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Abstract

Objectives—Clinical trials in septic shock continue to fail due, in part, to inequitable and 

sometimes unknown distribution of baseline mortality risk between study arms. Investigators 

advocate that interventional trials in septic shock require effective outcome risk stratification. We 

derived and tested a multibiomarker-based approach to estimate mortality risk in adults with septic 

shock.

Design—Previous genome-wide expression studies identified 12 plasma proteins as candidates 

for biomarker-based risk stratification. The current analysis used banked plasma samples and 

clinical data from existing studies. Biomarkers were assayed in plasma samples obtained from 341 

subjects with septic shock within 24 hours of admission to the ICU. Classification and regression 

tree analysis was used to generate a decision tree predicting 28-day mortality based on a 

combination of both biomarkers and clinical variables. The derived tree was first tested in an 

independent cohort of 331 subjects, then calibrated using all subjects (n = 672), and subsequently 

validated in another independent cohort (n = 209).
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Setting—Multiple ICUs in Canada, Finland, and the United States.

Subjects—Eight hundred eighty-one adults with septic shock or severe sepsis.

Intervention—None.

Measurements and Main Results—The derived decision tree included five candidate 

biomarkers, admission lactate concentration, age, and chronic disease burden. In the derivation 

cohort, sensitivity for mortality was 94% (95% CI, 87–97), specificity was 56% (50–63), positive 

predictive value was 50% (43–57), and negative predictive value was 95% (89–98). Performance 

was comparable in the test cohort. The calibrated decision tree had the following test 

characteristics in the validation cohort: sensitivity 85% (76–92), specificity 60% (51–69), positive 

predictive value 61% (52–70), and negative predictive value 85% (75–91).

Conclusions—We have derived, tested, calibrated, and validated a risk stratification tool and 

found that it reliably estimates the probability of mortality in adults with septic shock.
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Substantial resources are invested in trying to find new treatments for septic shock, but the 

vast majority of new treatments fail to demonstrate efficacy during phase 3 trials. There are 

many reasons for these failures, but one consistent reason is that baseline mortality risk 

varies widely in patients with septic shock (1). Consequently, current trial designs lead to 

the inclusion of patients with low mortality risk who are unlikely to benefit from novel 

therapies beyond standard care as well as patients having an extremely high mortality risk 

who may be beyond salvage by experimental therapy. This approach can dilute any potential 

beneficial effect of an experimental therapy for patients with a significant, but modifiable, 

mortality risk and consequently lead to a negative clinical trial.

Researchers advocate that interventional trials in sepsis must be conducted in the context of 

effective outcome risk stratification (1–3). A recent trial used a mortality risk scoring system 

to screen for patients with a high, but potentially modifiable, risk of mortality. The trial 

failed to demonstrate efficacy, in part, because the actual mortality in the placebo group was 

far lower than predicted by the scoring system (4). This highlights the importance of 

developing stratification tools for septic shock to better inform the conduct of clinical trials.

We recently derived and validated a biomarker-based model that reliably predicts 28-day 

mortality in pediatric septic shock (5). The plasma protein biomarkers were selected 

objectively based on extensive genome-wide expression studies and predictive modeling (6, 

7). Furthermore, the biomarkers were measured from samples obtained during the first 24 

hours of admission to the ICU, which is during the time when patients are typically 

evaluated for inclusion in clinical trials. We hypothesized that the biomarkers used in the 

pediatric study could also be used to estimate a mortality probability in adults with septic 

shock. In the current study, we extend our methodology to derive, test, and validate an 

analogous model in adults with septic shock.
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METHODS

Overall Study Design

All analyses of plasma samples and clinical data are based on secondary use of existing data 

from previous studies, with approval of the respective institutional review boards.

Derivation Cohort

Derivation cohort study subjects (n = 341) were participants in the Vasopressin and Septic 

Shock Trial (VASST), a randomized, concealed, norepinephrine-controlled trial testing the 

efficacy of low-dose vasopressin versus norepinephrine in adults with septic shock (Current 

Controlled Trials number: ISRCTN9485869). The original VASST publication describes all 

protocol details (8).

Test Cohort

Test cohort study subjects (n = 331) were pooled from two sources. Two hundred and forty-

three subjects were participants in a prospective, observational, multicenter cohort study of 

prevalence and outcome of severe sepsis and septic shock in Finland (FINNSEPSIS) (9). An 

additional 88 subjects were participants in a single center, observational study at St. Paul’s 

Hospital in Vancouver, British Columbia (10).

Validation Cohort

Validation cohort study subjects (n = 209) were participants in the Molecular Epidemiology 

of Severe Sepsis in the Intensive Care Unit study, an ongoing cohort study at the Hospital of 

the University of Pennsylvania. Eligible patients with septic shock were enrolled in either 

the emergency department or the medical ICU, and patients or their proxies provided 

informed consent. Septic shock was defined using published criteria (11).

Candidate Stratification Biomarkers

The 12 candidate biomarkers (gene symbols) included C-C chemokine ligand 3 (CCL3), C-

C chemokine ligand 4 (CCL4), neutrophil elastase 2 (ELA2), granzyme B (GZMB), heat 

shock protein 70 kDa 1B (HSPA1B), interleukin-1α (IL1A), interleukin- 8 (IL8), lipocalin 2 

(LCN2), lactotransferrin (LTF), matrix metallopeptidase 8 (MMP8), resistin (RETN), and 

thrombospondin 1 (THBS1). These biomarkers were selected from 117 gene probes 

previously shown to have predictive strength for poor outcomes in microarray-based studies 

involving children with septic shock (6, 7). Final biomarker selection was based on a priori 

criteria: 1) the gene product (i.e., protein) has biological and mechanistic plausibility 

regarding the host response to infection, immunity, and/or inflammation, and 2) the gene 

product is readily measured in the blood compartment.

All plasma samples were collected within the first 24 hours of presentation to the ICU. The 

plasma concentrations of the candidate biomarkers were measured using a multiplex 

magnetic bead platform (MILLIPLEX MAP, EMD Millipore Corporation, Billerica, MA) 

and a Luminex 100/200 System (Luminex Corporation, Austin, TX) according to the 

manufacturers’ specifications. Technical assay performance data were previously published 

(5).

Wong et al. Page 3

Crit Care Med. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Additional Stratification Variables

We abstracted available data elements for consideration in the risk modeling that, based on 

existing literature, we hypothesized could be associated with poor outcomes: serum lactate 

concentration (mmol/L) at study entry, age, gender, and Acute Physiology and Chronic 

Health Evaluation (APACHE) II/III score. We also recorded the presence of the following 

comorbid conditions: New York Heart Association Class IV congestive heart failure, 

chronic obstructive pulmonary disease, requirement for chronic dialysis, chronic hepatic 

failure, hematologic or metastatic solid organ malignancy, and requirement for chronic 

steroids at study entry. We derived a binary “chronic disease” variable to indicate the 

presence of any one of these comorbidities.

Statistical Analysis

Initially, data are described using medians, interquartile ranges (IQRs), frequencies, and 

percentages. Comparisons between survivors and nonsurvivors used the Mann-Whitney U 

test, chi-square test, or Fisher exact test as appropriate. Descriptive statistics and 

comparisons used SigmaStat Software (Systat Software, San Jose, CA).

All-cause 28-day mortality is the primary outcome variable for the modeling procedures. To 

derive the decision tree, we employed a classification and regression tree (CART) approach 

(12, 13). The CART analysis procedure considered all 12 candidate biomarkers as well as 

other potential clinical predictor variables listed above. The procedure selects cut points and 

ordering of decision nodes that maximally discriminate between survivors and nonsurvivors. 

The tree was built using Salford Predictive Modeler v6.6 (Salford Systems, San Diego, CA). 

Performance of the tree is reported using diagnostic test statistics with 95% CIs computed 

using the VassarStats Website for Statistical Computation (14). Areas under the receiver 

operating characteristic (ROC) curves were compared using the method of Hanley and 

McNeil (15). The net reclassification improvement (NRI) was also used to estimate the 

incremental predictive ability of the biomarker-based model compared to using APACHE II 

scores alone (16). The NRI was computed using the R-package Hmisc.

RESULTS

Model Derivation

Table 1 provides the clinical and demographic data for the derivation cohort (n = 341), all of 

whom had septic shock. The 109 nonsurvivors (32.0%) were older, had a higher median 

APACHE II score, and a higher proportion had chronic disease at study entry, compared to 

the 232 survivors. The mean and median times to death in the derivation cohort 

nonsurvivors were 8.7 ± 7.9 (SD) and 6 days (IQR, 2–13 d), respectively.

Supplemental Table 1 (Supplemental Digital Content 1, http://links.lww.com/CCM/A829) 

shows the performance of the individual biomarkers. Figure 1 shows the derived decision 

tree. Maximum accuracy was achieved with five of the 12 candidate stratification 

biomarkers: CCL3, HSPA1B, IL8, GZMB, and CCL4. Serum lactate concentration at study 

entry, age, and presence of chronic disease further improved predictive accuracy. The 

individual comorbid conditions did not improve predictive capacity. There were six low-risk 
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terminal nodes (0.0–12.5% risk of death; terminal nodes 1, 3, 5, 7, 8, and 10) and six high-

risk terminal nodes (34.4–84.2% risk of death; terminal nodes 2, 4, 6, 9, 11, and 12). Of the 

138 subjects classified as low risk, 131 survived (94.9%) and 7 (5.1%) had died by 28 days. 

Of the 203 subjects classified as high risk, 102 (50.2%) had died by 28 days. Table 2 shows 

the diagnostic test characteristics of the decision tree in the derivation cohort.

Model Testing

The test cohort consisted of 331 subjects with septic shock (81.9%) or severe sepsis 

(18.1%), of whom 99 (29.9%) did not survive to 28 days. Table 1 provides the clinical and 

demographic data. Compared to the derivation cohort, the test cohort had a higher 

proportion of male subjects, a lower median APACHE II score, a lower proportion of 

subjects with chronic disease, and a lower proportion of subjects with septic shock. The 

mortality rate of the test cohort (29.9%) was not significantly different compared to the 

derivation cohort (32.0%). Within the test cohort, nonsurvivors had a higher median age, a 

lower proportion of male subjects, a higher median APACHE II score, and a higher 

proportion of subjects with either chronic disease or septic shock, compared to the survivors. 

The mean and median times to death in the test cohort nonsurvivors were 11.1 ± 8.0 and 10 

days (IQR, 4–17 d), respectively, both of which were significantly greater compared to the 

derivation cohort.

Supplemental Figure 1 (Supplemental Digital Content 2, http://links.lww.com/CCM/A830) 

shows the classification of the test cohort subjects according to the decision tree. The 

algorithm from the derivation cohort (Fig. 1) was applied to the test cohort with no 

modifications. One hundred and twenty-six test cohort subjects were classified as low risk 

(terminal nodes 1, 3, 5, 7, 8, and 10), whereas 205 were classified as high risk (terminal 

nodes 2, 4, 6, 9, 11, and 12). Among the low-risk subjects, the mortality rate was 9.5%, 

whereas among the high- risk subjects, the mortality rate was 42.4%. Table 2 shows the 

diagnostic test characteristics of the decision tree in the test cohort. The model did not 

perform differently when applied against only the test cohort subjects with septic shock (n = 

271, data not shown).

Comparison With APACHE II

We compared the performance of the biomarker-based model with that of APACHE II for 

all subjects in the derivation and test cohorts (n = 672). Figure 2 shows the ROC curves for 

the biomarker-based model and APACHE II. The area under the curve (AUC) for the 

biomarker-based model (0.784; 95% CI, 0.747–0.820) was superior to that of APACHE II 

(0.676; 95% CI, 0.632–0.721; p = 0.0001).

When adding the information from the biomarker-based model to the information in 

APACHE II, the NRI was 0.576 (95% CI, 0.341–0.812). The NRI is a measure of how much 

the accuracy of predicted outcomes is improved when adding information (16). The NRI 

ranges between −2 and +2. A score of –2 indicates that all true positives are reclassified as 

false negatives and all true negatives are reclassified as false positives, and no false 

classifications are reclassified as true classifications. Conversely, when the score is 2, adding 

the information correctly reclassifies every case. Our results demonstrate that the biomarker-
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based model provides additional classification value beyond the information included in 

APACHE II.

Model Calibration

Assuming that a larger sample size could generate a more generalizable model, the decision 

tree was calibrated by combining all subjects in the derivation and test cohorts (n = 672) and 

repeating the CART analysis. The calibrated decision tree is shown in Figure 3. Notable 

changes included the addition of IL1A as a lower level decision leading to terminal nodes 7 

and 8, and the replacement of a GZMB-based decision leading to terminal nodes 4 and 5 

with an IL8-based decision. In addition, the decisions in the center of the tree based on 

lactate and chronic disease status changed their relative level positions. The calibrated tree 

contained six low-risk terminal nodes (2.7–17.4% risk of death; terminal nodes 1, 3, 4, 6, 8, 

and 10) and six high-risk terminal nodes (45.3–75.0% risk of death; terminal nodes 2, 5, 7, 

9, 11, and 12). Of the 317 subjects classified as low risk, 291 survived (91.8%) and 26 

(8.9%) had died by 28 days. Of the 355 subjects classified as high risk, 182 (51.3%) had 

died by 28 days. Table 2 shows the diagnostic test characteristics of the calibrated decision 

tree.

Validating the Calibrated Decision Tree

The calibrated decision tree was validated in a cohort of 209 subjects with septic shock, of 

whom 88 (42.1%) did not survive to 28 days. Table 1 provides the clinical and demographic 

data. Compared with the derivation cohort, the validation cohort had a higher mortality rate, 

a higher proportion of subjects with chronic disease, and a lower proportion of subjects with 

a surgical diagnosis. Within the validation cohort, nonsurvivors had a higher proportion of 

subjects with chronic disease, and a lower proportion of subjects with a surgical diagnosis, 

compared to the survivors. The mean and median times to death in the validation cohort 

nonsurvivors were 7.5 ± 6.9 and 5 days (IQR, 2–11 d), respectively.

Supplemental Figure 2 (Supplemental Digital Content 3, http://links.lww.com/CCM/A831) 

shows the classification of the validation cohort subjects according to the calibrated decision 

tree. The calibrated algorithm (Fig. 2) was applied to the validation cohort with no 

modifications. Eighty-six subjects were classified as low risk (terminal nodes 1, 3, 4, 6, 8, 

and 10), whereas 123 were classified as high risk (terminal nodes 2, 5, 7, 9, 11, and 12). 

Among the low-risk subjects, the mortality rate was 15.1%, whereas among the high-risk 

subjects, the mortality rate was 60.9%. Table 2 shows the performance of the calibrated 

decision tree in the validation cohort.

Since the validation cohort had APACHE III data available, we compared the performance 

of the calibrated model with that of APACHE III. In the validation cohort, the AUC for the 

calibrated model was 0.726 (95% CI, 0.660–0.792), whereas the AUC for APACHE III was 

0.514 (95% CI, 0.434–0.595; p < 0.0001).

DISCUSSION

We have derived, tested, calibrated, and validated a risk stratification tool for adult septic 

shock that estimates the risk of 28-day mortality. A panel of biomarkers measured during the 
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initial presentation to the ICU with septic shock, as well as admission lactate concentrations, 

age, and chronic disease status, form the basis of the model. On testing and validation, we 

observe good performance of the model. For all subjects in the study (n = 881), the high-risk 

terminal nodes of the calibrated model identified a cohort with a mortality rate of 56%, 

whereas the low-risk terminal nodes identified a cohort with a mortality rate of 11%. This 

dichotomous interpretation demonstrates that the model can partition a heterogeneous cohort 

of patients into two broad groups having an approximately five-fold difference in mortality 

risk. A more comprehensive interpretation allows assigning risk based on the respective 

terminal nodes, and this partitions patients across a clinically relevant range of mortality 

probabilities. The negative predictive value and the negative likelihood ratio of the model 

indicate that it may be most reliable as a “rule-out tool.”

A strength of our modeling is the initial approach to deriving the candidate stratification 

biomarkers. Using our extensive genome-wide expression databank, we identified 117 gene 

probes possibly associated with outcome in children with septic shock (6, 7, 17–24). From 

these, we selected the 12 biomarkers using a priori criteria.

The modeling process considered the candidate stratification biomarkers and clinical 

variables potentially associated with outcome. Interestingly, the biomarkers dominated the 

upper level decision rules, whereas the clinical variables contributed to either the lower level 

decision rules or not at all. This suggests that the biomarkers contribute significant and 

consistent stratification information that adds to stratification based on clinical findings; the 

NRI supports this assertion. The pediatric modeling procedures yielded similar results (5). In 

fact, the upper level decision rules of the pediatric and adult models consisted of the same 

three biomarkers (i.e., CCL3, HSPA1B, and IL8), albeit with different cutoff values. This 

suggests consistent utility for these three particular stratification biomarkers. We do note a 

limitation of our current study in that we did not consider other biomarkers having potential 

prognostic utility in adult populations (25), nor could we consider all possible clinical 

variables potentially associated with outcome due to reliance on secondary data sources.

The 2008 Surviving Sepsis Campaign International Guidelines recommend a serum lactate 

concentration greater than 4 mmol/L as a threshold indicator of tissue hypoperfusion 

warranting initiation of protocolized, quantitative resuscitation (26). The 2012 guidelines 

provide the same recommendation based on a reported mortality of 46% in septic patients 

with both hypotension and serum lactate concentration greater than 4 mmol/L (27, 28). Our 

calibrated decision tree indicates that serum lactate concentrations below these levels are 

associated with increased risk of mortality, which is consistent with two recent studies (29, 

30).

The available data allowed a comparison of the biomarker- based model performance with 

both APACHE II and APACHE III, and the biomarker-based model outperformed 

APACHE II and III in these cohorts. We note that the Mortality Probability Model II at 24 

hours (MPM II24), customized for patients with sepsis, yielded an AUC of 0.826 in a 

previous study (31). MPM II24 may perform better than our biomarker-based model, but 

MPM II24 data were not recorded in the studies from which our data were pooled.
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There are important differences between the cohorts included in this study. First, the initial 

derivation cohort was drawn from participants in an interventional clinical trial. They may 

represent a more selected population of patients than the subjects in the test and validation 

cohorts who were drawn from observational databases. Second, the cohorts were drawn 

from three different healthcare systems, each with their own healthcare practices, cultures, 

and demographics. Third, while all subjects in the derivation and validation cohorts met 

criteria for septic shock, the subjects in the test cohort met criteria for either septic shock 

(81.9%) or severe sepsis (19.1%). Fourth, the cohorts differed in age, gender, illness 

severity, time to death, surgical status, and chronic disease burden. All of these differences 

represent potential confounders, yet the models performed consistently well across cohorts.

We propose that the primary potential application of the biomarker-based model is to 

enhance patient selection for interventional clinical trials. Excluding the lowest risk patients 

who are likely to survive without experimental intervention reduces their exposure to risk of 

adverse effects from the new intervention. Furthermore, the approach may increase the 

likelihood of positive trial findings; excluding the highest risk patients unlikely to survive 

with any therapy removes patients who may be too sick to respond to treatment, which could 

enhance the potential for measurable risk reduction for new therapy among moderate or 

high-risk patients with modifiable outcomes. Application of the model in this manner would 

require the development of a rapid, multiassay platform and computer support to reliably 

apply the decision rule. Although neither of these currently exist, the technologies to 

develop them are routinely available.

In conclusion, we have derived, tested, and validated a multibiomarker-based risk model that 

estimates mortality probability in adults with septic shock. Favorable comparisons to 

existing scoring systems and good performance in the context of potentially profound 

confounding factors support the generalizability and utility of the model. We propose that 

the model may enhance clinical trial design. Another potential application of the model may 

include serving as a benchmarking metric for quality improvement efforts.
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Figure 1. 
Classification tree from the derivation cohort (n = 341). The classification tree consists of 11 

decision points and 22 daughter nodes. The classification tree includes five of the 12 

candidate stratification biomarkers: C-C chemokine ligand 3 (CCL3), heat shock protein 70 

kDa 1B (HSPA1B), interleukin-8 (IL8), granzyme B (GZMB), and C-C chemokine ligand 4 

(CCL4). For consistency, the serum concentrations of all candidate stratification biomarkers 

are provided in pg/mL. The classification tree also includes serum lactate concentrations 

(mmol/L), age (yr), and the presence/absence of chronic disease as defined in the Methods 

section. The root node provides the total number of patients in the derivation cohort and the 

number of survivors and nonsurvivors with the respective rates. Each daughter node 

provides the respective decision rule criterion and the number of survivors and nonsurvivors 

with the respective rates. The numbers above daughter nodes designate terminal nodes. 

Terminal nodes 1, 3, 5, 7, 8, and 10 are considered low-risk terminal nodes, whereas 

terminal nodes 2, 4, 6, 9, 11, and 12 are considered high-risk terminal nodes.
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Figure 2. 
Comparison of receiver operating characteristic (ROC) curves for the biomarker-based 

model and Acute Physiology and Chronic Health Evaluation (APACHE) II. The ROC 

curves are calculated based on the respective mortality probabilities and 28-day all-cause 

mortality and are based on all subjects in the combined derivation and test cohorts (n = 672). 

The ROC curve for the biomarker-based model (solid line) yielded an area under the curve 

(AUC) of 0.784 (0.747–0.820), whereas the ROC curve for APACHE II (dashed line) 

yielded an AUC of 0.676 (0.632–0.721).
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Figure 3. 
The calibrated classification tree based on the combination of all subjects in the derivation 

and test cohorts (calibration cohort, n = 672). The classification tree consists of 11 decision 

points and 22 daughter nodes. The classification tree includes six of the 12 candidate 

stratification biomarkers: C-C chemokine ligand 3 (CCL3), heat shock protein 70 kDa 1B 

(HSPA1B), interleukin-8 (IL8), granzyme B (GZMB), C-C chemokine ligand 4 (CCL4), and 

interleukin-1α (IL1A). The classification tree also includes serum lactate concentrations 

(mmol/L), age (yr), and the presence/absence of chronic disease as defined in the Methods 

section. The conventions of the calibrated classification tree are the same as that described 

for Figure 1. Terminal nodes 1, 3, 4, 6, 8, and 10 are considered low-risk terminal nodes, 

whereas terminal nodes 2, 5, 7, 9, 11, and 12 are considered high-risk terminal nodes.
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Table 2

Diagnostic Test Characteristics of the Decision Trees

Variable Derivation Cohort Test Cohort

Calibration Cohort
(Combined Derivation

and Test Cohorts) Validation Cohort

No. of subjects 341 331 672 209

No. of true positives 102 87 182 75

No. of true negatives 131 114 291 73

No. of false positives 101 118 173 48

No. of false negatives 7 12 26 13

Sensitivity 94% (87–97)a 88% (79–93) 88% (82–92) 85% (76–92)

Specificity 56% (50–63) 49% (43–56) 63% (58–67) 60% (51–69)

Positive predictive value 50% (43–57) 42% (36–50) 51% (46–57) 61% (52–70)

Negative predictive value 95% (89–98) 90% (84–95) 92% (88–94) 85% (75–91)

Positive likelihood ratio 2.1 (1.8–2.5) 1.7 (1.5–2.0) 2.3 (2.1–2.7) 2.1 (1.7–2.7)

Negative likelihood ratio 0.1 (0.06–0.2) 0.2 (0.1–0.4) 0.2 (0.1–0.3) 0.2 (0.1–0.4)

Area under the curve 0.834 (0.792–0.875) 0.720 (0.661–0.780) 0.793 (0.758–0.823) 0.726 (0.660–0.792)

a
Numbers in parentheses represent 95% CIs.
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