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Abstract
Endothelial dysfunction with impaired bioavailability of 
nitric oxide (NO) is the hallmark in the development of 
cardiovascular disease. Endothelial dysfunction leads to 

atherosclerosis, characterized by chronic inflammation 
of the arterial wall and stepwise narrowing of the vessel 
lumen. Atherosclerosis causes deprivation of adequate 
tissue blood flow with compromised oxygen supply. To 
overcome this undersupply, remodeling of the vascular 
network is necessary to reconstitute and sustain tissue 
viability. This physiological response is often not sufficient 
and therapeutic angiogenesis remains an unmet 
medical need in critical limb ischemia or coronary artery 
disease. Feasible approaches to promote blood vessel 
formation are sparse. Administration of pro-angiogenic 
factors, gene therapy, or targeting of microRNAs has 
not yet entered the daily practice. Nitric oxide is an 
important mediator of angiogenesis that becomes limited 
under ischemic conditions and the maintenance of NO 
availability might constitute an attractive therapeutic 
target. Until recently it was unknown how the organism 
provides NO under ischemia. In recent years it could be 
demonstrated that NO can be formed independently of 
its enzymatic synthesis in the endothelium by reduction 
of inorganic nitrite under hypoxic conditions. Circulating 
nitrite derives from oxidation of NO or reduction of 
inorganic nitrate by commensal bacteria in the oral 
cavity. Intriguingly, nitrate is a common constituent of 
our everyday diet and particularly high concentrations 
are found in leafy green vegetables such as spinach, 
lettuce, or beetroot. Evidence suggests that dietary 
nitrate supplementation increases the regenerative 
capacity of ischemic tissue and that this effect may 
offer an attractive nutrition-based strategy to improve 
ischemia-induced revascularization. We here summarize 
and discuss the regenerative capacity of dietary nitrate 
on the vascular system.
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or beetroot. Evidence suggests that dietary nitrate 
supplementation increases the regenerative capacity of 
ischemic tissue and that this effect may offer an attractive 
nutrition-based strategy to improve ischemia-induced 
revascularization. We here summarize and discuss the 
regenerative capacity of dietary nitrate on the vascular 
system.
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BREAKDOWN OF NITRIC OXIDE 
AVAILABILITY IS THE HALLMARK OF 
CARDIOVASCULAR DISEASE 
Nitric oxide (NO) is biosynthesized endogenously from 
the amino acid L-Arginine (L-Arg) and oxygen by various 
NO synthases (NOS) which are termed either according 
to their distribution within the body or allowing for the 
order where they first purified and cloned. NOS produce 
NO by catalyzing a five-electron oxidation of guanidino 
nitrogen of L-Arg that requires binding of five cofactors. 
These cofactors are: flavin adenine dinucleotide, flavin 
mononucleotide, heme iron, tetrahydrobiopterin, and 
calcium-calmodulin[1]. If any of these co-factors becomes 
limited, NO production from NOS is restricted and NOS 
produce superoxide (O2

-) instead. This mechanism 
has been termed “NOS uncoupling”[2]. Consequently, a 
physiological oxygen concentration as well as sufficient 
substrate supply is necessary for a proper NOS fun-
ction. NO is involved in a wide variety of regulatory 
mechanisms of the cardiovascular system, including 
vascular tone (as a major mediator of endothelium 
dependent vasodilatation), vascular structure (inhibition 
of smooth muscle cell proliferation), and cell-cell 
interactions in blood vessels (inhibition of platelet 
adhesion and aggregation and inhibition of monocyte 
adhesion). Risk factors like hypercholesterolemia, 
hypertension, diabetes mellitus or cigarette smoking 
lead to the inability of the endothelium to produce 
NO[3-5]. A decrease of endothelial NO formation due to 
insufficient oxygen and cofactor supply or inactivation 
by reactive oxygen species is the hallmark of endothelial 
dysfunction. Importantly, this is the key element and a 
facilitative factor in the development of atherosclerosis. 
Lack of NO in turn promotes aggregation and invasion 
of inflammatory cells in the vessel wall and aggravates 
sclerosis of arteries. Thus, a vicious cycle takes place 
that results in progressive deprivation of blood supply 
with hypoxia of tissues and organs. Growth of new 
vessels result as an adaptive mechanism in response to 
tissue hypoxia or ischemic injury, called angiogenesis. 

The physiological repair response, however, is often 
not sufficient and therapeutic angiogenesis remains an 
unmet medical need. 

ROLE OF NO IN ANGIOGENESIS
Angiogenesis is strongly stimulated in response to tissue 
hypoxia or ischemic injury and requires several key 
processes, including dissolution of matrix, endothelial 
cell proliferation and migration, and organization into 
tubes followed by lumen formation. One of the most 
potent angiogenic growth factors is represented by the 
vascular endothelial growth factor (VEGF) that induces 
proliferation, migration, survival and permeability of 
endothelial cells[6,7]. VEGF upregulates the expression 
of endothelial NO synthase (eNOS) and stimulates the 
release of endothelium-derived NO what is believed to 
play a critical role in the angiogenic action of this factor[8]. 
In line with these findings, it could be demonstrated 
that eNOS gene delivery promotes angiogenesis in 
animal models of ischemia[9]. On the contrary, the 
angiogenic response following hind limb ischemia in 
mice is impaired in eNOS- deficient mice and this 
cannot be reversed by VEGF substitution[10]. From these 
findings, NO appears to be a downstream mediator of 
VEGF-induced endothelial cell proliferation and migration 
and is suggested to even regulate VEGF expression[11]. 
However, it should be noted that a major limitation 
of these investigations is the use of NO donors. The 
drawback of this approach is that the influence of the 
released NO might be masked by the NO-independent 
actions of donating compounds or their derivatives. 
Likewise, animal models using eNOS overexpression to 
determine whether the effect of NO on VEGF synthesis 
could be achieved in ischemic limb neglect that eNOS is 
dysfunctional in ischemic tissues[12]. 

NO GENERATION WITHOUT NOS: THE 
NITRATE-NITRITE-NO PATHWAY
Since the classical NO-pathway is not functional during 
ischemia, NOS independent mechanisms must exist 
to maintain NO homeostasis under hypoxic conditions. 
The reduction of nitrite, the oxidation product of NO, by 
several “nitrite-reductases” under hypoxia was identified 
to be such an alternative pathway (Figure 1 and Table 
1)[13-17]. These nitrite reductases operate along the 
physiological and pathological oxygen gradient and 
allow a graded nitrite reduction to NO according to the 
circulating and metabolic need. The reduction of nitrite 
to NO reflects a major mechanism by which the NO 
homeostasis is maintained independent of NOS. New 
insights evidence that nitrate and nitrite metabolism 
occurs in blood and tissues to recycle NO and other 
bioactive nitrogen oxides[18,19]. Commensal bacteria 
in the crypts of the tongue own a nitrate reductase 
enzyme that is utilized for energy metabolism in the 
absence of oxygen[20,21]. It was known that nitrate is 
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taken up by the salivary glands and concentrated in the 
saliva. However, the reason for this active process could 
not be explained until the finding that nitrate serves as 
substrate for the nitrate reductase enzyme of bacteria in 
the mouth. These bacteria reduce both plasma extracted 
nitrate as well as dietary nitrate to form nitrite resulting 
in salivary nitrite levels that are 1000-fold higher than 
those found in human plasma[22]. When nitrite-rich 
saliva meets the acidic gastric juice after swallowing, 
nitrite is protonated to form nitrous acid (HNO2), which 
then decomposes to NO. This acidic disproportionation 
takes part in the human defense against pathogens 
entering via the alimentary tract. Furthermore it 
could provide protection against ulcers from drugs or 
stress[23-25]. Beside the intragastric formation of NO it 
has been demonstrated that ingested nitrite reaches 
the systemic circulation, thus making it systemically 
available[22]. Nitrite in turn can be reduced in vivo via 
numerous pathways to form bioactive NO. These include 
the reduction via deoxygenated myoglobin within the 
heart muscle, deoxygenated hemoglobin, intracellular 
xanthin oxidoreductase, enzymes of the mitochondrial 
respiratory chain, cytochrome P-450 and even via the 
NOS[13,15,17,26-29]. Thus, several mechanisms exist by 
which NO is generated in the body, including the NOS 
enzymes or the non-enzymatically acidic reduction of 
nitrite. Nitrite mediates hypoxic vasodilation, enhances 
blood flow and matches oxygen supply to increased 
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metabolic demands under hypoxic conditions[30]. 
Moreover, application of exogenous nitrite bears the 
potential to reduce myocardial damage after myocardial 
ischemia and reperfusion injury[26,31]. In addition, 
dietary approaches using nitrate to elevate circulating 
nitrite levels are emerging as a potential treatment 
regimen for high blood pressure[32]. Considering the 
upcoming evidence that nitrite and nitrate mediate 
cytoprotective effects in human physiology and 
especially under pathophysiological conditions, it is not 
unlikely that dietary nitrate and nitrite may positively 
affect human health and disease. Recognizing that 
NO is the most important molecule in regulating blood 
pressure and maintaining vascular homeostasis, food 
sources rich in NO compounds may provide beneficial 
effects primarily to the heart and vessels. Although 
there are clear reports on certain foods and diets that 
have shown a benefit in terms of preventing cancer and 
cardiovascular disease, the specific nature of the active 
constituents responsible for the cardioprotective effects 
of certain foods is still unknown. Viable candidates are 
fibers, minerals or antioxidants. High intake of fruits 
and vegetables is indeed associated with reduced 
risk for coronary artery disease and apoplectic stroke 
and the strongest protection against coronary heart 
disease was seen with high intake of green leafy 
vegetables[33]. Dietary intakes of nitrate-rich vegetables 
lowers blood pressure in subjects with borderline 
hypertension to the same extend as mono-therapy 
with a standard antihypertensive drug[34,35]. Likewise, 
blood pressure lowering effects could be demonstrated 
for dietary nitrate and ingestion of beetroot juice 
respectively[32,36]. We could recently demonstrate that 
dietary supplementation with inorganic nitrate improves 
prognostic relevant outcome measures that have 
been shown to predict cardiovascular events, namely 
endothelial dysfunction, vascular stiffness and systolic 
blood pressure in the elderly with moderately increased 
cardiovascular risk[37]. Improvements in blood pressure 
following the nitrate rich diet were associated with 
reductions of pro-inflammatory cytokines, which points 
to the potential anti-inflammatory actions of the nitrate-
nitrite-NO pathway[38,39]. The hypothesis that dietary 
nitrate might provide cardiovascular benefit is further 
encouraged by animal models of myocardial infarction, 

Oxygen concentration

Nitrite reductase 
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L-arginine NO • Nitrite

eNOS
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Figure 1  Non-enzymatic nitric oxide formation. One-
electron reduction of nitrite (NO2

-) to NO by ferrous heme 
proteins like hemoglobin in the blood or myoglobin in the 
heart can occur under conditions of low oxygen (O2); the 
nitrite-reductase activity of these proteins contributes to 
NOS independent NO formation. eNOS: Endothelial NO 
synthase; iNOS: Inducible NO synthase; nNOS: Neuronal 
NO synthase.

Table 1  Nitric oxide generation pathways

Nitrate-nitrite-NO pathway

NO synthases
Endothelial NO synthase
Neuronal NO synthase
Inducible NO synthase

Nitrate reductases
Xanthin oxidoreductase
Mitochondrial respiratory chain enzymes
Cytrochrome P-450
Acidic reduction
Myoglobin
Neuroglobin
Hemoglobin

NO: Nitric oxide.
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counteracting the compromised cardiovascular system. 
Further investigations in ischemic tissues applying the 
hind limb model in mice highlighted the potential of 
dietary nitrate in angiogenesis[50]. A cytoprotective role 
of nitrite in the setting of myocardial, liver, kidney, and 
brain ischemia-reperfusion (I/R) injury has previously 
been demonstrated and continuous pharmacological 
intervention with nitrite injections increases vascular 
density in hind limb models[51-55]. We could show that 
dietary nitrate supplementation strongly augments 
perfusion recovery in chronic hind limb ischemia in 
vivo via a significant increase in capillary density. 
This improvement was associated with an increase 
in circulating nitrite concentrations, an elevated 
mobilization of CD34+/Flk-1+ cells and migration of 
bone marrow-derived CD31+/CD45- cells into ischemic 
tissue[50]. The mobilization of circulating angiogenic 
cells following dietary nitrate supplementation was 
recently supported by a phase I clinical study[56]. A 
further effect of the dietary nitrate supplementation 
to drinking water was an attenuated apoptosis in 
myoblasts in chronic hind limb ischemia. Intriguingly, 
disruption of the nitrate-NO pathway by chronic era-
dication of the oral bacteria completely abolished 
beneficial effects of dietary nitrate supplementation and 
likewise effectively suppressed circulating nitrite levels, 
which were observed after intake of nitrate-rich food 
or dietary nitrate supplementation in drinking water. 
In line with these findings, the results of this study 
further point to a distinct contribution of dietary nitrate 
supplementation on tissue viability. Dietary nitrate 
ameliorated the remarkable capacity of adult skeletal 
muscles to regenerate myofibers after damage. This 
rapid repair process is mainly carried out by satellite 
cells (SCs) with contribution of NO[57,58]. Quiescent SCs 
become active and proliferate upon injury and display 
the regenerative capacity of the muscle. Committed 
daughter cells, the myoblasts, continue to proliferate 
followed by definite differentiation as initialized by a 
coordinated cellular signaling[59]. The precise pathways 
that are influenced by the nitrate-nitrite-NO pathway 
are under intensive investigations and not fully under-
stood yet.

In summary dietary nitrate supplementation increases 
the regenerative capacity of ischemic tissue and may 
offer an attractive nutrition-based strategy to improve 
ischemia-induced revascularization.
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