new era for patients with
MPNs, the outlook not only being “minimal residual disease” and potential cure but also a marked improvement in inflammation-
mediated comorbidities.

1. Introduction

The Philadelphia negative chronic myeloproliferative neo-
plasms (MPNs) encompass essential thrombocythemia (ET),
polycythemia vera (PV), and myelofibrosis (MF). These
neoplasms arise due to an acquired stem cell lesion with sub-
sequent clonal evolution being driven by several mutations,
including the highly prevalent JAK2V617F somatic mutation
in PV (in >95%, and in about 50% of patients with ET and
PMF, resp.) and the CALR and MPL somatic mutations [1–
9]. These mutations are virtually mutually exclusive and are
all considered “second hits” or “driving mutations” within
the MPNs whereas the primary genetic hit or “founding
mutation” remains unknown [4].

Common clinical denominators for the MPNs are high
rates of thrombohemorrhagic complications, hypermetabolic
symptoms, splenomegaly, uncontrolled myeloproliferation,

low-grade chronic inflammation, a massive inflammation-
mediated comorbidity burden, and immune-deregulation
[10–16]. The MPNs have an inherent propensity to progress
in a biological continuum from early cancer stages (ET/PV)
to more advanced cancer stages (MF or acute myeloid
leukemia (AML)) [17, 18]. The concept of such a biological
continuum is being increasingly recognized and supported by
clinical andmolecular studies, the latter displaying increasing
JAK2V617F allelic burden throughout the stages. The fact
that a JAK2 positive phenotype only persists in 20–50% of
the cases when MPNs transform to AML (or even develops
biphenotypic AML) also demonstrates the inherent risk of
subclone formation which is a characteristic shared by many
other cancers [19–23]. Consequently, themalignant clones are
heterogeneous and thus difficult to target with chemotherapy,
accounting for the inferior survival in MPN associated AML
compared to de novo AML [24–26].
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The MPNs have recently been described as “A Human
Inflammation Model,” in which the fuel that feeds the fire
is low-grade chronic inflammation [27]. The hypothesis is
that the MPN—with uncontrolled myeloproliferation and
uncontrolled cytokine secretion as a consequence of con-
stitutively activated JAK-STAT signalling—by itself creates
a proinflammatory milieu in the bone marrow and in the
circulation. This proinflammatory milieu founds increasing
genomic instability accounting for the propensity of the
MPNs to acquire new mutations facilitating clonal evolution
and ultimately progression to myelofibrosis and AML. It also
links theMPNs with a heavy inflammation-mediated comor-
bidity burden, including premature atherosclerosis, other
inflammatory diseases, and second cancers [22, 27–38]. In
this context, it has been known for several years that chronic
inflammation per se increases the risk of cancer development,
solid as well as hematological, but the major questions in
MPNs are, among others, how low-grade inflammation is
eliciting genomic instability and clonal evolution and how the
founding clone evades the immune system.

In MPNs, the optimal therapeutic goals are to nor-
malize peripheral blood counts, minimize symptoms, pre-
vent vascular complications, restore bone marrow archi-
tecture/morphology, and eliminate the risk of progression
to MF or evolution to AML. It is crucial to acknowledge
that the majority of ET and PV patients have long life-
expectancies and therefore treatment related toxicities and
long-term side effects influence treatment options [39–42].
The therapeutic agents display striking differences. Treatment
with interferon-alpha2 (IFN) has been used successfully
for decades, demonstrating its ability to normalize blood
counts in the majority of patients, to reduce the JAK2V617F
(and CALR) allelic burden, and to restore bone marrow
morphology and induce major molecular remission in a
subset of patients [43–55]. Because of the immune-enhancing
properties, some patients experience autoimmune phenom-
ena, primarily thyroiditis, during IFN treatment. A subset of
patients also experiences symptoms similar to those arising
in patients with systemic inflammation, including chronic
fatigue, flue-like symptoms with low-grade fever, weight
loss, and depression all symptoms being associated with
chronic inflammation [56–58]. Despite undisputed hemato-
logical efficacy and safety being shown in a large number of
single-arm IFN studies, similar results obtained from large
randomized studies between IFN and the most widely used
cytoreductive agent in MPNs, hydroxyurea, are still lacking.
Most MPN experts agree that HU increases the risk of skin
cancer and concern is increasing in regard to its potential
of inducing AML after long-term use (>10 years) [59–64].
With the introduction of JAK inhibitors, the therapeutic
landscape has expanded considerably. However, these novel
agents potently suppress virtually all immune cells including
NK-cells, CD4+ T-cells (Th1 and Th17), regulatory T-cells,
macrophages, and dendritic cells (DCs) with ensuing impair-
ment of immune regulation and consequently an increased
risk of infections [65–71]. This risk is well documented and
involvesmainly urinary tract infections and herpes zoster but
alsomore rare infections such as tuberculosis, toxoplasmosis,
and progressive multifocal leukoencephalopathy [72–76].

Although patients are exposed to an increased risk of infec-
tions during treatment with JAK1/2 inhibitors, this novel
treatmentmodality has definitely demonstrated its efficacy in
terms of improvement of quality of life due to a rapid resolu-
tion of constitutional symptoms within days in concert with
a marked reduction in symptomatic splenomegaly within
the next weeks or months in the large majority of patients
with myelofibrosis [77–80]. To this end, JAK1/2 inhibition in
myelofibrosis is associated with an improved overall survival
as well [81, 82]. The impact of JAK1/2 inhibition on symptom
burden and splenomegaly in myelofibrosis is considered
to be driven mainly by its pronounced anti-inflammatory
efficacy as evidenced by a marked reduction in several
proinflammatory cytokines during JAK-inhibition therapy
[77, 83]. In this regard, the improved survival in ruxolitinib-
treatedMF patients is likely mainly explained by an improve-
ment in inflammation-mediated comorbidities as well [84].
However, ruxolitinib has failed to demonstrate significant
impact on the JAK2 clone [85] which substantiates the need
for combinatorial approaches when treating MPNs [28].

Taking into account that chronic inflammation with
the production of reactive oxygen species (ROS) may have
an important role for the development and progression of
MPNs—likely being a very potent driver of clonal evolution
and mutagenesis in a vicious self-perpetuating circle—we
herein will discuss the role of ROS in MPN pathogenesis and
its impact upon comorbidity burden, immune regulation, and
disease progression [27, 29, 86–90].

2. Reactive Oxygen Species

Reactive oxygen species (ROS) are a group of oxygen-
containing molecules involved in many biological processes
including normal cellular signalling and immune defence.
Consequently, lacking the ability to produce ROS results in
organ dysfunction and disease as evidenced by, for exam-
ple, chronic granulomatous disease in which the immune
system is unable to combat invading bacteria and fungi
due to impaired production of ROS by neutrophils [91–
95]. However, the same ROS compounds are also involved
in several inflammation-driven diseases where an excess of
ROS production is thought to account for the tissue damage,
dysfunction, and fibrosis associated with the diseases [96,
97]. In addition, elevated levels of ROS, often referred to as
oxidative stress, have a major role in cancer development,
both in solid tumors and in hematological malignancies
[86–90, 97]. There is no clear cut-off that defines exactly
which compounds are to be included in the ROS category,
and often nonoxygen molecules buffering ROS levels are
also included in the analysis of cellular oxidative status. The
molecules superoxide (O

2

−) and hydrogen-peroxide (H
2
O
2
)

are obvious ROS, but intracellular levels of glutathione and
reduced glutathione are also crucial in the cellular redox
interplay. Hydrogen-peroxide is of particular interest since
it can freely diffuse across cellular membranes and interact
with cells in close proximity to theH

2
O
2
producing cells.This

includes the endothelial cells within the intima of arterywalls,
and oxidative stress has already been linked to cardiovascular



Mediators of Inflammation 3

diseases, especially the development of premature atheroscle-
rosis in chronic inflammatory diseases [96, 98–100]. H

2
O
2

has been shown to activateNF-𝜅B pathway, thus creating self-
perpetuating vicious circles in which inflammation creates
ROS which in turn creates more inflammation [101–103]. To
avoid such situations, the system has a fail-safe: suppressors of
cytokine signalling (SOCS), a family of proteins dedicated to
creating negative feedback loops.They are normally activated
by inflammatory mediators such as IFN, IL-4, TNF-alpha,
and H

2
O
2
[104, 105]. Activated SOCS proteins bind to JAKs

disrupting the JAK-STAT pathway, thereby ensuring that
the inflammatory process is not being sustained. However,
in MPNs, this pathway is constitutively activated and the
much warranted SOCS brake is overruled. Furthermore,
aberrant methylation of SOCS-coding DNA and consequent
dysregulation of SOCS have also been reported in MPNs
[106, 107].

3. Hepatitis C as a Model of Inflammation-
Mediated Fibrosis and Cancer Development:
Similarities to MPNs as (A Human
Inflammation Model for
Cancer Development)

The initiating event in hepatitis C is a viral infection.
This results in chronic inflammation, increased production
of ROS and consequently oxidative stress, inability of the
immune system to clear the infected cells, an increased
risk of progression to terminal cirrhosis, and ultimately an
increased risk of developing hepatocellular carcinoma (HCC)
or lymphoma [108–113]. In MPNs, the initiating event is
unknown, but after acquisition of the JAK2mutation, MPNs
(much like hepatitis patients) exhibit evidence of low-grade
chronic inflammationwith ensuing fibrosis and bonemarrow
failure in addition to an increased risk of developing AML.
Another similarity is the inability of the host immune system
to identify and clear the fundamental problem, for example,
the malignant clone in regard to MPNs. Another striking
similarity is the existence of a common effective treatment
modality: the very potent immune-enhancing, antiviral agent
IFNwhich has been used successfully for decades in hepatitis
patients as well as in MPN patients. In this regard, it has
recently been hypothesized that a virus infection (e.g., human
retrovirus) might be implicated in MPN pathogenesis [27,
114]. It is also of particular interest to note that oxidative
stress has been implicated in the therapeutic response.Thus, it
was demonstrated, that increasing levels of ROS disrupt IFN
signalling, thus counteracting therapy [115].

4. ROS and MPNs

The ROS molecules are produced mainly by neutrophils,
macrophages, andmonocytes. In the context of MPNs, this is
crucial, since theMPNcells are clonal and autonomously dys-
regulated and have been shown to produce excessive ROS in
vitro [87]. Furthermore, MPN patients demonstrate elevated
levels of ROS in vivo [86, 116]. An increased ROS production
has been observed in other cancers, and in some cases the

cancer cells express catalase (the enzyme that metabolizes
H
2
O
2
) in excess and in addition produce large amounts of

H
2
O
2
. In this way, the malignant clone itself avoids the toxic

effects of H
2
O
2
and suppresses the neighbouring healthy cells

(ROS induce apoptosis in healthy cells) thereby facilitating
clonal expansion [117–126]. This mechanism has not yet
been established in MPNs but certainly warrants further
investigation, especially since the excessive ROS production
in MPNs gives rise to a proliferative advantage to JAK2
positive clones [28, 87, 127, 128] (Figure 1). In this regard,
the model proposed by Marty et al. is in agreement with the
MPN inflammation model and excessive ROS accumulation
in a vicious self-perpetuating circle. In this context, consid-
ering the role of NF-E2 in MPN disease pathogenesis, it is
intriguing to speculate if NF-E2 may contribute in driving
the vicious inflammationwheel, includingROS accumulation
as most recently discussed [29, 129–134]. On the other hand,
it has also been demonstrated that the hematopoietic stem
cell niche (HSC) in MPNs downregulates catalase activity
resulting in an increase in oxidative DNA damage (8-oxo-G)
and subsequent double-stranded- (ds-) DNAbreaks, a widely
acceptedmeasure of ROS inducedDNAdamage, and perhaps
in this way induces instability of the HSC niche [87].

In a mouse model, ds-DNA breaks were shown to be a
consequence of ROS accumulation, and it was also shown
that the CD34+ HSCs themselves produced this excess ROS,
probably as a consequence of catalase downregulation [87,
127]. Furthermore, a functional lack of superoxide dismutase
(SOD) activity could also be of importance. ROS negatively
influence the AKT pathway, which in turn influences Fork-
head O/FoxO which regulates the transcription of several
antioxidative defence pathways, including GPx, catalase, and
SOD [135]. These mice developed aggressive PV phenotype
but when they were treated with the potent ROS-scavenger
molecule n-acetyl-cysteine (NAC) they developed normal
phenotype, demonstrating the direct role in MPN disease
development and disease progression [87]. This was substan-
tiated by the finding thatNAC treatment of the PVphenotype
mice delayed progression to MF phenotype when compared
to nontreated mice.

The damaging effects of ROS (besides the proliferative
advantage) are also attributed to the consequent oxidation of
lipids, proteins, and, most importantly, the ds-DNA breaks
due to oxidation. In healthy cells, this insult will be rapidly
repaired but a hallmark of most cancers is a defective
DNA repair (sometimes even induced by therapy, e.g.,
hydroxyurea). Furthermore, the response to DNA damage
is also affected as demonstrated by the negatively regulated
p53 pathway in MPNs [136]. This is also demonstrated
in MPNs, where the CHEK2 germline mutations, which
are associated with ET and PV, account for an increased
risk of developing an MPN. Together with other proteins,
the CHEK2 proteins are associated with DNA damage and
binding of TP53 (p53) and CHEK2 are involved in many
cancers [137–143]. Consequently, harbouring this CHEK2
mutation can result in inadequate DNA repair and conse-
quently increased risk of developing (and sustaining) genetic
hits in several cancer types. It is intriguing to consider if
germline CHEK2 mutation accounts for the initial genetic
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Figure 1: Sustained NF-E2 expression likely elicits a pronounced oxidative stress milieu with excessive ROS giving rise to myeloid expansion
with leukocytosis and excessive thrombocytosis and inflammation-mediated in vivo activation of leukocytes and platelets, thereby further
promoting a sustained, self-perpetuating release of inflammatory products. In this vicious circle, an oxidative stress burden with NF-E2
domination over Nrf2 promotes ROS accumulation and megakaryocytic differentiation. Increasing oxidative stress-induced DNA damage of
hematopoietic stem cells (HSCs) elicits genomic instability and clonalMPN evolution with accumulation ofmutations ultimately terminating
in myelofibrotic and leukemic transformation. A relative deficiency of Nrf2 may also result in expansion of the HSC and progenitor cell
compartment and ultimately migration of HSCs from their stem cell niches into the circulation (“leaving the burning nest”) to seed in
the spleen and liver (myelofibrosis with myeloid metaplasia). The vicious circle may be locked by early intervention with interferon-alpha2
(stopping the fuel to the fire) in combination with a JAK1-2 inhibitor (e.g., ruxolitinib) and a statin, the latter agents “cooling down the system”
by their highly potent anti-inflammatory properties which may actually be enhanced (synergism) when being administered simultaneously.
With permission from Leukemia Research [29].

instability in some MPN patients. In time and by “chance”
this might result in a somatic JAK2 mutation with ensuing
increased production of ROS, clonal expansion, and increas-
ing genomic instability due to ineffective DNA repair and
an increase in ROS induced DNA damage, all of which
further facilitate disease progressionwith subclone formation
and inflammation-mediated bone marrow fibrosis. The role
of chronic inflammation and ROS in MPN pathogenesis
has most recently been substantiated in a mouse model, in
which mice were exposed to the highly potent inflammatory
compound, formaldehyde (FA), by inhalation [144]. This
agent induced bone marrow toxicity with typical MPN-
like alterations in the mice, including an increased number
of megakaryocytes and myelofibrosis in concert with the
development of anemia, leukopenia, and thrombocythemia.
Highly interestingly, these changes were accompanied by
evidence of oxidative stress and inflammation in the bone
marrow as assessed by significant increases in ROS levels,
increased NF-𝜅B activity at both mRNA and protein levels,

and significant increases in the inflammatory markers, TNF-
alpha and IL-1beta, as well [144]. These observations are
in accordance with studies demonstrating that oxidative
stress in hematopoietic stem cells can lead to DNA damage,
premature senescence, and loss of stem cell function [145].
Accordingly, all together these findings are supportive of the
concept that chronic inflammation by induction of oxidative
stress and an inflammatory bone marrowmicroenvironment
may give rise toDNAdamage and likely an impaired stem cell
function with ensuing development of myelofibrosis.

In hepatitis, it has been demonstrated, that the excess of
ROS and consequent oxidative stress inhibits IFN signalling,
thus counteracting the normal immunosurveillance by NK-
cells and CD8+ cytotoxic T-cells (CTLs) [115]. The reduced
IFN signalling and ensuing reduction of MHC-I expression
by virally infected cells provide an escape route from the
innate and adaptive immunosurveillance. A prerequisite of
this model is that the MHC-I expression is low enough
to avoid CTL activation by antigen recognition, but also
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high enough to avoid “missing self” activation of NK-cells.
This model deserves to be tested in MPNs to elucidate if
increased ROS levels might facilitate both clonal expansion
and immune evasion, implying ROS-mediated inhibition
of IFN signalling and the immune evasion to exhibit dual
actions. In this regard, reduced MHC-I expression might
keep the tumor below detection limit of CTLs, and even if
a tumor cell is indeed detected, probably due to threshold
expression of “self” byMHC-I, the consequent IFN signalling
from the activated NK-cell will likely have only a limited
impact since the pathway is functionally blocked by excess of
ROS. By this mechanism, recruitment and activation of other
immune cells, in particular macrophages, may be inhibited
and the immune response remains unamplified and thus
ineffective in combating the clone. This concept is partly
supported by the finding of downregulation of HLA expres-
sion in ET, PV, and MF and further supported by efficacious
treatment with IFN, which increases MHC-I expression of
the clonal cells (thus making them “legitimate” targets for
CTLs) but also increases the NK-cell compartment, thus
inducing the much warranted amplification of the immune
system. IFN also mobilizes dormant stem cells rendering
them susceptible to targeted therapies [146–149].

Since ROS appear to play a crucial role in disease progres-
sion ofMPNs, the targeting of ROS seems intuitive, especially
since the increased ROS can interfere with both endogenous
tumor surveillance and treatment response. Treatment with
NAC has been used successfully in an in vivo mouse model
after JAK2V617F bone marrow transplant, but never in
human MPN subjects. The majority of experiences with
humanNAC treatment are based on the treatment of patients
suffering from paracetamol poisoning. In this setting, the
NAC treatment is intensive and of short duration. NAC
treatment has also been investigated in spinal cord injuries
but again the treatment duration is short [150–153]. However,
longer exposure has been investigated in chronic pulmonary
diseases: chronic obstructive pulmonary disease (COPD)
and cystic fibrosis (CF). Both diseases have a significant
inflammatory component, and both diseases showed posi-
tive responses to NAC treatment with fewer exacerbations
(COPD) and more stable lung function (CF) in the NAC-
treated groups [154–156]. Similar results were obtained in
patients suffering from systemic lupus erythematosus (SLE)
[157].

In order to target MPN related oxidative stress, it is
important to acknowledge that the optimal level of ROS is
not known. In the experimentalMPNmodels, treatment with
NAC almost totally removed any existing ROS, which in an
experimental model might give satisfying results but in a
human trial might result in a dismal outcome [87, 127]. In
vivo, ROS are needed to some extent to ensure normal cellular
signalling and to enable the immune system in combating
invading bacteria and an obvious problem might be an
increase in infectious diseases and (other) neoplastic diseases.
However, this has not been identified so far with NAC
treatment of COPD and CF, both diseases otherwise heavily
burdened by (chronic) infections and the NAC treatment
resulted in disease relevant improvements.

5. Discussion and Perspectives

The MPNs are clonal neoplasms intimately associated with
a dysregulated immune system [16, 17, 148, 149, 158–160]. As
in many other diseases, inflammation and excess generation
of ROS are thought to play a major role, both in disease ini-
tiation and associated inflammation-mediated comorbidities
[27, 28, 84, 135]. The initiation of disease is probably a conse-
quence of defective DNA repair and/or increased acquisition
of DNA damage. This could be caused by many factors, for
example, germline CHEK2 mutation [142, 143]. Of note, it is
also intriguing to consider that the initiation of the disease
might be consequent to a “fertile ground” changing the fitness
of the stem cell niche for a preexisting abnormal hematopoi-
etic stem cell [4, 161–163]. By chance, the JAK2 mutation
is acquired and consequent generation of ROS with clonal
expansion and evolution due to genomic instability charac-
terizes the further course of the disease. ROS are also involved
in cardiovascular diseases which are major contributors to
the comorbidity burden and mortality in MPN patients [11,
15, 96, 98, 99]. Accordingly, the targeting of ROS is an
obvious therapeutic option, especially since one of the main
goals is to prevent genomic instability, likely facilitated by
increased ROS, and thereby ultimately fibrotic and leukemic
transformation. In regard to the potent efficacy of NAC in
decreasing ROS levels, it is intriguing to consider if NAC
treatment might benefit patients with MPNs. The encourag-
ing results from studies in CF, SLE, and COPD warrant such
studies.

Furthermore, the antioxidative potential of the widely
used agents, IFN, JAK inhibitors, and statins, both as
monotherapies and in various combinations, should be inves-
tigated. Studies on combinations with IFN, the only agent
with the potential to induce “minimal residual disease,” as the
backbone and “old antioxidative drugs” (statins, NAC) and
the novel JAK1/2-inhibitors are urgently needed. Such studies
may further enhance the potency of the novel combination
therapy with IFN and ruxolitinib, a concept which already
has been shown to be highly efficacious in patients with
PV and hyperproliferative MF, implying an improvement in
inflammation-mediated comorbidities as well [28, 84, 164].
Such a combinatorial approach using old agents (statins,
NAC, and IFN) with anticancer properties (antiproliferative,
proapoptotic, antiangiogenic, anti-inflammatory, and antiox-
idative properties) together with novel JAK1/2 inhibitors may
open a new era for patients with MPNs, the outlook not
only being “minimal residual disease” and potential cure
but also a marked improvement in inflammation-mediated
comorbidities.These goals will not only set new standards for
treatment of MPNs in the future but may also likely be highly
cost-effective when considering the potential of decreasing
dosages of very expensive drugs (JAK1/2 inhibitors/ IFN) due
to synergism between them and for example, statins, and
therefore a reduction in side effects of single agents as well
[27, 28, 165–168]. This novel treatment concept, targeting the
oxidative stress mechanisms in MPNs, is foreseen to alleviate
the heavy disease burden, which encompasses not only an
increased risk of severe cardiovascular complications and
second cancers but likely also an increased risk of premature
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atherosclerosis (early ageing?) [28, 29, 135]. By eliminat-
ing the oxidative stress overload, improving the defective
antioxidative stress defence, and improving “Tumor Immune
Surveillance” according to the novel treatment concept as
outlined above, we are convinced that the future will look
bright for our patients and will enlighten new horizons.
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