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Abstract

Introduction: The mammalian adult heart maintains a continuous, low cardiomyocyte turnover rate throughout
life. Although many cardiac stem cell populations have been studied, the natural source for homeostatic repair has
not yet been defined. The Polycomb protein BMI1 is the most representative marker of mouse adult stem cell
systems. We have evaluated the relevance and role of cardiac Bmi1* cells in cardiac physiological homeostasis.

Methods: Bmi1“"**:Rosa26"™* (Bmi1-YFP) mice were used for lineage tracing strategy. After tamoxifen (TM) induction,
yellow fluorescent protein (YFP) is expressed under the control of Rosa26 regulatory sequences in Bmil™ cells. These cells
and their progeny were tracked by FACS, immunofluorescence and RT-gPCR techniques from 5 days to 1 year.

Results: FACS analysis of non-cardiomyocyte compartment from TM-induced Bmil-YFP mice showed a Bmil
*-expressing cardiac progenitor cell (Bmi1-CPC: B-CPC) population, SCA-1 antigen-positive (95.9 + 0.4 %) that
expresses some stemness-associated genes. B-CPC were also able to differentiate in vitro to the three main
cardiac lineages. Pulse-chase analysis showed that B-CPC remained quite stable for extended periods (up to

1 year), which suggests that this BmiT* population contains cardiac progenitors with substantial self-maintenance
potential. Specific immunostaining of Bmil-YFP hearts serial sections 5 days post-TM induction indicated broad
distribution of B-CPC, which were detected in variably sized clusters, although no YFP* cardiomyocytes (CM) were
detected at this time. Between 2 to 12 months after TM induction, YFP* CM were clearly identified (3 0.6 % to
6.7 + 1.3 %) by immunohistochemistry of serial sections and by flow cytometry of total freshly isolated CM. B-CPC
also contributed to endothelial and smooth muscle (SM) lineages in vivo.

Conclusions: High BmiT expression identifies a non-cardiomyocyte resident cardiac population (B-CPC) that
contributes to the main lineages of the heart in vitro and in vivo.
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Introduction

The adult mammalian heart was long considered a ter-
minally differentiated organ with no capacity to replace
aged or damaged cardiomyocytes (CM) [1]. This view was
challenged by considerable evidence of low but intrinsic
CM turnover in the adult mouse heart [2], although the
contribution of adult CM turnover to heart homeostasis
and the origin of the new cells remain unclear. There is
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compelling evidence that this low turnover rate through-
out heart life mainly reflects the activity of a reservoir of
cardiac stem cells (CSC) [3] that might reside in physio-
logical niches [4, 5]. Dedifferentiation and division of pre-
existing adult CM populations were recently proposed to
contribute notably to heart turnover after myocardial
infarction [6, 7].

Adult stem cells maintain and repair host tissues in
adult organisms, and self-renewal, differentiation, and pre-
vention of senescence of these cells are thus critical for
tissue homeostasis. Adult resident cardiac stem/progeni-
tors are defined primarily by the expression of cell surface
markers such as c-KIT [8], SCA-1 [9, 10], ATP-binding
cassette ABCG2 [11], PDGFRa [12] or combinations of
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these. The diversity of these findings has hindered a broad,
unambiguous consensus for identification and molecular
definition of endogenous CSC [3]. Several authors have
emphasized the need for careful in vivo lineage tracing of
CSC progeny to ascertain how this cell type contributes to
CM replenishment during homeostasis or after myocar-
dial injury [13—-15]. Recent lineage tracing studies yielded
interesting results. SCA-1 was reported to label a non-
cardiomyocyte population in adult heart that clearly con-
tributes to CM generation during homeostasis and normal
aging (4.55+ 0.87 %) [16]. In a c-kit lineage tracing study,
¢-KIT* CSC appeared to make a small contribution to the
generation of new CM (0.03 + 0.008 %) in adult mouse
heart [17]. Two additional lineage tracing studies, al-
though not directly related to CSC regulation, should
be mentioned. Malliaras et al. identified small non-
myocyte cells termed cardioblasts (CdBs) that express
sarcomeric a-actinin (38 %), a-MHC (39 %) and SCA-1
(55 %) but not c-KIT [18]. Activated CdBs apparently
did not originate from hematogenous seeding, cardio-
myocyte dedifferentiation, or mere expansion of a pre-
formed progenitor pool; they, therefore, appear to arise
by activation/differentiation of the endogenous CSC
pool. Finally, a cardiac progenitor population defined as
TIE-1" CPC, a classical endothelial marker, is able to
generate 70 % of the SCA-1" intermediate perivascular
progenitors that contribute (up to 3 %) to CM homeo-
static turnover origin [19]. These findings reinforce the
hypothesis that cardiac progenitor cells support the low
CM turnover in the adult heart. Further genetic lineage
tracing studies will help to elucidate the complex rela-
tionship between these partially different populations.

Bmil, a member of the Polycomb repressive complex 1
(PRC1), is a transcription factor involved in many bio-
logical processes including embryonic development, organ
formation, tumorigenesis, and stem cell stabilization and
differentiation [20]. Bmil has a crucial role during self-
renewal and maintenance of hematopoietic, neural, intes-
tinal, bronchioalveolar, pancreatic, prostate, lung and
epithelial stem cells, as well as in the tongue and in rodent
incisors [21-29]. There is little information on the role of
Bmil in the adult heart. Upregulation of Bmil expression
is cardioprotective against doxorubicin-induced damage
[30]. A recent study demonstrated that, by controlling
senescence, Bmil expression in adult mouse CM is lim-
iting dilated cardiomyopathy and heart failure [31]. Al-
though a significant proportion of ¢-KIT* human and
porcine CSC expressed low BMI1 levels [32, 33], no
specific study has addressed the functional relevance of
this factor.

We hypothesized that adult cardiac progenitor cells may
be characterized by high Bmil expression, as in other
adult stem cell compartments [21-29]. Using a validated
lineage tracing strategy to track activity of the Bmil locus,
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we show that the adult heart contains a resident non-
cardiomyocyte population of Bmil-expressing progenitor
cells that constitute a fraction of the SCA-1* population.
Bmil-CPC (B-CPC) show enriched expression of several
multipotency and stemness markers, and their numbers
increase throughout the lifetime of the mouse. B-CPC
contribute significantly to the generation of de novo CM,
endothelial and SM cells throughout life.

Methods

Transgenic mice and tamoxifen administration
Bmil“"™*;Rosa26 """+ (Bmil-YFP) mice were generated
by crossing the Bmil"™™* strain with Rosa26"™"'* re-
porter mice. Male and female Bmil“"™'*;Rosa26"""'*
double heterozygous mice received tamoxifen (TM;
Sigma, Madrid, Spain) injections between postnatal days
30 (P30) and P60. TM was dissolved in corn oil (Sigma) to
a final concentration of 20 mg/ml and mice received TM
(i.p.) every 24 h on three consecutive days (9 mg per 40 g
body weight). When indicated, Bmil“"*™'* Rosa26'™*'*
(Bmil-tomato), Myh6™ ™/ Rosa26 Y**'* (Myh6-YFP)
and Bmil“ ™" Rosa262““"* (Bmil-LacZ) (Jackson La-
boratory, Sacramento, California, United States) were used
and TM-induced as above. All animal procedures con-
formed to EU Directive 86/609/EEC and Recommenda-
tion 2007/526/EC regarding the protection of animals
used for experimental and other scientific purposes. The
ethics committees of the Fundaciéon Centro Nacional de
Investigaciones Cardiovasculares (CNIC) and Centro
Nacional de Biotecnologifa (CNB) approved animal
studies.

Immunodetection analysis

Heart immunohistochemistry was performed as previ-
ously described [7]. Specific yellow fluorescent protein
(YFP) detection with anti-GFP antibody was confirmed by
control immunofluorescence analysis of heart sections of
TM-injected Rosa26 "'+ mice and of non-induced Bmil-
YEP mice (Bmil-YFPN); no signal was observed for either
(Fig. 2a). For immunodetection, sections were fixed in 2 %
paraformaldehyde (PFA) and rinsed in PBS or PHEM buf-
fer (25 mM Hepes, 10 mM EGTA, 60 mM PIPES, 2 mM
MgCly; all from Sigma). Slides were rinsed in blocking
buffer (BB; 0.5 % porcine skin gelatin, 0.1 % bovine serum
albumin; BSA; Sigma), incubated in 150 mM glycine
(Merck, Madrid, Spain) (10 min, room temperature (RT)),
followed by sodium borohydride (Sigma; 10 min) and fi-
nally in PBS with 0.1 % Triton X-100 (Sigma). Preparations
were incubated with primary antibodies (see Additional file
1: Table S1) (1-3 h, RT), washed and incubated with the
appropriate secondary antibody (1 h). Slides were incubated
with Sytox Green and mounted in ProLong antifade re-
agent (both from Invitrogen, Madrid, Spain). Images were
captured with a Leica SP5, Zeiss LSM 700 or LSM 780
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coupled to a two-photon Spectra-Physics Mai Tai laser
scanning confocal microscope and were assembled with
Image] software (NIH). Processing, including assignment of
pseudo-colors and changes in brightness, was applied
uniformly to the entire image exclusively to equalize the ap-
pearance of multiple panels in a single figure. Immunocyto-
chemistry was performed as above.

LacZ staining

Adult cardiomyocytes were fixed in 0.25 % glutaralde-
hyde (Sigma; 5 min), washed with PBS twice (5 min),
then incubated with wash buffer (0.1 M Nay,HPO,4:2H,O,
0.1 M NaH,PO4H,0, 2 mM MgCl,, 0.11 % sodium
deoxycholate, 0.2 % Igepal, 20 mM Tris—HCI pH 7.3) (3
min). Cells were incubated overnight with staining buffer
(I mg/ml X-Gal, 5 mM K Fe(CN)g, 5 mM KzFe(CN)s,
followed by three washes with PBS (5 min).

Cell isolation, culture and flow cytometry
Hearts were collected from Bmil-YFP mice five days after
TM induction, perfused with PBS to remove blood cells,
and processed by enzymatic digestion using 0.1 % collage-
nase IV (Sigma) and 10 pg/ml DNAse (Roche, Madrid,
Spain) (40 min, 37 °C). The resulting single cell suspension
was passed through a 40 um filter to remove debris. YFP*
cells were separated from total heart mass with a BD Fac-
sAria II Special Order System cell sorter fitted with a 488
nm laser to excite YFP (collected in the 525/50 channel).
To discriminate YFP* from autoflorescent cells, a 488 nm
laser was used to excite cells, followed by collection in the
585 channel (phycoerythrin). For flow cytometry analysis,
cardiac cells from hearts of TM-induced Bmil-YFP mice
were incubated with the following primary and secondary
antibodies as indicated: APC (allophycocyanin)-conjugated
rat anti-c-KIT, APC-rat anti-SCA-1/Ly6a, biotin-rat anti-
SCA-1/Ly6a, biotin-rat anti-CD45, biotin-rat anti-CD31 (all
at 1:100; all from BD Pharmingen, Madrid, Spain), and
streptavidin-Alexa Fluor 405 conjugate (1:500; Invitrogen).
Labeled cells were examined with a BD Facs Canto II flow
cytometer and data analyzed using Facs DIVA Software.
Purified YFP" cells were cultured in Iscove’s modified
Dulbecco’s medium (IMDM, Invitrogen) containing 10 %
fetal bovine serum (ESCell FBS, Gibco, Madrid, Spain), 100
U/ml penicillin, 100 mg/ml streptomycin and 2 mM L-
glutamine (all from Invitrogen), 10> units ESGRO Supple-
ment (Millipore, Madrid, Spain), 10 ng/ml EGF (epidermal
growth factor; Sigma) and 20 ng/ml FGF (fibroblast growth
factor; Peprotech, Rocky Hill, New Jersey, United States)
(37°C,3 % O, 5% CO,). The SCA-1" population was pre-
pared by incubating the Lin~ primary cell suspension with
rat anti-SCA-1/Ly6a biotin antibody (1:100: Abcam,
Cambridge, United Kingdom), followed by isolation with
Mouse Anti-Rat Kappa Microbeads (Miltenyi Biotec). In all
cases, when preparing SCA-1" cells, the CD45" fraction
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was removed by indirect sorting using the MACS system
and AUTOMACS technology (Miltenyi Biotec, Teterow,
Germany). Cells were cultured in the same medium as
YFP" cells. Flow cytometry analysis of adult cardiomyocytes
was performed in a BD LSR Fortessa TM using a neutral
density filter 1.0. R1 mouse embryonic stem cells (ES), a gift
from Dr. Miguel Torres (CNIC, Spain), were cultured on
mitomycin C (Sigma)-inactivated murine embryonic fibro-
blasts as feeder cells in DMEM/Glutamax (Invitrogen) sup-
plemented with 20 % ES-qualified FBS (Invitrogen), 10° U/
ml LIF (Millipore), 50 uM B-mercaptoethanol (Merck) and
1 % non-essential amino acids (Thermo, Madrid, Spain).

Isolation and biochemical properties of adult mouse
cardiomyocytes

Cardiomyocytes were isolated from hearts of TM-induced
adult Bmil-YFP mice. The heart was removed rapidly and
retrograde-perfused under constant pressure (60 mmHg;
37 °C, 8 min) in Ca**-free buffer containing 113 mM NaCl,
4.7 mM KCl, 1.2 mM MgSO,, 55 mM glucose, 0.6 mM
KH,PO,, 0.6 mM Na,HPO,4, 12 mM NaHCO;, 10 mM
KHCO;, 10 mM Hepes, 10 mM 2,3-butanedione mono-
xime, and 30 mM taurine. Digestion was initiated by adding
a mixture of recombinant enzymes (0.2 mg/ml Liberase
Blendzyme (Roche), 0.14 mg/ml trypsin (Invitrogen), and
12.5 uM CaCl, to the perfusion solution). When the heart
became swollen (10 min), it was removed and gently teased
into small pieces with fine forceps in the same enzyme so-
lution. Heart tissue was further dissociated mechanically
using 2, 1.5, and 1 mm-diameter pipettes, until all large
heart tissue pieces were dispersed. The digestion buffer was
neutralized with stopping buffer containing 10 % FBS and
12.5 pM CaCl,. Cardiomyocytes were pelleted by gravity
(20 min), the supernatant aspirated and cells resuspended
in the perfusion solution containing 5 % FBS and 12.5 uM
CaCl,. The calcium concentration was increased by grad-
ually adding CaCl, from 62 uM to 1 mM final concen-
tration. Cardiomyocytes were plated in culture dishes
precoated with 0.5 mg/ml mouse laminin (BD Biosciences)
in PBS (1-2 h, RT). Plating medium was Medium 199
Hank’s (Invitrogen), 0.25 % BSA (Sigma), 22 mM NaHCOs3,
0.05 % FBS (Sigma), 0.001 % ITS (insulin-transferrin-selen-
ium (Gibco), 10 mM 2,3-butanedione monoxime and 25
uM blebbistatin. After 2 h, cardiomyocytes were fixed with
2 % PFA or were used for the in vitro calcium transient
studies. To detect YFP" cardiomyocytes (YFP* CM), we
used a confocal microscope LSM 780 upright scanning sys-
tem (Zeiss) equipped with a W 20X Plan-APOCHROMAT
dipping objective (numerical aperture (NA)=1.0). YFP*
CM were detected using the 514 nm laser to excite YFP
(acquired in the 535 channel). A transmitted light detector
(T-PMT) was used to screen cardiac cell morphology. We
captured and stored YFP cardiomyocyte images based on
cell coordinates before Fluo-4 labeling.
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For Fluo-4 AM labeling, we prepared a stock solution of
1 mM Fluo-4 AM (Invitrogen) in DMSO with an equal
volume of 20 % Pluronic F-127 DMSO (1:1 ratio); the
working concentration was 1 pM. Fluo-4 AM was added
to DMEM supplemented with 100 U/ml penicillin, 100
mg/ml streptomycin and 2 mM L-glutamine; cells were
incubated in the dark (20-30 min). We washed the cells
and added fresh DMEM without phenol red (Sigma) and
images were acquired by confocal microscopy as for Ca**
fluorescence. Fluo-4 was excited with the 488 nm line of
an argon laser and 505 nm signal emissions were col-
lected. Images were captured in a time series (xyt, pixel
dwell 1.58 ps) and 2D images (512 x 512 lines) were
obtained and stored for offline analysis.

Primary culture of neonatal rat cardiomyocytes

Hearts from one-day-old Wistar rats were minced to 1
mm? and digested with 0.05 % trypsin (Invitrogen) in
Hank’s balanced salt solution (Sigma)(37 °C, 40 min).
The fragments were digested with 0.1 % collagenase
(class II, Worthington Biochemical, Lakewood, New
Jersey, United States). Single-cell suspensions were pre-
pared by mechanical pipetting. Cells were passed
through a 40 um filter and preplated in DMEM (Invitro-
gen) supplemented with 10 % FBS, 100 U/ml penicillin,
100 mg/ml streptomycin and 2 mM L-glutamine (2 h,
37 °C). Newborn rat cardiomyocytes (NBRC) were col-
lected and seeded on coverslips precoated with gelatin
(Invitrogen) and fibronectin (BD Biosciences) in a final
medium containing DMEM, M-199 (Gibco) at 4:1, 10 %
horse serum (Sigma), 5 % FBS, 100 U/ml penicillin, 100
mg/ml streptomycin, 2 mM L-glutamine and 1 pg/ml
cytosine  a-D-arabinofuranoside  (Sigma). Neonatal
mouse cardiomyocytes were isolated as indicated for
adult mice, using M-199 medium supplemented with
0.05 % FBS, 0.001 % ITS and 25 uM blebbistatin.

Explant cultures

Explants were prepared from hearts of eight-week-old
TM-induced Bmil-YFP mice, as described [34], and cul-
tured in IMDM containing 20 % embryonic stem cell-
screened FBS (Hyclone, GE Healthcare Life Sciences,
Madrid, Spain), 100 U/ml penicillin, 100 mg/ml strepto-
mycin and 2 mM L-glutamine (37 °C, 5 % CO,).

B-CPC differentiation potential

To evaluate spontaneous endothelial/smooth muscle dif-
ferentiation potential of Bmil-CPC, cells were obtained
from eight-week-old TM-induced Bmil-YFP mouse
hearts and seeded on gelatin-coated plates as above.
After seven to ten days, plates were fixed with 2 % PFA
in PHEM buffer (15 min, RT) and processed for im-
munocytochemistry. For cardiomyocyte differentiation,
B-CPC cardiospheres were plated on a monolayer of
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NBRC or adult transgenic mouse GFP* CM derived from
the beta-actin GFP mouse strain (Jackson Laboratory).
For B-CPC/adult mouse CM co-culture, we used M-199
medium, 0.05 % FBS, 0.001 % ITS and 25 uM blebbistatin.
After four to five days co-culture, cells were fixed with 2 %
PFA in PHEM buffer (15 min, RT) and processed for
immunocytochemistry.

Bone marrow transplant

To generate bone marrow (BM) chimeras, eight to ten
week-old C57BL/6 Bmil-YFP mice were TM-induced,
lethally irradiated (one dose each of 4.75 and 4.5 Gy,
separated by 24 h) and then transplanted (i.v.) with 10’
whole BM cells isolated age-matched C57BL/6 Act-RFP
mice [35]. At two months post-TM induction (54 days
after BM transplant), after confirmation of full chimerism,
transplanted Bmil-YFP mouse hearts were digested and
analyzed as above.

RT-gPCR and genomic PCR analysis

RNA was extracted from hearts of eight-week-old TM-
induced Bmil-YFP mice, or from the indicated subpopu-
lations (Bmil-CPC and SCA-1 CPC) purified using the
sorting strategy described above, with a Cells-to-CT kit
(Ambion, Thermo, Madrid, Spain). RNA from ES cells
was prepared as previously described [36]. Complemen-
tary DNA was obtained by reverse transcription with the
High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Madrid, Spain). cDNAs were analyzed by
real time PCR using the Power SYBR Green PCR Master
Mix (Applied Biosystems). Amplification, detection and
data analysis were carried out with an ABI PRISM
7900HT Sequence Detection System. The crossing thresh-
old values for individual mRNAs were normalized to GusB
expression for mRNA. Changes in mRNA expression were
denoted as the x-fold change relative to the control. (See
Additional file 2: Table S2 for primers used).

We used genomic PCR to detect recombined and
Rosa26-YFP alleles, with primers 5'-AAAGTCGCTCTG
AGTTGTTAT, 5-AAGACCGCGAAGAGTTTGTC and
5-AGCTC CTCGCCCTTGCTCACCATG [17]. PCR
conditions were 96 °C for 2 min to separate strands,
followed by 34 amplification cycles (96 °C for 30 s, 56 °C
for 30 s, 72 °C for 30 s) and a 5 min elongation step at
72 °C. The specific PCR product (320 bp) derived from
the floxed allele is detected in all transgenic Bmil-YFP
and Myh6 -YFP mice, but the diagnostic fragment (550
bp) associated with the floxed-out allele is only detect-
able in the Myh6 -YFP CM-enriched fraction post-TM
induction [37].

Statistical analysis
Statistical analysis was performed with Prism 5.0 (Graph-
Pad Software). Significance between groups was evaluated



Valiente-Alandi et al. Stem Cell Research & Therapy (2015) 6:205

in all experiments as detailed in the figures. A value of
P <0.05 was considered significant. All replicates con-
sidered are biological replicates.

Results and Discussion

Murine SCA-1* CPC population expresses Bmil at similar
levels to embryonic stem cells

We hypothesized that adult cardiac progenitors would
show high Bmil expression, as it has been previously de-
fined in other adult stem cell systems [21-29, 38]. The
cardiac SCA-1" population (SCA-1* CPC) contains car-
diac progenitor cells [10]. We initially compared expres-
sion of Bmil and other stemness-related genes in SCA-1
" CPC and embryonic stem cells (ES), and found low
but comparable Bmil levels in both populations (see
Additional file 3: Figure S1A). Bmil expression in these
cells was also very sensitive to oxygen culture conditions
and passage number (see Additional file 3: Figure S1B).
These preliminary studies confirmed Bmil expression in
SCA-1* CPC at levels comparable to ES, and established
culture conditions appropriate for maintenance of Bmil
expression. We therefore studied whether Bmil levels
corresponded to the entire SCA-1" CPC population or
whether defined subpopulations were associated with its
expression.

High Bmi1 expression defines a self-maintained population
in the adult mouse heart

To evaluate the role of Bmil in the biology of cardiac
progenitor cells in vivo, we conducted a lineage tracing
analysis in mice expressing TM-inducible Cre driven by
the Bmil locus [23, 24]. Cre-mediated recombination in
Bmil“" " *;Rosa26" "'+ (six to eight week-old) double
heterozygous mice (Bmil-YFP mice; Fig. 1a) was induced
by TM administration. After enzyme digestion of the
heart, non-myocyte cell compartment was separated and
analyzed by FACS (see Methods). Flow cytometry of non-
cardiomyocyte cells at five days post-TM induction (5d-
postTM) identified a YFP* population (Bmil-expressing
cells) (2.7 £0.2 %; 7.9 x 10*£5.9 x 10> YFP" cells/heart;
Fig. 1b) that was not detected in age-matched non-
induced controls (Bmil-YFP™Y) or induced Rosa26 T+
mice (Fig. 1b, inset). Immunofluorescence analysis of
freshly sorted YFP* cells confirmed co-expression with
BMI1 and SCA-1 (Fig. 1¢).

We used flow cytometry to characterize non-CM YFP*
cells derived from Bmil-YFP hearts at 5d-postTM (see
Additional file 4: Figure S2A); most were SCA-1* (95.9 +
0.4 %, n =16), although they made up only 54 + 0.4 % of
the total SCA-1" population (Fig. 1d). These non-CM YFP
" cells were mainly CD45~ (<1 %) and ¢-KIT~ (<0.5 %) but
CD31" (94 %) (see Additional file 4: Figure S2A). We used
RT-qPCR to compare the gene expression profile of the
sorted YFP" population with that of the closely related
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SCA-1" YFP~ cardiac population (S-YFP"). The YFP*
population showed higher expression of stemness-
associated genes and transcripts related to muscle con-
tractility (Fig. le). These results suggest that Bmil"
cells are probably a heterogeneous population, we can-
not currently distinguish whether this heterogeneity is
due to non-progenitor cells or to different progenitor
populations.

Analysis of the YFP'" compartment (the progeny of
Bmil™ cells) at one-year post-TM induction showed that
this population increased during this period (2 x 10* + 4
x 10° cells/heart; Fig. 1f, g), with an expression profile
similar to that of 5d-postTM cells (see Additional file 4:
Figure S2B). Analysis after conventional TM induction
(5d-postTM) of aged (one-year-old) mice showed the
presence of the YFP* population (Fig. 1f, g).

These results suggest that the Bmil" non-myocyte
population (B-CPC) is maintained throughout the mouse
lifespan and is apparently not in equilibrium with more
primitive precursors that would dilute initial labeling.

B-CPC spatial distribution and differentiation potential

To locate Bmil™ cells in mouse heart, we used mainly a
Bmil-YFP transgenic model and complemented the
study with Bmil-tomato mice for additional information.
GFP immunostaining from 5d-postTM Bmil-YFP hearts
showed broad YFP distribution not observed in negative
controls (Fig. 2a). B-CPC cells were located in variable-
sized clusters of compact cells with cramped nuclei
(Fig. 2b) scattered throughout heart sections, with pref-
erential perivascular (Fig. 2c) and inter-sarcomeric
localization (Fig. 2d). We found broad distribution of B-
CPC cells both in atria and ventricles (see Additional file
5: Figure S3). GFP immunostaining of cardiac explants
[39] from 5d-postTM Bmil-YFP mice showed that a
large proportion of the bright, rounded cells that mi-
grated on the fibroblast-like layer were YFP*. In orthog-
onal projections, the rounded BMI1" cells selectively
occupied the upper layer (see Additional file 6: Figure
S4A). Like their freshly sorted counterparts 5d-postTM,
explanted YFP" cells expressed BMI1 (see Additional file
6: Figure S4B). This result suggests that Bmil" cells are
related to previously reported populations now being
evaluated in clinical trials [40, 41].

Cardiac progenitor cells are able to differentiate to the
main heart lineages. Although several methods have
been tested for in vitro differentiation, results for ter-
minal differentiation with sarcomeric structure and beat-
ing cardiomyocytes are poor [17, 42, 43]. We examined
the differentiation potential of B-CPC in vitro, based on
our previous work with SCA-1* CPC [44]. Only a small
percentage of sorted YFP* B-CPC developed sporadic
microvascular networks composed of VE (vascular endo-
thelial)-cadherin* and SMA™ (smooth muscle actin) cells
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(See figure on previous page.)

Fig. 1 Characterization and evolution of B-CPC throughout BmiI-YFP mouse lifespan. a Generation of Bmi1<e®*:Rosa26"™+ (Bmi1-YFP) mice.
b Detection of the YFP* fraction (2.7 +0.2%, n = 21) of freshly isolated mononuclear non-cardiomyocyte heart cells from Bmil-YFP mice, analyzed
five days post TM induction (5d-postTM); inset, Bmi1-YFPN' (non-induced) and TM-induced Rosa26" ™+ negative controls. Data shown as mean + SEM.
PE, phycoerythrin. ¢ Immunofluorescence analysis of BMIT and SCA-1 in freshly isolated YFP™ cells. Bars, 50 pm. d The B-CPC population is a subset of
the SCA-1" population (5.4 + 04 %, n = 18). The plots show from (left to right and top up to bottom) the YFP* fraction of Bmil-YFP hearts 5d-postTM,
the negative control from SCA-1 staining in the non-CM fraction, staining for SCA-1, and the fraction of the YFP* SCA-1* population. Data represented
as mean + SEM. PE, phycoerythrin, SSC, side scatter. e RT-qPCR of freshly sorted Bmi 1™ (YFP*) and SCA-1" YFP™ cells (n = three replicates; two to three
mice per replicate). Data shown as mean + SD. P values were calculated by paired Student's t-test. * P < 0.05, ** P < 0.01. f Analysis of the YFP*
compartment in Bmil-YFP mice at one year post-TM induction (1y-postTM) (left) (5.8 + 0.74 %) and analysis of B-CPC (YFP™) in one-year-old
mice 5d-postTM (right) (2.2 +0.22 %). PE, phycoerythrin, SSC, side scatter. g YFP™ cell number at 5d-postTM in young mice (two-month-old; n=15),
in mice Ty-postTM induction at six to eight weeks of age (n =4), and in one-year-old mice at 5d-postTM (n = 7). Data shown as mean + SEM. P values

were calculated by unpaired Student’s t-test with Welch's correction, compared to 5d-postTM young mice. * P < 0.05, *** P < 0.0001

(Fig. 2e), indicating that although B-CPC initially express
CD31, they are not committed to the vascular lineage. It
has been reported that hematopoietic stem cells, in dif-
ferent stages of development, or cardiac progenitor cells
are characterized by the expression of endothelial
markers, such as CD31 and Tie2 [19, 40, 45]. Moreover,
CD34 expression has been found in various stem cell
systems [46]. These findings indicate that these proteins
have various cellular functions and are not restricted to
mature endothelium [47].

Co-culture of neonatal rat CM with B-CPC (Bmil-YFP
mice) promoted their cardiac differentiation, with co-
expression of sarcomeric a-actinin (SaA) and YFP
(Fig. 2f). Although the frequency of mononucleated YFP
* cells that co-stained for SaA was low, orthogonal pro-
jection of these cells confirmed co-expression (Fig. 2f,
right). Results were similar when we co-cultured B-CPC
(Bmil-tomato mice) with adult mouse GFP"™ CM (B-
actin GFP mice) to discard fusion events. Although we
did not detect marked mature differentiation, some to-
mato” cells initiated a SaA expression and CM transi-
tion program without fusion, detectable by double GFP
"tomato” staining (Fig. 2g). These data suggest that the
B-CPC population contains progenitors able to contrib-
ute all three main heart lineages.

B-CPC contribute to adult cardiomyocyte turnover

To assess the role of B-CPC in homeostatic conditions,
we traced YFP' cells in the adult heart throughout the
TM-induced Bmil-YFP mouse lifetime (Fig. 3a). Immuno-
histochemical analysis of Bmil-YFP heart sections from 2
to 12 months post-TM administration showed YFP* CM,
which co-localized with SaA staining (Fig. 3b). To confirm
these results and further evaluate the appearance of YFP*
CM, we isolated and plated the enriched CM fraction for
dual analysis by flow cytometry and immunostaining.

No YFP expression was detected in the CM-enriched
population shortly after induction (5d-postTM), either by
cytometry (<1 YFP* CM in 1.35 x 10° total cardiomyo-
cytes or < 0.0022 + 0.0016 %) (Fig. 3d) or in plated prepa-
rations (Fig. 4). To confirm the specific Bmil expression

in the YFP" sorted fraction 5d-postTM and not in the CM
compartment, we performed RT-qPCR analysis, which
showed preferential Bmil expression mainly in the YFP*
non-CM fraction (>15-fold; see Additional file 7: Figure
S5A, top). No BMI1 protein expression was detected by
western blot in the sorted YFP™ non-CM compartment or
in the enriched CM fraction (see Additional file 7: Figure
S5A, bottom). To further confirm the lack of Rosa26 locus
recombination in CM after TM induction, we isolated the
CM-enriched fraction from Bmil-YFP mice 5d-postTM,
and analyzed the structure of the transgenic Rosa26 locus
by PCR. There was no detectable recombination in the
CM-enriched fraction from Bmil-YFP mice compared
with positive and negative controls (see Additional file 7:
Figure S5B).

In addition, we analyzed Cre expression by immuno-
cytochemistry in plated CM; no Cre expression was
detected in the enriched CM fraction of Bmil-YFP mice
compared to the CM fractions of Myh6-YFP or WT
mice (see Additional file 7: Figure S5C). This result
strongly suggests that the cardiac Bmil-expressing frac-
tion does not include a minor subpopulation of adult
CM with specific dedifferentiation/proliferation potential
[6]. Given the wide variety of Bmil functions, we cannot
currently rule out Bmil expression in intermediate pro-
genitors or trace levels in differentiated cells. The Bmil-
CreERT construct is an inducible transgenic model in
which a specific Cre expression threshold is necessary to
trigger Rosa26 locus recombination [48]. Although we
cannot completely exclude basal Bmil expression in
CM, we confirmed that the lineage-tracing results were
not due to ectopic Cre expression by CM.

Flow cytometry analysis of CM from Bmil-YFP hearts
at 2 to 12 months showed the presence of YFP" CM
(Fig. 3e, f), as confirmed by immunocytochemistry of
plated CM (Fig. 4a-c). YFP" and YFP~ CM showed no
relevant differences in expression of the contractility
proteins tropomyosin and SaA or of CX43 (Fig. 3g), or
in contractility or transient Ca®* efflux (see Additional
file 8: Figure S6). The proportion of YFP* CM increased
over the analysis period (2-12 months) from 3+ 0.6 %
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Fig. 2 B-CPC tissue distribution and in vitro differentiation capacity. a Specific GFP immunohistochemistry of negative control heart section; Bmi1-YFP™'
or TM-induced Rosa26"™* mice showed no specific staining. Bar, 200 um. b YFP labels highly packed niche-like structures (NLS) in the myocardium
wall of Bmil-YFP heart 5d-postTM induction. Bar, 20 um. ¢, d These niche-like structures are widely distributed throughout the organ and show
preferential perivascular (arrowheads) (c) and intersarcomeric (d) localization. Bar in (c), 50 um. Bars in (d), 100 um (left), 200 um (right). e Representative
images showing in vitro vascular differentiation of sorted YFP" cultures, which contain cells positive for VE-cadherin (left) and SMA (smooth muscle
actin) (right); DAPI, blue. Bars, 200 um. f YFP" cells co-cultured in vitro for four to five days with neonatal rat CM differentiate to the cardiomyocyte
lineage, and co-localize with sarcomeric a-actinin (SaA); the orthogonal projection is shown (right composite panel). Arrowheads show the differentiated
YFP* cells. Bars, 50 um. g Bmil-tomato™ cells co-cultured in vitro with adult GFP-CM from B-actin GFP mice begin to express SaA (white). Images (left)
show a tomato™ cell (arrowhead) expressing SaA next to a GFP™ CM. Images (right) show two tomato™ cells (no GFP* CM on the picture), one of which
expresses SOA (arrowhead). Bars, 20 um. B-CPC Bmil-expressing cardiac progenitor cells, YFP yellow fluorescent protein, TM tamoxifen, VE vascular
endothelial, CM cardiomyocytes, SaA sarcomeric a-actinin
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Bars, 20 um (left), 50 um (right). c-f Flow cytometry of total adult CM from (c) Bmi1-YFPN' (n = 3), (d) Bmi1-YFP 5d-postT™ (n = 8), (e) Bmil-YFP at two
months (n = 5) and (f) Bmi1-YFP mice one year post-TM induction (n = 6). g Expression of contractility proteins in YFP* and YFP~ CM; SaA, tropomyosin
(TPM) and connexin 43 (CX43). Bars, 50 um. h Number of YFP* CM, measured by flow cytometry and immunocytochemistry, increases from 2 to 12
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as mean + SEM. P value was calculated by unpaired Student’s t-test with Welch's correction. * P < 0.05, ** P < 0.01. i Analysis of ploidy in freshly plated
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scored for each mouse (n =6). Data shown as mean + SEM. B-CPC Bmil-expressing cardiac progenitor cells, YFP yellow fluorescent protein, SaA
sarcomeric a-ctinin, CM cardiomyocytes, TM tamoxifen
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Fig. 4 Contribution of YFP™ cardiomyocytes to heart homeostasis. a-¢ Immunofluorescence of freshly-isolated CM from Bmii-YFP mice TM-induced at
six to eight weeks of age, throughout mouse lifetime at days (5d), 2 months (2m), 6 months (6m) and 12 months (12m) post-TM induction. SaA in red
(@), anti-YFP staining in green (b) and CM at higher magnification (c); DAPI, blue. Bars in @), (b), 1,000 pm; (c), 200 um. d LacZ* CM in adult Bmi1-LacZ
mice 5 days (n=4), 2m (n=2) and 6m (n = 2) post-TM induction. Bars, 200 um. Data shown as mean + SEM. YFP yellow fluorescent protein,
CM cardiomyocytes, TM tamoxifen, SaA sarcomeric a-actinin

to 6.5+ 1.3 % (Fig. 3h), with the same nucleation pat- factor (vWF) or CD31 in cells lining the vessel lumen
tern as the YFP™ CM (Fig. 3i), which are mainly binu-  (Fig. 5a) as well as with SMA (Fig. 5b), which suggest
cleated (80 %). We also observed clear YFP staining a contribution to endothelial and smooth muscle
within vessels that co-localized with von Willebrand lineages.
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Fig. 5 Differentiation to smooth muscle and endothelial lineages. a Confocal microscopy of differentiated Bmil-tomato*-derived cells expressing von
Willebrand factor (WF, top left, white arrowhead) or differentiated Bmil-YFP*-derived cells expressing CD31 (top right; bottom, red arrowheads) lining
the vessel lumen; tomato™/YFP™ cells at the luminal surface of vessels during endothelial differentiation co-localize with vVWF or CD31 (arrowheads).
Bars, 100 um (top left), 20 um (top right), 50 um (bottom). b Vascular differentiation of Bmii-expressing cells to the smooth muscle lineage; arrowheads
highlight tomato co-localization with SMA. Bars, 100 um. YFP yellow fluorescent protein, SMA smooth muscle actin
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To validate these results independently, we examined
the Rosa26LacZ reporter mice. Xgal staining of freshly iso-
lated CM from adult hearts confirmed lack of leakage in
non-induced Bmil-LacZ and a very low level (<0.011
0.007 %) in 5d-postTM induced Bmil-LacZ mice (Fig. 4d).
As for Bmil-YFP reporter mice, we detected LacZ® cells

in clusters between sarcomeres and in perivascular lo-
cations (see Additional file 9: Figure S7). The number
of p — gal” CM detected in the course of the experiment
was similar to that for YFP reporter mice at two and
6six months post-TM induction (3.45+0.35 % and
6.45 £ 1.11 %), respectively (Fig. 4d).



Valiente-Alandi et al. Stem Cell Research & Therapy (2015) 6:205

Page 12 of 16

Donor
Act-RFP

BM cells
—_— - foloic]
£C10)]
l v

2 months ﬁ
— .
1)

Analysis of RFP* progeny
in Bmi1-YFP hearts

Irradiated #

Primary recipient
induced Bmii-YFP

B
_ Bmi1-YFPN! _ Bmi1-YFP 2m-post BM transplant
105 yppr | 105 [ vrpt/
4: r 4 :
o 10 | — o 10
> 109 > 108
wzi 102

0
<
fa)
[&]
10%)
] 0.26+0.06%
B0 e L R e e R N
. Lsearcoes 10° 10° 10*  10°
oo SCA-1
SCA-1
F G
Bmi1-YFP 5d-postTM
% v RFP
10 _Bmi1-YFP 2m-post BM transplant
o s- N ¥
> 0 " 10 . YFP RFP*
107 1
Act-RFP 1041.
102 10 0 105]‘ . AP | & : e
RFP o 104 ? > IO"1 g
w i 1.3
> 0y ) ]
10 102
e |
RFP | S S
102 10° 104 10%
RFP

Fig. 6 (See legend on next page.)




Valiente-Alandi et al. Stem Cell Research & Therapy (2015) 6:205

Page 13 of 16

(See figure on previous page.)

cell sorting

Fig. 6 Evaluation of extracardiac Bmil* cells for de novo YFP* CM generation. a Scheme for BM (RFPY) transplant into a lethally irradiated, TM-induced
Bmil-YFP mouse. b-e FACS analysis of the non-CM fraction of Bmil-YFP mice after BM transplant (n = 3). b No YFP* or RFP" heart cells were detected
in non-induced Bmii-YFP mice. ¢ FACS analysis of induced chimeric BmiT-YFP hearts two months post-BM transplant confirmed the presence of YFP™
(3.53 +0.87 %) and RFP™ cells (455 + 15 %). d Negative control for SCA-1 and CD45 staining of the non-CM fraction of Bmil-YFP hearts (left) and
percentage of SCA-1"CD45™ cells after the staining (20 + 3.74 %; right). e Percentage of SCA-1'CD45™ in RFP* cells in the non-CM fraction of chimeric
BmiT-YFP hearts two months post-transplant (0.26 + 0.06 %). (f-h) FACS and ICC of the CM compartment of chimeric Bmil-YFP mice two months
post-transplant (n = 3). f No RFP or YFP expression was detected in Bmil-YFP CM analyzed by FACS 5d-postTM (left). RFP™ CM from Act-RFP
mice (right). g No RFP* CM were detected in chimeric Bmil-YFP mice two months post-transplant. h ICC of chimeric Bmi7-YFP CM two months
post-transplant. Bars, 100 um. Data shown as mean + SD. YFP yellow fluorescent protein, CM cardiomyocytes, FACS fluorescence-activated

YFP*™ CM do not derive from Bone Marrow Bmi1* cells
Given that Bmil-Cre locus activation in Bmil-YFP mouse
is not heart-specific [23, 24] and that bone marrow (BM)
cells are reported to contribute with de novo CM in heart
regeneration [49], we evaluated the potential contribution
of BM-derived cell populations to de novo CM formation.
We transplanted BM from Acz-mRFP into Bmil-YFP mice
(chimeras) (Fig. 6a); recipients were sacrificed two months
post-transplant, hearts were dissociated and analyzed by
FACS. No YFP' or RFP' cells were detected in non-
induced Bmil-YFP mice (Fig. 6b). Two months after BM
transplant, non-CM cells from TM-induced chimeric
heart confirmed the presence of YFP* (3.53 + 0.87 %) and
mRFP" cells (45.5 + 15 %) (Fig. 6¢). Analysis of heart non-
CM cells from transplanted Bmil-YFP mice showed a
minimal contribution of SCA-1"CD45" cells, estimated at
<0.26 £ 0.06 % (Fig. 6d, e).

Analysis of CM-enriched fractions of Bmil-YFP
chimera heart showed YFP* CM, with no mRFP* CM at
two months post-transplant (Fig. 6f-h) compared to CM
preparations from Act-mRFP control mice (Fig. 6f).
These results were confirmed by immunocytochemistry
in plated CM (Fig. 6h). We observed no fused cells (or-
ange) in CM from chimeric Bmil-YFP hearts (Fig. 6h).
The results suggest that, as for other putative cardiac
stem cells [18, 50], BM-derived cells do not contribute
notably to the B-CPC population, either directly or after
fusion with resident non-CM cells.

B-CPC in the general context of cardiac repair and
cardiomyocyte turnover

Cardiac progenitors are routinely isolated based on ex-
pression of the stem cell hematopoietic marker SCA-1
[9], although SCA-1 appears to label a heterogeneous
population with predominantly endothelial potential [16,
50]. Genetic deletion of Sca-1 showed that resident CPC
do not respond efficiently to pathological damage in
vivo, consistent with the impaired growth and survival of
cardiac progenitor cells in vitro [50]. Sca-1 labels a non-
CM population in heart that contributes to CM gener-
ation during homeostasis (4.55 + 0.87 %) [16]. The SCA-
1" CPC contribution to the repair process is only found
after ischemic damage and pressure overload, but not

after acute myocardial infarction. Finally, using the
Rosa26-Confetti reporter mouse strain, the authors
propose limited expansion of Scal-derived clones and
limited pluripotential capacity, which suggests that only
a small Sca-1" cell subset differentiates into the CM
lineage [16]. It is tempting to consider that Bmil-CPC,
which make up 5.4 +0.4 % of SCA-1" CPC, are related
to this proposed subset.

Malliaras et al. described a transient amplifying cell
population, termed cardioblasts (CdB). These cells are de-
fined by expression of SCA-1 and mature cardiac markers
such as Myh6 or SaA but ¢-KIT™, and have multipotent
properties. CdB are activated and increase in an experi-
mental model of cardiac injury (AMI). The fact that CdB
are a SCA-1" subset, combined with the similarity to our
results, strongly suggests partial overlap between these
subpopulations. Further studies are needed to fully under-
stand this question.

The classical endothelial marker Tie-I was recently re-
ported to define a cardiac progenitor population [19].
These cells (c-KIT™") generate 70 % of SCA-1" intermedi-
ate perivascular progenitors and contribute to homeostatic
CM turnover. Our Bmil-CPC RNA expression profile
(unpublished results) showed moderate expression of Tie-
1 and other endothelial driver constructs used by the au-
thors for confirmation [19], as well as high CD31 levels
(see Additional file 4: Figure S2A). These data suggest a
functional relationship between the two populations.
Specific research will be needed to explore the interplay
between both populations and their role in the adult
endothelium.

All of these cardiac progenitor populations, linked by
SCA-1 expression, show partially overlapping similar-
ities with Bmil-CPC. The apparent discrepancies in
cardiac progenitor identity and responses nonetheless
remain to be resolved. Some of the cardiac stem-like
populations identified might represent distinct develop-
mental or physiological stages of a single resident stem
cell population [51].

Our lineage tracing analysis shows that high Bmil
expression in the adult heart labels a resident population
that contributes to CM turnover, suggesting a role for
Bmil in heart turnover. Pulsed Bmil"* cells remained in
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adult mouse heart for over one year (currently observed
to two years of age; not shown), although they appear
to decline in aged mice (two- years-old), and probably
become more senescent. Gene expression, combined
with the non-drastic dilution of the label over this
period, implies intrinsic self-maintenance with no ap-
parent contribution of more primitive or extracardiac
progenitors to de novo CM formation [52, 53] and our
findings here.

A number of studies have attempted to identify a car-
diac non-stem cell source for adult cardiomyocyte re-
placement, suggesting that adult CM dedifferentiate
and proliferate to give rise to de novo CM [6, 7]. In our
experimental model using the aMHC promoter, we
confirmed that at 5d-postTM, a large proportion of CM
are labeled (see Additional file 7: Figure S5B,C). This
temporal window is also sufficient to ensure clearance
of TM, given its estimated 6 h half-life in the mouse,
which rules out long-term TM effects [54]. In contrast,
in our Bmil-YFP mouse model, we found no indication
of Cre expression or activity in the CM population at
5d-postTM. Although we cannot currently exclude
additional sources of heart turnover from other stem
cell-like populations or a possible functional connection
between putative differentiation of rare Bmil™ CM, our re-
sults support the idea that Bmil™ non-myocyte cells (B-
CPC) contribute to homeostatic cardiomyocyte turnover
in the mammalian adult heart.

Conclusions

Bmil" non-CM cells (B-CPC) form a small fraction of the
SCA-1 population; they express high levels of stemness
and cardiac lineage specification markers, contribute to
the main heart lineages in vitro, and are capable of in vivo
self-maintenance. B-CPC is likely to be a heterogeneous
population that contains progenitor cells; further studies
are needed for a better understanding of the population
and its specific subpopulations. Improved characterization
of the biology of these cells will help to define in vivo hall-
marks as well as potential ontogenic relationships with
other adult cardiac progenitor-like populations and to
identify the factors needed to harness their potential for
effective cardiac cell therapy.
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