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Phase-amplitude coupling (PAC), the phenomenon where the amplitude of a high frequency oscillation is modulated by the
phase of a lower frequency oscillation, is attracting an increasing interest in the neuroscience community due to its potential
relevance for understanding healthy and pathological information processing in the brain. PAC is a diverse phenomenon, having
been experimentally detected in at least ten combinations of rhythms: delta-theta, delta-alpha, delta-beta, delta-gamma, theta-
alpha, theta-beta, theta-gamma, alpha-beta, alpha-gamma, and beta-gamma.However, a complete understanding of the biophysical
mechanisms generating this diversity is lacking. Here we review computational models of PAC generation that range from detailed
models of neuronal networks, where each cell is described by Hodgkin-Huxley-type equations, to neural mass models (NMMs)
where only the average activities of neuronal populations are considered. We argue that NMMs are an appropriate mathematical
framework (due to the small number of parameters and variables involved and the richness of the dynamics they can generate) to
study the PAC phenomenon.

1. Introduction

From the theory of signal processing we know that if an
input-state-output system is linear its output will have the
same frequency content as its inputs. Conversely, in nonlinear
systems, the energy at one frequency in the inputs appears
at different frequencies in the outputs. This induces cross-
frequency coupling (CFC) between any two sources, when
the output of one serves as the input to the other [1]. It
has been shown that pyramidal cells produce a varied set of
intrinsic dynamics based only on the type and compartmen-
tal localization of intrinsic conductances [2]. A combination
of sodium, potassium, and calcium conductances produces
coexistent gamma (∼40Hz) and theta (∼6Hz) rhythms on
tonic depolarization. In contrast, combinations of persistent
sodium and potassium channels in the soma produce a
use-dependent transition between regular spiking at ∼10Hz
and a repetitive, brief burst generation at ∼20Hz [2]. Since
cortical columns and brain areas generating different brain
rhythms are interconnected, the presence of CFC should
not be surprising, even if the exact mechanisms responsible

for its generation remain imprecise. The question is then
whether CFC is only a mechanistic result of the way the
brain is constructed or if it also has a role in brain com-
putations. At least six types of CFC have been documented
[3, 4]: amplitude-amplitude coupling (AAC), phase-phase
coupling (PPC), frequency-frequency coupling (FFC), phase-
amplitude coupling (PAC), phase-frequency coupling (PFC),
and frequency-amplitude coupling (FAC). PAC, the type
of CFC that occurs when the phase of a low frequency
oscillation modulates the amplitude of a higher frequency
oscillation, has received a lot of attention in the last decade
due to its potential relevance for understanding healthy and
pathological brain function [5–11]. PAC has been hypothe-
sized to be the carrier mechanism for the interaction of local
and global processes and therefore being directly linked to
the integration of distributed information in the brain [12].
For instance, it has been suggested that theta-gamma PAC is
used as a coding scheme for multi-item short-term memory
in the hippocampus, where different spatial information is
represented in different gamma subcycles of a theta cycle
[13, 14]. Recent experimental evidence also suggests that PAC
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links local blood-oxygen-level-dependent (BOLD) signals to
BOLD correlation across distributed networks [15].

In parallel to the experimental study of the PAC phe-
nomenon, computational models have been proposed in
order to clarify the neurobiological mechanism underlying
its generation [16–23]. Here we review these models, going
from the detailed description of each cell (via the Hodgkin-
Huxley formalism) in neuronal networks to neural mass
models (NMMs), which are a type of mean field description
that focuses on the dynamics of the average activity in a neu-
ronal population while neglecting the second-order statistics
(variance and covariances) and frommodels only focusing on
generation of the theta-gamma PAC in the hippocampus to
the most recent models capable of simultaneously generating
several PAC combinations.

This review is structured as follows. First, in Section 2, we
show that there is evidence for at least ten different PAC com-
binations (of a low and a higher frequency oscillation). Com-
putational models of the PAC phenomenon can be divided
into two types: detailed and NMMs.Themain characteristics
of these two types are briefly discussed in Section 3, followed
by two sections describing specific models of both types.

2. Experimental Evidence of the Diversity of
the PAC Phenomenon

The classic example of PAC was demonstrated in the CA1
region of the hippocampus [24] where the phase of the theta
rhythm was found to modulate the power of gamma oscil-
lations. Later studies found that PAC is neither restricted to
theta-gamma coupling nor to the hippocampus. For instance,
PAC has also been reported in the frontal, posterior, and
parietal human cortices during auditory, visual, linguistic,
and memory tasks [25–27], in monkey auditory and visual
cortices [15, 28, 29] and rodent olfactory bulb [30]. In addition
to Bragin et al.’s study [24], other studies have confirmed the
existence of theta-gamma coupling in the hippocampus [31–
34] and other brain areas [35–44]. Other PAC combinations
of low and high frequency rhythms have also been detected:
delta-theta [37, 45], delta-alpha [46, 47], delta-beta [44, 46],
delta-gamma [34, 35, 38, 41, 44], theta-alpha [46], theta-beta
[44, 46], alpha-beta [45], alpha-gamma [15, 26, 27, 35, 46, 48,
49], and beta-gamma [7, 15].

It should be noted that the studies mentioned above do
not always use the same frequency values for the boundaries
of the different brain rhythms [50] and that sometimes the
gamma band is divided into different subbands such as low-
gamma, middle-gamma, and fast-gamma, with boundaries
that can differ between different studies. Thus, subdivisions
of classical bands can potentially increase the number of
PAC combinations to be studied. Additionally, a high number
of mathematical methods for detecting PAC have been
proposed [3, 12, 51–57], eachwith advantages and caveats, and
no gold standard has emerged. Furthermore, those methods
are not exempted of spurious results, that is, identifying PAC
that is not related to true modulations between neuronal
subsystems. These issues (reviewed recently in [58]) are out
of the scope of this review, but we mention them here to

highlight the fact that the experimental study of the PAC
phenomenon is far from being complete and new methods
and results in the upcoming years will be necessary to com-
plement, inform, and refine past and future computational
models of the phenomenon.

3. Detailed Mathematical Models versus
Neural Mass Models

There are two main approaches to modeling the dynamics of
neuronal populations. One approach is to realistically model
each cell in the network, usingmultiple compartments for the
soma, axon, and dendrites. The most prominent example of
this approach is the Blue Brain Project [59], which aims to
achieve in the next decade a full simulation of human brain
dynamics (a network of approximately 86 billion neurons) in
a supercomputer. A practical disadvantage of such realistic
modeling is that it requires high computational power. For
this reason, simplified versions of such models in which only
one compartment is taken into account have been used [16,
60]. However, even in this case, the use of such detailed mod-
els makes it difficult to determine the influence of eachmodel
parameter on the generated average network characteristics.
The second approach is based on the use of NMMs, which
constitute a class of biophysical models that captures the
average activity of neuronal ensembles, rather thanmodeling
each neuron in the network individually [61, 62]. NMMs
are described by nonlinear differential equations and can
be rigorously obtained from mean field approaches [63–65]
after neglecting the second-order moments. For instance,
the Wilson-Cowan neural mass model [61] can be obtained
from a mean field approximation of two coupled networks
of FitzHugh-Nagumo neurons [63]. An alternative way of
constructing the NMM formalism is to consider that each
neuronal population performs two mathematical operations
[62]. The first is the conversion of postsynaptic potentials
(PSP) into an average density of action potentials (AP) which
is modeled using a sigmoid function. The second operation
is the conversion of AP into PSP, which is done by means of
a linear convolution with an impulse response function. The
Wilson-Cowanmodel is obtainedwhen the impulse response
function is 𝑔(𝑡) = 𝐺𝑒

−𝑘𝑡, which produces a system of first-
order differential equations describing the activity in each
population. Amore recent neural mass model, the Jansen-Rit
model [62], is obtained when the impulse response function
has the form 𝑔(𝑡) = 𝐺𝑘𝑡𝑒

−𝑘𝑡. This results in a system of
second-order differential equations describing the dynamics
of PSPs in each population. Computational models based
on Wilson-Cowan and Jansen-Rit models have provided the
mathematical framework for simulating the generation of
electrical activity in the brain during resting state [62, 66–71],
stimulation [62, 72–74], and disease [67, 75–77].

4. Detailed Mathematical Models

Detailed mathematical models of PAC generation [16, 18]
have focused on the theta-gamma interaction observed in
the hippocampus [24]. These models consist of either purely
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inhibitory networks [16] or networkswith both excitatory and
inhibitory cells [18–20] and are based on models previously
developed to study the generation of theta and gamma
rhythms separately [23].

4.1. Inhibitory-Inhibitory (𝐼-𝐼) Network. A simulated inhibi-
tory network in the hippocampus containing fast and slow
interneurons was shown to generate theta-gamma coupling
under restricted conditions [16]. The network comprised
single compartment neurons modeled with the Hodgkin-
Huxley formalism:

𝐶
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where index 𝑖 = 1, . . . , 𝑁, counts the cells in the network, 𝐼
𝑖

is the applied current, and 𝜂 is a normally distributed noise.
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The cell population (𝑁 = 100) was divided into half
on the basis of fast and slow synaptic dynamics. Synaptic
conductances 𝑔

𝑠,𝑗

had one of four possible values depending
on the types of the cells connected: fast cell to fast cell, fast
cell to slow cell, slow cell to slow cell, and slow cell to fast cell.
Connectivity was all to all. Equations for the gating variables
ℎ, 𝑛, and 𝑠, as well as parameter values can be found in [16].
The numerical simulations performed in [16] showed that
the model can generate PAC under restricted conditions that
included strong connections within the same populations,
weaker connections between populations (especially from
fast to slow populations), and carefully tuned inputs.

4.2. Excitatory-Inhibitory (𝐸-𝐼) Networks. Hippocampal net-
works producing theta-gamma PAC also have pyramidal
cells. To consider this situation, a model comprising three
neuronal populations was proposed in [18] and was shown
to produce theta-gamma PAC [23]. The three populations
are pyramidal cells, fast-spiking basket cells, and oriens
lacunosum-moleculare (O-LM) interneurons.The outputs of
the O-LM cells are projected as slow inhibitory postsynaptic
potentials (IPSP) onto the distal apical dendrites of pyramidal
cells [18].

Basket cells were modeled with a single compartment,
using the fast-spiking interneuron model proposed in [78],
similar to (1) and (2). O-LM cells were also modeled with a
single compartment. In addition to sodium, potassium, leak,
and synaptic current, two other currents were considered:
the h-current and the A current [17, 18]. Pyramidal cells
were modeled by 5 compartments: 1 for basal dendrites,

1 for soma, and 3 for apical dendrites. The equation for each
compartment 𝑘 (1, . . . , 5) is

𝐶

𝐸𝑘

𝑑𝑉

𝐸𝑘

𝑑𝑡

= 𝐼app,𝐸𝑘 − 𝐼Na,𝐸𝑘 − 𝐼K,𝐸𝑘 − 𝐼

𝐿,𝐸𝑘
− 𝐼

ℎ,𝐸𝑘
− 𝐼

𝐴,𝐸𝑘

− 𝐼syn,𝐸𝑘 + 𝐼conn,𝐸𝑘 ,

(3)

where 𝐼conn,𝐸𝑘 is the current due to electrical coupling
between compartments. The expressions for the ionic and
synaptic currents as well as the parameter values to simulate
the model can be found in the supplementary information
section in [18]. Different simulations were performed in [18],
but the one with the highest number of cells comprised a total
of 180 cells. Their results showed that O-LM cells alone can
coordinate cell assemblies and that the same theta rhythm can
coordinate different cell assemblies with different frequencies
in the gamma range [18, 23].

5. Neural Mass Models

In this section we review three NMMs that are able to
generate PAC. The first two studies [21, 22] are based on the
works ofWilson-Cowan and Jansen-Rit and only focus on the
generation of one PAC combination.The last study [79] is also
based on the Jansen-Rit model but is able to simultaneously
generate different PAC combinations.

5.1. PAC Generation Using theWilson-CowanModel. Onslow
et al. [21] used theWilson-Cowanmodel to study the genera-
tion of theta-gamma PAC in a brain region not necessarily
restricted to the hippocampus. The model comprises two
coupled populations (Figure 1(a)), one excitatory and one
inhibitory. The system of first-order differential equations
describing the model is
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where𝐸(𝑡) and 𝐼(𝑡) are the average activity levels of excitatory
and inhibitory populations, respectively [61] and 𝑝

𝐸

and 𝑝

𝐼

are the external inputs to the two populations. The weight
of the connection from the excitatory population to the
inhibitory population is Γ

𝐸𝐼

and from the inhibitory to the
excitatory population is Γ
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, and the self-connections are Γ
𝐸𝐸

and Γ
𝐼𝐼

. 𝜏
𝐸

and 𝜏
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are the time constants for each population.
The nonlinearity in the model is introduced by means of a
sigmoid function:

𝑆 (𝑥) =

𝑆

0

1 + 𝑒

𝑟(𝑥−V0)
, (5)

where parameter 𝑟 determines the steepness of the sigmoid
curve, V

0

determines the position of the sigmoid function,
and 𝑆
0

determines the amplitude of the response.
System (4) is capable of producing oscillations due to

the reciprocal connections between the two populations.
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Figure 1: Neural mass models. (a) Wilson-Cowan model (Section 5.1) of two coupled populations, one excitatory (𝐸) and one inhibitory (𝐼).
External inputs to these populations are𝑝
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and𝑝
𝐼

, and the connectivity parameters are Γ
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, Γ
𝐼𝐸

, Γ
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, and Γ
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. (b) Jansen-Ritmodel (Section 5.2)
of a cortical column. Three populations are modeled: pyramidal cells (PY), excitatory interneurons (EI), and inhibitory interneurons. The
connectivity parameters are Γ

1

, Γ
2

, Γ
3

, and Γ

4

, and the input to the model is 𝑝. (c) Neural mass model of the cortical column comprising 14
populations (Section 5.3) distributed across 4 layers. The excitatory populations are the intrinsically bursting (IB) and the regulatory spiking
(RS). The inhibitory population are the low-threshold spiking (LTS) and fast-spiking (FS). The connections between the populations are
depicted in (d). Any of the 14 populations can be subjected to an external input. In the three models ((a), (b), and (c)), excitatory populations
and connections are depicted in red and inhibitory ones in blue. (d) Connectivity matrix values used for coupling the 14 populations are
modeled in (c). Negative values correspond to inhibitory connections and positive values correspond to excitatory ones.

Numerical simulations showed [21] that this model generates
gamma oscillations that are locked to a certain phase of theta
oscillations when considering oscillatory inputs.

Figure 2(a) shows a realization of the model where the
phase of a 4Hz oscillationmodulates the amplitude of a 55Hz
oscillation.The parameter values used in this simulationwere
𝜏

𝐸

= 0.0032 s, 𝜏
𝐼

= 0.0052 s, 𝑝
𝐸

= 0.6 + 0.1 cos(8𝜋𝑡),
𝑝
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𝐸𝐸

= 2.4, Γ
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= 2, Γ
𝐼𝐸

= 2.1, Γ
𝐼𝐼

= 0, 𝑟 = 4,
𝑆

0

= 1, and V
0

= 1. Additional simulations showed [21] that
the amplitude, frequency, and phase-locking characteristics
of the PAC activity generated were dependent on the strength

of the connectivity parameters and on the amplitude and
mean value of the low frequency input signal. It was possible
to tune the parameters of the model to produce different
frequencies of activity phase-locked to different phases of the
theta rhythm [21].

5.2. The Jansen-Rit Model of a Cortical Column. The Jansen-
Rit model of a cortical column [62] comprises three neu-
ronal populations (Figure 1(b)): pyramidal cells, excitatory
interneurons, and inhibitory interneurons. The model is



BioMed Research International 5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.5 1 1.5 2 2.5 30

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.5 1.51 2 2.5 30
Time (s)

E

I

(a)

0.5 1 1.5 2 2.5 30

0.08
0.09

0.1
0.11
0.12
0.13
0.14
0.15
0.16

y0

0.5 1.5 2.521 30
Time (s)

10
12
14
16
18
20
22
24
26

y1 and y2

(b)

L2IB

−20

−10

0

10

20

30 21

0 1 2 3

L2RS

−100

−50

0

50

0 1 2 3

L2FS

−10

−5

0

5

10

0 1 2 3

L2LTS

−100

−50

0

50

0 1 2 3

L4RS

−200

−100

0

100

200

0 1 2 3

L4FS

−10

0

10

20

0 1 2 3

L4LTS

−50

0

50

100

150

0 1 2 3

0

L5RS

−50

50

0 1 2 3

L5FS

−10

0

10

20

0 1 2 3

L5LTS

−50

0

50

100

0 1 2 3

Time (s)

L6RS

−100

−50

0

50

100

0 1 2 3
Time (s)

L6TS

−100

−50

0

50

100

0 1 2 3

L5IB

−40

−20

0

20

40

0 2 4

Time (s) Time (s)

L6FS

−20

−10

0

10

(c)

Figure 2: Simulated temporal evolution of the variables of three different neural mass models. (a) Wilson-Cowan model. The phase of a
theta oscillation (4Hz) modulates the amplitude of a gamma oscillation (55Hz). (b) Jansen-Rit model. The phase of a delta oscillation (3Hz)
modulates the amplitude of an alpha oscillation (11Hz). (c) Cortical column model. The values of the parameters are given in Tables 1 and
2. Multiple PAC combinations are present (see Figure 3). In all cases, the temporal dynamics of excitatory and inhibitory populations are
depicted in red and blue, respectively.
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Table 1: Values and physiological interpretation of the parameters.

Parameter (units) Interpretation Value

𝐺(mV) Gain
𝐺

1

= 3.25, 𝐺
2

= 3.25, 𝐺
3

= 30, 𝐺
4

= 10, 𝐺
5

= 3.25,
𝐺

6

= 30, 𝐺
7

= 10, 𝐺
8

= 3.25, 𝐺
9

= 3.25, 𝐺
10

= 30,
𝐺

11

= 10, 𝐺
12

= 3.25, 𝐺
13

= 30, and 𝐺
14

= 10

𝑘 (s−1) Reciprocal of time constant
𝑘

1

= 60, 𝑘
2

= 70, 𝑘
3

= 30, 𝑘
4

= 350, 𝑘
5

= 60,
𝑘

6

= 30, 𝑘
7

= 350, 𝑘
8

= 60, 𝑘
9

= 70,
𝑘

10

= 30, 𝑘
11

= 350, 𝑘
12

= 60, 𝑘
13

= 30, and
𝑘

14

= 350

𝑝 External input
𝑝

𝑖

= 0 for 𝑖 ̸= {5, 7}, 𝑝
5

= 500, and 𝑝
7

= 150

𝑏 Damping coefficient
𝑏 = 0.06 for all populations

𝑆

0

(s−1) Maximum firing rate
𝑒

0

= 5 for all populations
V
0

(mV) Position of the sigmoid function V
0

= 6 for all populations
𝑟 (mV−1) Steepness of the sigmoid function

𝑟 = 0.56 for all populations

mathematically described by a system of second-order differ-
ential equations:
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4

𝑆 (Γ

3

𝑥

0

(𝑡)) ,

(6)

where 𝑥
0

is the excitatory postsynaptic potential (EPSP) that
feeds into the two populations of interneurons and 𝑥

1

and
𝑥

2

are EPSP and inhibitory postsynaptic potentials (IPSP)
that enter into the pyramidal cell population, respectively.
Γ

1

, Γ
2

, Γ
3

, and Γ

4

are the connection strengths between
the populations. In this model, the electroencephalography
(EEG) signal is considered to be proportional to 𝑥

1

(𝑡)−𝑥

2

(𝑡).
Figure 2(b) shows a realization of model (6) where delta

(3Hz)-alpha (11Hz) PAC is produced when considering
an oscillatory input 𝑝. The parameter values used in this
simulation were 𝐴 = 3.25mV, 𝐵 = 22mV, 𝑝 = 200 +

50 cos(6𝜋𝑡), 𝑎 = 100 s−1, 𝑏 = 50 s−1, Γ
1

= 135, Γ
2

= 108,
Γ

3

= 33.75, Γ
4

= 33.75, 𝑟 = 0.56mV−1, 𝑆
0

= 5 s−1, and
V
0

= 6mV.
Alternatively, EEG signals presenting PAC can be

obtained by coupling multiple Jansen-Rit models (see
Figures 5, 8, and 9 in [67]). In a more recent work [22],
several Jansen-Rit models were also coupled and the
cross-frequency transfer was studied in a setting where
oscillators (generating the different rhythms) were coupled
unidirectionally and thus the driving between them was
passive. This study showed that this passive driving can
also account for CFC in the brain as a result of the complex
nonlinear dynamics of the underlying neuronal activity.

5.3. Cortical Column Model Comprising 4 Layers and 14
Neuronal Populations. A more complex neural mass model

of the cortical column was recently proposed [79] in which 4
cortical layers and 14 neuronal populations are considered.
Figure 1(c) shows the model obtained by distributing four
cell classes in four cortical layers (L2/3, L4, L5, and L6). This
produced 14 different neuronal populations, since not all cell
classes are present in every layer [80]. Excitatory neurons
were either regular spiking (RS) or intrinsically bursting (IB)
ones, and inhibitory neurons were either fast-spiking (FS) or
low-threshold spiking (LTS) neurons.

The model is based on the Jansen-Rit model and the
dynamics of the average PSP in each neuronal population 𝑥

𝑚

is obtained by solving a system of 14 second-order differential
equations:

𝑑

2

𝑥

𝑚

(𝑡)

𝑑𝑡

2

= −2𝑘

𝑚

𝑏

𝑚

𝑑𝑥

𝑚

(𝑡)

𝑑𝑡

− 𝑘

2

𝑚

𝑥

𝑚

(𝑡)

+ 𝐺

𝑚

𝑘

𝑚

(𝑝

𝑚

+

14

∑

𝑛=1

Γ

𝑛𝑚

𝑆 (𝑥

𝑛

(𝑡))) ,

(7)

where 𝑛 = 1, . . . , 14, and 𝑚 = 1, . . . , 14. The populations
are numbered from 1 to 14 following the order: [L2RS, L2IB,
L2LTS, L2FS, L4RS, L4LTS, L4FS, L5RS, L5IB, L5LTS, L5FS,
L6RS, L6LTS, L6FS]. Layer 2/3 was labelled as 2. As can be
seen in (7), neuronal populations interact via the connectivity
matrix Γ

𝑛𝑚

(Figure 1(d)). External inputs are accounted for
via 𝑝
𝑚

which can be any arbitrary function including white
noise [62].The “damping” parameter 𝑏

𝑚

critically determines
the behavior of the system. For 𝑏

𝑚

= 1 (which corresponds
to the Jansen-Rit model) an individual population is not
capable of oscillating, and it is the presence of interpopulation
connections (nonzero Γ

𝑛𝑚

, 𝑛 ̸= 𝑚) that produces oscillatory
behavior that mimics observed EEG signals. To account for
the possibility of an oscillatory population [78, 81] a nonzero
value for 𝑏

𝑚

was used.
Figure 2(c) presents the temporal evolution of the average

PSP in each neuronal population. Time series colored in
red correspond to excitatory PSP (EPSP) whereas inhibitory
PSP (IPSP) are presented in blue. As seen in the figure,
both EPSP and IPSP present the characteristic “waxing and
waning” (i.e., amplitude modulation) observed in real EEG
signals. Parameters values are presented in Tables 1 and 2. To
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Figure 3: Continued.
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Figure 3: Phase-amplitude coupling (PAC) corresponding to the simulation presented in Figure 2(c). Nonsignificant values were set to zero
and are depicted in white. (a) Delta-theta, (b) delta-alpha, (c) delta-beta, (d) delta-gamma, (e) theta-alpha, (f) theta-beta, (g) theta-gamma,
(h) alpha-beta, and (i) alpha-gamma.

quantify the PAC phenomenon, a causality measure between
time series, the information flow [82], was computed using
phases and amplitudes of the signals shown in Figure 2(c).
Figure 3 shows the information flow from the phase to
the amplitude for nine different combinations of phases
and amplitudes: delta-theta, delta-alpha, delta-beta, delta-
gamma, theta-alpha, theta-beta, theta-gamma, alpha-beta,
and alpha-gamma. A negative value of the information flow
means that the phase tends to stabilize the amplitude whereas
a positive value means that the phase tends to make the
amplitude more uncertain. An exploratory analysis of the
influence of the parameters on PAC showed that changes
in external input and time constants produced theta-gamma
PAC values higher than alpha-gamma PAC, whereas changes

in connectivity produced higher alpha-gamma PAC values.
Additional information can be found in [79].

6. Conclusions

In conclusion, we have shown that PAC is a diverse phe-
nomenon, not restricted to the theta-gamma coupling in
the hippocampus. In order to model the complexity of the
PAC phenomenon, which is hypothesized to bridge local and
global scales in the brain [12, 15], reducedmodels of neuronal
activity such as NMMs are needed, since detailed models are
computationally expensive and their results are difficult to
interpret due to the high number of variables and parameters
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Table 2: Standard values of the connectivity matrix Γ
𝑛𝑚

.

L2/3 L4 L5 L6
RS IB LTS FS RS LTS FS RS IB LTS FS RS LTS FS

L2/3

RS 25 10 10 15 0 25 30 0 0 0 0 0 0 0
IB 10 25 5 5 0 0 0 0 0 0 0 0 0 0
LTS −10 −8 −15 −10 0 0 0 −20 −25 0 0 0 0 0
FS −15 −10 0 −15 0 0 0 −20 −25 0 0 0 0 0

L4
RS 12 10 0 0 15 30 25 8 18 0 0 0 0 0
LTS −20 0 0 0 −20 −25 −10 0 0 0 0 0 0 0
FS −42 0 0 0 −22 0 25 0 0 0 0 0 0 0

L5

RS 0 0 0 0 0 0 0 12 0 22 18 25 0 0
IB 0 0 0 0 0 0 0 10 10 22 18 25 0 0
LTS 0 0 0 0 0 0 0 −10 −10 −10 −20 −25 0 −30

FS 0 0 0 0 0 0 0 −19 −19 −17 −15 0 0 0

L6
RS 0 0 0 0 45 0 10 0 0 0 0 15 10 10

LTS 0 0 0 0 0 0 0 0 0 0 0 −11 −10 −8

FS 0 0 0 0 0 0 0 0 0 0 0 −20 0 −15

involved. An open problem to be exploredwithNMMs is how
the different PAC combinations are related.

While both types of models reviewed here, detailed mod-
els and NMMs, are capable of generating signals reflecting
PAC, only in a few studies a quantitative measure of the
phenomenon has been provided. This is probably related to
the lack of a gold standard for PAC detection, which has
resulted in the development of numerous methods.

The computational models summarized here focused on
the mechanistic generation of the PAC phenomenon. NMMs
are simple (in the sense of the few variables and parameters
involved) but complex (in the sense of the richness of the
dynamics they can generate) enough to approach important
questions related to the functional role of the PAC phe-
nomenon.
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