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Abstract
In remote ischemic conditioning (RIC), several cycles 
of ischemia and reperfusion render distant organ and 

tissues more resistant to the ischemia-reperfusion 
injury. The intermittent ischemia can be applied before 
the ischemic insult in the target site (remote ischemic 
preconditioning), during the ischemic insult (remote 
ischemic perconditioning) or at the onset of reperfusion 
(remote ischemic postconditioning). The mechanisms 
of RIC have not been completely defined yet; however, 
these mechanisms must be represented by the release 
of humoral mediators and/or the activation of a neural 
reflex. RIC has been discovered in the heart, and has 
been arising great enthusiasm in the cardiovascular field. 
Its efficacy has been evaluated in many clinical trials, 
which provided controversial results. Our incomplete 
comprehension of the mechanisms underlying the RIC 
could be impairing the design of clinical trials and the 
interpretation of their results. In the present review we 
summarize current knowledge about RIC pathophysiology 
and the data about its cardioprotective efficacy. 
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Core tip: Remote ischemic conditioning (RIC) is a safe, 
non-invasive, and inexpensive technique that has the 
potential to protect the heart against the ischemia-
reperfusion injury. Its cardioprotective efficacy is currently 
being evaluated, and diverging results are emerging. It 
is thus worth resuming current understanding of RIC 
pathophysiology and clinical efficacy. 
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INTRODUCTION
The myocardium can tolerate brief periods (up to 
15 min) of severe and even total ischemia. Such 
ischemic episodes occur in the settings of angina, 
coronary vasospasm, and balloon angioplasty, and are 
not associated with concomitant myocyte cell death. 
With increasing duration and severity of ischemia, 
greater myocardial damage, and the predisposition 
to further damage during reperfusion develop. The 
combined deleterious effects of coronary occlusion and 
revascularization configure the “ischemia-reperfusion 
(IR) injury”[1]. 

The counterintuitive idea to apply several brief 
episodes of IR cycles to protect the myocardium 
against IR injury was firstly advanced in 1986, when 
Murry et al[2] reported that the infarcted area following 
a 40-min coronary occlusion was reduced if preceded 
by four 5-min IR cycles. This phenomenon was called 
“ischemic preconditioning”. Its clinical application 
is hindered by the unpredictable timing of acute 
myocardial infarction (AMI), and by the necessity to 
intervene on coronary vessels[3]. However, several 
IR cycles were found to confer cardioprotection even 
when applied at the onset of coronary revascularization 
(ischemic postconditioning)[4,5], both in animals and 
in human patients undergoing primary percutaneous 
coronary intervention (PCI). 

In 1993, it was demonstrated in anesthetized dogs 
that 4 episodes of 5-min ischemia and reperfusion in 
the left circumflex coronary territory, followed by a 
1-h occlusion of the left anterior descending coronary 
artery, significantly reduced the infarct size[6]. The 
“remote ischemic conditioning (RIC)” paradigm has 
been progressively extended[7]. At present, RIC is 
defined as the phenomenon by which brief episodes 
of ischemia and reperfusion in one vascular bed, 
tissue, or organ render distant sites resistant to the 
ischemia-reperfusion injury[7,8]. The IR cycles are 
effective when applied before myocardial ischemia 
(remote ischemic preconditioning), during coronary 
occlusion (remote ischemic perconditioning), and 
during cardiac revascularization (remote ischemic post-
conditioning)[7-12].

The mechanisms conferring protection at distance 
have not been completely defined[7], yet their char-
acterization would be relevant to achieve a full com-
prehension of the phenomenon, and to exploit its full 
potential in clinical practice. In fact, understanding 
whether humoral mediators, neural mechanisms, 
or their combination mediate remote ischemic con-
ditioning would be crucial to determine the optimal 
number of IR cycles, the better site and timing of their 
application, to select the patients according to age, 
comorbidities, and medical treatment, and to optimize 
the overall therapeutic management of the patient. 

In the first part of the present review, we analyze 
current knowledge of the mechanisms underlying RIC, 
comparing humoral and reflex-mediated mechanisms.  

In the second half of this work, we attempt a critical 
analysis of the available literature concerning the 
cardioprotective potential of RIC in different settings. 

THE “HUMORAL HYPOTHESIS” OF 
RIC, AND POTENTIAL CIRCULATING 
MEDIATORS
The “humoral hypothesis” has been formulated in the 
setting of remote ischemic preconditioning (RIPC). It 
postulates that the IR cycles in a distant site cause 
the local accumulation of mediators which are then 
released into the bloodstream and finally reach the 
heart[7] (Figure 1).

Several data from animal models support this 
hypothesis. In particular, it has been demonstrated 
that the effluent from preconditioned hearts could 
transfer the protection to naïve recipients[13-15]; this 
protection seems to be mediated by small hydrophobic 
proteins whose molecular weight ranges between 3.5 
and 15-30 kDa[16]. 

Since these humoral mediators must be effective 
in remote sites after dilution into the bloodstream, 
their release from the peripheral tissue has to be 
massive[16]. The identification of humoral mediators 
should therefore be relatively easy to perform in 
animals or humans undergoing a RIPC protocol[16]. 
Indeed, proteomic approaches have been attempted 
in both animals and humans, still they have yielded 
controversial results[17-19]. 

Among the proteins potentially involved, there are 
kallistatin, apolipoprotein A-I, and stromal-derived 
factor 1α (SDF-1α)[16].

Kallistatin is a serine protease which reduces 
inflammation, apoptosis, and oxidative stress in endo-
thelial cells[20]. It has been recently characterized as 
a protective factor against renal ischemia-reperfusion 
injury in mice[21], and has been found to be increased 
in the plasma of healthy humans undergoing a RIPC 
protocol[16]. However, its role as a humoral mediator of 
RIPC has not been properly evaluated yet. 

Apolipoprotein A-I has anti-inflammatory properties, 
which could prove useful in the protection against 
ischemia-reperfusion injury[18]. In humans, its circulating 
levels have been found to be either increased[18] or 
decreased[17,22] after a RIPC protocol; therefore, its exact 
role is still debated. 

Finally, SDF-1α has been proposed to be an imp-
ortant, and possibly the main, mediator of RIPC[23]. In a 
study on rats, a 50% plasma increment was detected 
in rats subjected to a RIPC protocol compared to control 
animals (890 ± 70 pg/mL vs 590 ± 50 pg/mL; n = 
8, P < 0.01)[23]. Nevertheless, the administration of a 
selective inhibitor of SDF-1α did not completely abrogate 
the reduction in infarct size following RIPC[24], suggesting 
the existence of other mechanisms of cardioprotection[24]. 

Several potential other mediators have been 
identified: among them, there are microRNAs (miRNAs), 
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bradykinin, adenosine, and nitric oxide (NO). 
miRNAs have been involved in both muscle ischemia[25] 

and protection against myocardial IR injury[26]. The 
circulating levels of miR-144 have been found to increase 
by 1.6 folds in healthy human subjects undergoing a RIPC 
protocol, even though the exact mechanism of its action is 
still unknown[27].

Bradykinin is released by damaged tissues and 
can activate afferent fibers (see below), possibly contri-
buting to a cardioprotective effect known as “remote 
preconditioning of trauma”[28]. A release of bradykinin 
from ischemic tissues into the bloodstream has been 
reported[29]; the involvement of bradykinin in the RIPC 
response has been postulated, but the data from an 
animal study were inconclusive[30]. 

Finally, both adenosine and NO have been extensively 
studied in the setting of ischemic preconditioning[31], 
and have been considered potential mediators of 
RIPC as well[7,32], although their extremely short half-
life makes unlikely that they could exert a significant 
cardioprotective effect.

To summarize, it is quite established the existence 
of humoral mechanisms underlying RIPC, but the nature 
of the mediator(s) is currently unclear. Potential humoral 
mediators should be assessed with respect to their 
potential mechanism of action, the increase in their 
circulating levels following a conditioning protocol, and 
their half-life; in fact, all these parameters should be 
compatible with a cardioprotective role. Further studies 
are required to define the existence and the role of 
humoral mechanisms underlying RIPC, as well as the 
other forms of remote ischemic conditioning. 

NEURALLY-MEDIATED 
CARDIOPROTECTION
Neural control of the heart
The autonomic nervous system consists of an afferent 
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pathway, integrating centers located into the central 
nervous system, and two efferent limbs, the sympathetic 
and the parasympathetic nervous systems[33]. In the 
heart, sensory innervation is provided by afferent 
neurons located into the nodose and dorsal root ganglia, 
and projecting to brainstem areas controlling the activity 
of both sympathetic and parasympathetic nuclei[33]. 
Sympathetic efferent fibers innervate the sinoatrial and 
atrioventricular nodes, the atria, and the ventricles[33]. 
Parasympathetic efferent fibers are traditionally believed 
to control exclusively the nodal tissue and the atria[33]. 
Nevertheless, the presence of cholinergic innervations 
have been detected in both ventricles, and it has been 
demonstrated that vagal activation decreases the force of 
ventricular contraction irrespective of its effect on heart 
rate, in both animals and humans[33]. 

The “neural hypothesis” of RIPC, and potential role of 
the sympathetic system 
The “neural hypothesis” of remote ischemic preconditioning 
(RIPC) postulates that ischemia-reperfusion (IR) cycles 
in peripheral sites might activate a neural reflex 
resulting in myocardial protection against a subsequent 
myocardial insult[34] (Figure 1). 

In animals, cycles of occlusion and reopening of 
the renal artery, mesenteric artery, or femoral artery 
resulted in significant cardioprotection; in all these 
cases, the resection of the afferent fibers projecting to 
the ischemized territories abolished the cardioprotective 
effect[35-37]. In rats, IR cycles in the mesenteric artery 
conferred a cardioprotection similar in entity to that 
provided by ischemic preconditioning (i.e., IR cycles of 
the coronary vessel before sustained occlusion); the 
systemic administration of hexametonium, a blocker 
of both sympathetic and parasympathetic ganglia, 
abolished this effect[38]. 

Conflicting results have been provided by Kingma 
et al[39], who reported that, in dogs anesthetized with 
isoflurane, a RIPC protocol conferred robust myocardial 
protection against a subsequent ischemic injury even 
during autonomic blockade or surgical denervation 
of the heart. It should be noted that in this study the 
animals were anesthetized with isoflurane[39], which is 
per se a powerful preconditioning agent (see below). 

The activation of neural afferents during RIPC has 
been ascribed to local accumulation of mediators such 
as calcitonin-gene related peptide (CGRP), adenosine, 
and bradykinin[40]. Interestingly, the accumulation of 
adenosine[41,42], bradykinin[43], and other mediators[44,45] 
in the exercising muscle has been implied as a deter-
minant of the metaboreflex[46], which is a neural 
mechanism coupling sympathetic tone to exercise 
requirements[47,48]. It could then be speculated that the 
IR cycles of a conditioning protocol cause metaboreflex 
activation. The subsequent increase in sympathetic 
outflow could confer myocardial protection through 
the activation of β1 and/or β2 adrenergic receptors; 
this phenomenon has been discovered in animal 
hearts perfused with β-agonists, and has been named 

Ischemia-
reperfusion 
cycles in 
the arm

Neural 
mechanisms

Myocardial 
protection

Humoral 
mechanisms

Figure 1  Mechanisms of remote ischemic conditioning. The cardioprotective 
effects of several ischemia/reperfusion cycles applied in a distant site (most 
commonly the upper limb) have been ascribed to the activation of humoral 
and/or neural pathways. The pathogenesis of remote ischemic conditioning 
is incompletely known, however it is possi-ble that both humoral and neural 
mechanisms underlie this response.
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displayed a simultaneous increase, denoting increased 
parasympathetic outflow[61]. 

Remote ischemic perconditioning and postconditioning: 
does vagal activation play a role?
The first demonstration of remote ischemic percon-
ditioning was provided in 2007: in pigs, four 5-min 
cycles of lower limb ischemia during a 40-min left 
anterior descending coronary artery occlusion caused 
a significant reduction in infarct size, improved indexes 
of systolic and diastolic function, and less arrhythmic 
events during the reperfusion phase[11]. With respect to 
remote ischemic postconditioning, a cardioprotective 
effect of IR cycles at the beginning of reperfusion 
was demonstrated for the first time in 2005[12], and 
subsequently corroborated by other animal studies[62,63]. 

To our knowledge, only Basalay et al[59] assessed 
the pathophysiology of remote ischemic perconditioning 
and postconditioning. These authors reported that 
deafferenting the site of IR cycles or cutting both vagus 
nerves abolished the preconditioning and perconditioning 
responses in rats, but did not alter the postconditioning 
effect[59]. These results suggest that remote ischemic 
perconditioning relies on neural mechanisms, while 
remote ischemic postconditioning is mediated by 
humoral mediators[59]. 

Further studies are required to assess this hypothesis. 
However, it should be noted that neural mechanisms are 
more qualified than humoral mechanisms to protect the 
ischemic myocardium in the setting of remote ischemic 
perconditioning, at least when the coronary flow is 
completely blocked. In the same setting, an activation 
of the parasympathetic system would probably be more 
effective than a sympathetic response. 

Excessive concentrations of catecholamines have 
been detected in the ischemic area during an acute 
myocardial infarction[64]. Increased cardiac sympathetic 
outflow is due to pain, anxiety, and a fall of cardiac 
output or arterial blood pressure; a further release of 
catecholamines is promoted by the ischemic damage of 
nerve endings[64]. As a result, extracellular norepinephrine 
reaches up to 100-1000 times its normal plasma 
concentrations within 30 min of coronary occlusion[64]. 
Far from being protective, local concentrations of 
this magnitude are capable of producing myocardial 
necrosis even in nonischemic myocardium, and might 
promote malignant arrhythmias[64]. This mechanism 
accounts for the positive effects of early administration 
of β-blockers during acute myocardial infarction[65,66], and 
probably excludes increased sympathetic outflow as the 
final mediator of cardioprotection by remote ischemic 
perconditioning. 

PROTECTING THE HEART IN THE 
SETTING OF PCI
Stable coronary artery disease (SCAD) is associated 
with impaired quality of life, reduced physical endurance, 

“β-adrenergic preconditioning”[49-51]. 

Evidences of vagal activation following RIPC
As discussed above, a theoretical framework could be 
provided for sympathetic outflow as the final mediator 
of RIPC. Nevertheless, a growing body of evidences 
points to RIPC as a vagal reflex. 

The possibility to precondition the heart by the 
infusion of acetylcholine (ACh) was demonstrated in 
1993 by Yao et al[52] The preconditioning potential of 
ACh has been confirmed by several other studies[53-55]. 
It has been demonstrated that cardioprotection by RIPC 
is suppressed by spinal cord section, bilateral vagotomy 
or the systemic administration of the muscarinic 
receptor antagonist atropine, while vagal stimulation 
closely recapitulates the effects of RIPC[56,57].

Using a viral transfer gene approach in rats, 
Mastitskaya et al[58] confirmed that an intact para-
sympathetic outflow is crucial for myocardial protection 
by RIPC. The neurons in the dorsal motor nucleus of the 
vagus nerve were selectively silenced, thus abolishing 
the cardioprotective effect of a RIPC protocol[58]. 
The selective activation of the same neurons closely 
recapitulated the cardioprotective effect of RIPC; this 
response was suppressed by atropine[58]. Again in 
rats, Basalay et al[59] reported that IR cycles in the 
limb conferred cardioprotection when applied 25 min 
prior to myocardial ischemia. The authors then found 
that the cardioprotective effect was abolished by the 
denervation of the peripheral ischemic organ or bilateral 
vagotomy[59]. 

Autonomic function in RIPC: What happens in humans?
To our knowledge, only two studies have evaluated 
the consequences of a RIPC protocol on the autonomic 
function in humans. In 2005, Loukogeorgakis et al[60] 
evaluated the possibility to protect against endothelial 
ischemia-reperfusion injury by RIPC. A cuff inflation to 
200 mmHg for 20 min in the non-dominant arm was 
used as the ischemic insult; the subsequent endothelial 
damage was denoted by reduced flow-mediated 
dilation (FMD)[60]. When arm ischemia was preceded 
by a RIPC protocol in the dominant arm, the ischemic 
insult in the other arm caused no significant reduction 
in FMD compared to baseline, suggesting endothelial 
protection by RIPC[60]. Such response was abolished by 
the autonomic ganglion blocker trimetaphan[60]. These 
results suggested an autonomic activation underlying 
the endothelial protection by RIPC; however, being 
trimetaphan an aspecific autonomic blocker, it was not 
possible to ascertain if either the sympathetic or the 
parasympathetic system accounted for the protection 
by RIPC[60]. 

Parasympathetic activation was detected as the 
underlying mechanism by Enko et al[61] in 2011. After 
3 cycles of 5 min ischemia and 5 min reperfusion 
in the left arm, a significant dilation of the right 
brachial artery was observed; in the power spectral 
analysis of heart rate, the high frequency domain 
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been published so far[75]; the prognostic role of RIPC 
should therefore receive extensive evaluation, as 
well as the optimal RIPC protocol to achieve effective 
cardioprotection. 

Remote ischemic perconditioning refers to the 
application of ischemia-reperfusion cycles in a 
distant site shortly before revascularization. The first 
evidences of a protective role of remote ischemic 
perconditioning in human patients was provided in 
2010 by Bøtker et al[81], who assessed 333 patients 
with suspected first ST-elevation myocardial infarction. 
The primary endpoint was myocardial salvage index 
(MSI), quantified as the proportion of the area at 
risk preserved by the treatment, 30 d after primary 
PCI. MSI was significant higher in the conditioning 
group than in controls; the protective effect of remote 
ischemic perconditioning seemed to be strongest in 
patients with more severe infarctions, i.e., presenting 
with occluded vessels or infarcts in the left anterior 
descending artery[81]. 

The long-term outcome of remote ischemic pe-
rconditioning was assessed in the same study population[82]. 
A significant reduction of MACCE and all cause mortality 
was observed in the conditioning group over a median 
follow-up of 3.8 years. There was also a trend toward 
reduced myocardial reinfarction, readmission for heart 
failure, and ischemic stroke or transient ischemic 
attack[82]. 

In 2013, remote ischemic postconditioning was 
assessed on 232 patients undergoing elective PCI[83]. 
In the conditioning group, the patients underwent 
three 5-min cycles of cuff inflation in the nondominant 
arm just after the end of the angioplasty. No significant 
difference was found between the conditioning group 
and the control group in terms of peak troponin I 
levels, PMI rate, recurrence of myocardial ischemia[83]. 
In another study, the incidence of PMIs was similar 
between all groups, and no difference was remarked 
with respect to the creatine kinase (CK) levels or the 
incidence of acute kidney failure[84]. In other studies, 
significant reductions in the incidence of acute kidney 
failure were observed; the prevention of acute kidney 
failure is currently regarded as the most promising 
perspective for the application of remote ischemic 
postconditioning during PCI[85,86]. 

For the details of the studies cited in the present 
paragraph, see Table 1. 

REMOTE ISCHEMIC PRECONDITIONING 
BEFORE ELECTIVE CARDIAC SURGERY
Elective coronary artery bypass surgery (CABG) stands 
as an alternative to elective PCI for the management 
of SCAD[87]. The safety and efficacy of both techniques 
are similar, as well as the incidence of PMIs[87]. 

In 2007, a randomized controlled study enrolled 57 
adult patients undergoing elective CABG surgery[88]. 
In the RIPC group, three IR cycles were performed 

recurrent hospitalizations and outpatient visits[67]. 
Revascularization by either elective PCI or CABG can 
relieve symptoms, reduce the use of anti-ischemic 
drugs, improve exercise capacity and quality of life, 
compared to medical therapy alone[67]. The efficacy of 
elective PCI in addition to medical therapy in patients 
with SCAD has been demonstrated in a large number 
of randomized controlled trials, meta-analyses, and 
large-scale registries[67]. 

Albeit elective PCI is becoming increasingly safe, 
balloon inflation during PCI often causes transient 
ischemia[68]. Myocardial injury with necrosis may 
derive from recognizable peri-procedural events such 
as coronary dissection, occlusion of a major coronary 
artery or a side-branch, disruption of collateral flow, 
slow flow or no-reflow, distal embolization, and 
microvascular plugging; alternatively, the ischemic 
insult can have no detectable cause[68]. Myocardial 
ischemia is attested by a rise and fall of cardiac 
biomarkers after the procedure, with values rising five 
or more folds over the 99th percentile being indicative 
of peri-procedural myocardial infarction (PMI)[68]. 

Four recent meta-analyses have demonstrated 
that RIPC is effective in reducing PMIs in patients 
undergoing elective PCI[69-72]. For example, in the 
meta-analysis by Zografos et al[71], PMI occurred in 
40.3% of patients in the RIPC group and in 51.3% of 
patients in the control group (odds ratio 0.57). 

Several trials have assessed the long-term outcomes 
after elective PCI. An improvement in prognosis 
was not found by Prasad et al[73] over 1 year follow-
up. By contrast, in the Cardiac Remote Ischemic 
Preconditioning in Coronary Stenting study, a significant 
reduction of major adverse cardiac and cerebral events 
(MACCE; a composite of all-cause mortality, myocardial 
infarction, readmission for heart failure, and ischemic 
stroke or transient ischemic attack) was found at 6 
mo[74]. A recent follow-up study evaluating the same 
cohort demonstrated that the MACCE rate at 6 years 
remained lower in the RIPC group[75]. 

The significant heterogeneity of the study protocols 
could be hindering a careful assessment of RIPC 
efficacy in the setting of elective PCI. For example, 
the studies assessed in the meta-analysis by Zografos 
et al[71] differed with regard to the RIPC procedure 
(number of IR cycles, duration of the IR periods, site of 
application of the IR cycles), the percentage of patients 
with multivessel disease, and the positivity or the 
negativity of cardiac troponin I (cTnI) before PCI[71]. 
By contrast, in all the studies evaluated in this meta-
analysis the IR cycles were performed immediately 
before elective PCI[74-80], so that a different time span 
between the IR cycles and the angioplasty procedure 
cannot be regarded as a potential confounding factor. 

On the whole, a protective role for RIPC in the 
setting of elective PCI is emerging, even though 
its efficacy seems to be lower than in primary PCI. 
Nevertheless, only one long-term follow-up study has 
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Two studies evaluating the long-term efficacy of 
RIPC provided diverging results. Lucchinetti et al[94] did 
not find any difference at 6 mo in terms of deaths or 
revascularizations, whereas Thielmann et al[102] found 
significantly lower mortality rates in the RIPC group 
than in controls over a mean 1.54 year follow-up. 

With respect to the settings of elective valve 
replacement surgery and congenital cardiac surgery, 
a recent metanalysis detected a significant cardio-
protective role for RIPC[103]. Nevertheless, the small 
number of studies, and the high heterogeneity among 
them[103] might undermine the reliability of these con-
clusions. Another recent meta-analysis considered 
cumulatively CABG, valve replacement surgery, and 
congenital cardiac surgery, and detected a significant 
reduction in the post-operative cTnI levels among the 
patients undergoing RIPC[104]. No subgroup analysis 
was performed, and the heterogeneity among studies 
assessing non-CABG surgery was marked[104]. A third 
meta-analysis took into consideration the studies 
evaluating RIPC efficacy in adult patients undergoing 
“major elective or emergency cardiac or vascular 
surgery”[105]. In such a broad and mixed setting, no 
significant efficacy of RIPC was detected with regard 
to several outcomes: perioperative death, myocardial 
infarction, new-onset cardiac arrhythmias requiring 
treatment, cerebrovascular accidents, renal failure 
requiring renal replacement therapy, mesenteric 

after the induction of anesthesia, resulting in a 43% 
reduction in the 72 h area under the curve (AUC) 
of cTnT compared with the control group[88]. Other 
randomized trials confirmed a cardioprotective role 
of RIPC, in terms of reduced cTnT[89], cTnI[90], and CK 
isoenzyme MB[91] levels. By contrast, several studies 
failed to detect significant differences among the 
RIPC group and the control group[92-95]; the use of 
volatile anesthetics with preconditioning potential 
(isoflurane, enflurane, sevoflurane) possibly accounts 
for discrepant results[96-98]. 

In a meta-analysis, D’Ascenzo et al[99] reported 
a significant reduction in cTnI and cTnT levels in the 
RIPC group after elective CABG surgery. Such diff-
erence persisted after excluding the trials with 
potentially confounding factors (among them, the 
use of isoflurane)[99]. It has been suggested that the 
cardioprotective effect of RIPC could be masked by 
the administration of volatile anesthetics and blunted 
by the perioperative administration of β-blockers[99,100]. 
Indeed, previous studies on animals or isolated human 
atrial trabeculae had demonstrated that β-blockers 
could attenuate ischemic preconditioning-induced 
cardioprotection[100,101], perhaps since even the activation 
of β-adrenergic receptor is protective against ischemia-
reperfusion injury (β-adrenergic preconditioning; 
see paragraph The “neural hypothesis” of RIPC, and 
potential role of the sympathetic system). 

Table 1  Clinical studies on remote ischemic conditioning in percutaneous coronary intervention

Ref. Patients n  
(CTRLS/RIPC)

ST or LT 
outcome

Conditioning protocol Primary 
endpoint

Results

I/R cycles Cuff  pressure Limb RIPC CTRLS P

Remote ischemic preconditioning 
Prasad et al[73], 2013 48/47 ST 3 × 3’ 200 mmHg Upper Post-PCI 

myonecrosis 
(cTnT ≥ 0.03 

ng/dL)

40% 47% 0.42

Ahmed et al[76], 2013 72/77 ST 3 × 5’ 200 mmHg Upper cTnT 16 h 
post-PCI

0.02 ng/mL 0.047 ng/mL 0.047

Ghaemian et al[77], 2010 40/40 ST 2 × 5’ Above systolic Lower TnT 24 h post-
PCI

12.50% 40% 0.01

Hoole et al[74], 2009 117/125 ST 3 × 5’ 200 mmHg Upper cTnI 24 h post-
PCI

0.06 ng/mL 0.16 ng/mL 0.04

Luo e et al[78], 2013 104/101 ST 3 × 5’ 200 mmHg Upper hs-cTnI 16 h 
post-PCI

0.11 ng/mL 0.21 ng/mL < 0.01

Xu et al[79], 2014 98/102 ST 3 × 5’ 200 mmHg Upper hs-cTnI 16 h 
post-PCI

0.29 ng/mL 0.38 ng/mL 0.256

Davies et al[75], 2013 117/125 LT 3 × 5’ 200 mmHg Upper MACCE (6 
yr follow 

up)

23 36 0.039

Bøtker et al[81], 2010 167/166 ST 4 × 5’ 200 mmHg Upper MSI after 30 d 0.75 0.55 0.033
Sloth et al[82], 2014 167/166 LT 4 × 5’ 200 mmHg Upper MACCE rates 

(5 yr follow-
up)

25.60% 13.50% 0.018

Carrasco-Chinchilla et al[83], 2013 114/118 ST 3 × 5’ 200 mmHg Upper TnI 24 h post-
PCI

0.476 ng/mL 0.478 ng/mL 0.378

cTnI: Cardiac troponin I; cTnT: Cardiac Tro-ponin T; CTRLS: Controls; hs-cTnT: High sensitivity cardiac troponin T; I/R: Ische-mia/reperfusion; MACCE: 
Major adverse cardiac and cerebral events; RIPC: Remote ischemic preconditioning; ST: Short term; LT: Long term.

Aimo A et al . Remote ischemic conditioning



627 October 26, 2015|Volume 7|Issue 10|WJC|www.wjgnet.com

as a “non-invasive, simple, safe, and cheap”[108] 
strategy to protect the heart against ischemic insults. 
A great research effort has been performed in order 
to verify the existence of a myocardial protection by 
RIC, and to evaluate the extent of such protection. 
Nevertheless, clinical studies have provided conflicting 
results. A deeper comprehension of the mechanisms 
underlying RIC is advisable in order to correctly assess 
the cardioprotective potential of RIC, and to guide 
future clinical research. 
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