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Abstract

Background: Preclinical and epidemiologic studies suggest that garlic intake is inversely associated with the progression

of cancer and cardiovascular disease.

Objective: We designed a study to probe the mechanisms of garlic action in humans.

Methods: We conducted a randomized crossover feeding trial in which 17 volunteers consumed a garlic-containing meal

(100 g white bread, 15 g butter, and 5 g raw, crushed garlic) or a garlic-free control meal (100 g white bread and 15 g butter)

after 10 d of consuming a controlled, garlic-free diet. Blood was collected before and 3 h after test meal consumption for gene

expression analysis inwhole blood. Illumina BeadArraywas used to screen for genes of interest, followed by real-time quantitative

reverse transcriptase–polymerase chain reaction (qRT-PCR) on selected genes. To augment human study findings, Mono

Mac 6 cells were treated with a purified garlic extract (0.5mL/mL), andmRNAwasmeasured by qRT-PCR at 0, 3, 6, and 24 h.

Results: The following 7 genes were found to be upregulated by garlic intake: aryl hydrocarbon receptor (AHR), aryl hydrocarbon

receptor nuclear translocator (ARNT), hypoxia-inducible factor 1a (HIF1A), proto-oncogene c-Jun (JUN), nuclear factor of activated

T cells (NFAT) activating protein with immunoreceptor tyrosine-based activation motif 1 (NFAM1), oncostatin M (OSM), and V-rel

avian reticuloendotheliosis viral oncogene homolog (REL). Fold-increases in mRNA transcripts ranged from 1.6 (HIF1A) to 3.0

(NFAM1) (P<0.05). ThemRNA levels of 5 of the 7 genes thatwere upregulated in the human trialwere also upregulated in cell culture

at 3 and 6 h: AHR, HIF1A, JUN,OSM, and REL. Fold-increases in mRNA transcripts in cell culture ranged from 1.7 (HIF1A) to 12.1

(JUN) (P < 0.01). OSM protein wasmeasured by ELISA and was significantly higher than the control at 3, 6, and 24 h (24 h: 19.56

1.4 and 74.86 1.4 pg/mL for control and garlic, respectively). OSM is a pleiotropic cytokine that inhibits several tumor cell lines in culture.

Conclusion: These data indicate that the bioactivity of garlic is multifaceted and includes activation of genes related to

immunity, apoptosis, and xenobiotic metabolism in humans and Mono Mac 6 cells. This trial is registered at clinicaltrials.

gov as NCT01293591. J Nutr 2015;145:2448–55.

Keywords: garlic, cancer, immunity, gene expression, Mono Mac 6

Introduction

Consumer demand for garlic (Allium sativum L.) has surged in
recent years, with worldwide production almost doubling from

2002 to 2012 (1). This interest in garlic is partly driven by
reports attributing various health benefits to garlic consumption.

Given the prevalence of chronic diseases such as cancer and car-

diovascular disease and their substantial personal, social, and

financial impacts, there may be a role for garlic as part of a diet

to promote and sustain human health (2, 3).
Preclinical studies have primarily focused on cardiovascular

health and on prevention and treatment of cancer. Animal

studies suggest that factors related to cardiovascular function

such as plasma lipids, blood pressure, and platelet aggregation

may be favorably modified by garlic or garlic-derived com-

pounds (4–7). The inhibition of cholesterol synthesis has also

been demonstrated in rat hepatoma cells. Of 9 garlic-derived
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compounds tested, diallyl disulfide, diallyl trisulfide, and allyl
mercaptan were inhibitory, probably by suppression of 4a-
methyl oxidase (8). Human clinical trials have produced mixed
results with regard to lipid variables. LDL oxidation has been
shown in cell studies and a small-scale human study to be
suppressed by aged garlic extract (GE)7 (9, 10), which is high in
S-allylcysteine in contrast to fresh crushed garlic, which is high
in allicin (diallyl thiosulfinate) and g-glutamyl-S-alkylcysteines
(11, 12). A recent meta-analysis of 39 randomized, placebo-
controlled clinical studies indicated that garlic intake over at
least a 2-mo period significantly reduced total serum and LDL
cholesterol in humans with very high baseline values (13).
However, in humans with moderately high baseline LDL
cholesterol, raw garlic, dried garlic powder, and aged GE did
not influence total cholesterol, LDL cholesterol, HDL choles-
terol, total- to HDL-cholesterol ratio, or TGs during the 6-mo
intervention period (14).

The effects of garlic and garlic-derived compounds on the
prevention and treatment of cancer have also been reported in a
large number of preclinical studies and involve modulation of
xenobiotic metabolism, cell cycle arrest, induction of apoptosis,
inhibition of angiogenesis, and histone modification (15–23).
Results from epidemiologic and clinical intervention studies are
inconsistent. In the Iowa Women�s Health Study of 41,837
women over 5 y, an RR of 0.68 was reported for colon cancer for
the uppermost compared with the lowermost consumption levels
of garlic (24). The EPIC (European Prospective Investigation into
Cancer and Nutrition) study of >500,000 individuals showed a
weak inverse association between garlic and onion intake and risk
of intestinal gastric cancer after an average 6.5-y follow-up, but
when 477,312 of these participants were assessed after 11 y, this
association was no longer present (25, 26). In a randomized
double-blind study, supplementation with a combination of
steam-distilled garlic oil and aged GE did not influence the
incidence of precancerous gastric lesions or gastric cancer inci-
dence after a 7.3-y intervention (27). However, in a double-blind
intervention study of participants at high risk of gastric cancer,
men (but not women) consuming 200 mg synthetic allitridum
(diallyl trisulfide) with 100 mg selenium had a decreased cancer
risk after 5 y (28).

There is substantial evidence for a role of garlic in reducing
cancer risk and cardiovascular disease, but the inconsistent
findings prevent a clear understanding of the role of garlic in
health promotion. One reason for the inconsistent findings may
be the need for additional biomarkers of biological activity.
Gene expression in vivo is a biomarker at the most basic level of
biological response and may provide important clues to the
biological activity of bioactive food components. Therefore, we
conducted a human clinical trial and follow-up in vitro studies to

measure the influence of garlic intake on mRNA gene expression
in whole blood. Gene expression in the leukocyte population of
whole blood is responsive to dietary interventions and may
correlate with tissue-specific gene expression (29–31). Whole
blood is relatively accessible compared with other human tissues
and thus is advantageous for obtaining and measuring mRNA.
We chose to focus on genes related to immunity and cancer and
studied their response to a single meal containing raw, crushed
garlic (RCG).

Methods

Study design, diet, and treatments. The study protocol was approved

by the MedStar Health Research Institute (Hyattsville, Maryland).

Written, informed consent was obtained from each study participant. A

randomized crossover design with two 11-d treatment periods separated
by a 17-d washout period was used. Subjects consumed a basal garlic-

free diet for 10 d. On the 11th day, participants receiving the control

treatment ate a breakfast consisting of 100 g white bread with 15 g
butter. Participants receiving the garlic treatment consumed 100 g white

bread with 15 g butter and 5 g RCG. The basal diet consisted of adequate

protein,;35% of calories from fat, and 3 servings of fruits and

vegetables daily to be in accord with average intakes in the United
States (32, 33). Participants were instructed to consume all foods and

only foods that were provided by the Beltsville Human Nutrition

Research Center. Breakfast and dinner on weekdays were consumed at

the Beltsville Human Nutrition Research Center, and lunches and
weekendmeals were packed for carry-out. Study participants were asked

to abstain from vitamin and mineral supplements beginning 2 wk before

the study and continuing throughout the study.

One week before the garlic meal of the first period, raw cloves of
California Early garlic were minced and homogenized. Five-gram

portions in sealed plastic containers were stored at 220�C until used.

A subsample was reserved for the measurement of organosulfur
compounds by using previously published HPLCmethods (Silliker) (34).

Study participants. Participants were recruited from Beltsville, Mary-

land. Eighteen participants began the study. One participant left the
study due to a scheduling conflict and 17 participants completed the

study. Participant characteristics are reported in Supplemental Table 1.

Whole-blood collection and mRNA gene expression. Whole blood
was collected into PAXgene blood RNA tubes (Qiagen) immediately

before the day 11 breakfast (consisting of a control or garlic meal) and at

3 h after breakfast. Total RNAwas isolated according to the manufacturer�s
instructions. Global mRNA gene expression by Illumina HumanHT-12

v4 BeadChip was used to screen for genes of interest in 12 randomly

selected participants (Expression Analysis). Differentially expressed genes

(P < 0.01) were considered for analysis by qRT-PCR. We selected genes
related to immunity and genes potentially involved in cancer-related

processes (Table 1). All probes and primers for qRT-PCR were designed

by using the Primer Express (Applied Biosystems) software package and

nucleotide sequences obtained from GenBank.
The RNA of the 12 participants used to assess global mRNA gene

expression was also used to synthesize cDNA for qRT-PCR. Total RNA

from the whole blood of the remaining 5 participants was extracted from
PAXgene blood RNA tubes by using the BioRobot Universal system

(Qiagen) according to the manufacturer�s instructions. RNA quality

was assessed by using Experion RNA gel electrophoresis analysis chips

(Bio-Rad Laboratories), and the concentration was determined by using
a Nanodrop spectrophotometer (Thermo Scientific). cDNA was pre-

pared from 1.35 mg total RNA by using SuperScript II reverse tran-

scriptase according to the manufacturer�s protocol (Life Technologies).

Quantitative real-time PCR was conducted by using iQ Supermix and
a CFX96 real-time PCR system (both, Bio-Rad Laboratories). Data

were adjusted for the housekeeping gene cyclophilin A (PPIA). Quanti-

tative mRNA fold-changes were derived by using the DDCt (threshold

cycle) method (35) and are presented as the fold-change due to the

7 Abbreviations used: AHR, aryl hydrocarbon receptor; AP-1, activator protein 1;

Apc, adenomatosis polyposis coli; ARNT, aryl hydrocarbon receptor nuclear

translocator; c-FOS, FBJ murine osteosarcoma viral oncogene homolog;

c-JUN, proto-oncogene c-Jun; c-REL, V-Rel avian reticuloendotheliosis viral

oncogene homolog; Ct, threshold cycle; CYP1A1, cytochrome P450, family 1,

subfamily A, polypeptide 1; CYP1A2, cytochrome P450, family 1, subfamily A,

polypeptide 2; GE, garlic extract; GSTA1, glutathione S-transferase a 1; HIF-1,

hypoxia-inducible factor 1; HIF1A, hypoxia-inducible factor 1; INK4a, inhibitor of

cyclin-dependent kinase 4a; JUN, proto-oncogene c-Jun; LIF, leukemia inhibitory

factor; LSmean, least squares mean; NFAM1, NFAT activating protein with

immunoreceptor tyrosine-based activation motif 1; NFAT, nuclear factor of

activated T cells; OSM, oncostatin M; PPIA, cyclophilin A; RCG, raw, crushed

garlic; REL, V-rel avian reticuloendotheliosis viral oncogene homolog; RPL32,

ribosomal protein L32; SIM, single-minded; TNF, tumor necrosis factor; UGT1A1,

uridine diphosphate glucuronosyltransferase 1 family, polypeptide A1; UGT1A6,

uridine diphosphate glucuronosyltransferase 1 family, polypeptide A6; XRE,

xenobiotic response element.
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garlic treatment relative to that of the control = 22ΔC#t, where ΔC#t =
(Ctgarlic, hour 3 – Ctgarlic, hour 0) – (Ctcontrol, hour 3 – Ctcontrol, hour 0).

Preparation of GE for in vitro studies. Garlic from a local grocery

store was processed with a juicer to produce a crude garlic homogenate,
which was centrifuged at 4500 g for 10 min at 20�C. The supernatant

was filtered through a 0.45-mm syringe filter (Millipore) followed by

filtration with a 0.22-mm centrifugal filter (Millipore) and centrifuged at
4500 g for 5 min at 20�C. The GE was placed into 1.5-mL micro-

centrifuge tubes and frozen at280�C. The endotoxin concentration in the

extract was below detection (0.01 ng endotoxin/mL) according to the

Limulus amebocyte lysate assay (ThermoScientific). Organosulfur com-
pounds were measured by HPLC.

Cell culture and sample analysis of Mono Mac 6 cells. Human

study gene expression findings were confirmed in vitro by using the
Mono Mac 6 cell line. The Mono Mac 6 cell line was selected because it

expresses all of the genes that are significantly expressed in humans. In

addition, Mono Mac 6 cells are monocytic and therefore model an
important class of leukocytes. Cells were obtained from the Leibniz-

Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen

(Braunschweig, Germany) and were cultured according to the supplier�s
instructions. Cells were maintained at a density of 1.0 3 106 cells/mL.

At the beginning of each experiment, 1 mL medium was transferred

to the wells of a cell culture plate and combined with 1 mL of cell-free

mediumwith or without GE, resulting in concentrations of 0.0 or 0.5 mL

GE/mL medium (n = 3). Viability was determined by flow cytometric
analysis on an Attune flow cytometer (Life Technologies) by using an

Annexin-fluorescein isothiocyanate/propidium iodide staining kit (Tre-

vigen). Cell gating was performed by using forward and side scatter, and
the percentage of live, apoptotic, and necrotic cells was determined from

10,000 cells. The percentage of viable, early apoptotic, late apoptotic,

and necrotic cells averaged 93.3%, 3.6%, 1.9%, and 1.1%, respectively,

in control cells, and averaged 91.7%, 4.8%, 2.2%, and 1.2%,
respectively, in garlic-treated cells.

Samples were collected at 0, 3, 6, and 24 h after adding the GE. Total

RNA was isolated from cells by using the RNeasy Plus Mini Kit

(Qiagen). RNA quality and concentration were determined as for the

human samples. One microgram of total RNAwas transcribed to cDNA

by using the Quantitect reverse transcription kit (Qiagen). Genes that
were significant (P < 0.05) in the qRT-PCR analysis of the human

samples were selected for measurement in Mono Mac 6 cells. qRT-PCR

was performed by using iQ Supermix and a CFX96 real-time PCR

system, with ribosomal protein L32 (RPL32) used as the housekeeping
gene. Ct data were subtracted from 45 (total number of PCR cycles) so

that increasing levels of mRNA are represented by increasing values of

the difference between 45 and Ct.

Oncostatin M (OSM) protein was measured in cell culture superna-
tant by ELISA (R&D Biosystems) following the manufacturer�s instruc-
tions. Samples were centrifuged at 14,000 g for 15 min at 4�C before

being added to the plate. In vitro experiments were performed twice,
with similar results.

Statistical analysis. ANOVAs of the gene expression data from the

human study were performed by using the MIXED procedure in SAS
(version 9.3; SAS Institute). Data were tested for normality with the

Shapiro-Wilk statistic and by inspection of stem-leaf plots and normal

probability plots of residuals. The data for nuclear factor of activated T

cells (NFAT) activating protein with immunoreceptor tyrosine-based
activation motif 1 (NFAM1) and OSM were skewed and therefore were

ln-transformed. To account for the serial correlation of repeated

measures on the same experimental unit (participant), covariance
structures were fit to the data by using Akaike�s and Bayesian

information criteria. The models for aryl hydrocarbon receptor

(AHR), proto-oncogene c-Jun (JUN), leukemia inhibitory factor

(LIF), and OSM were fit with the compound symmetry covariance
structure, and the models for hypoxia-inducible factor 1a (HIF1A),

TABLE 1 Genes measured in human whole blood by qRT-PCR1

Gene Symbol

AHR pathway genes

Aryl hydrocarbon receptor AHR

Aryl hydrocarbon receptor nuclear translocator ARNT

Aryl hydrocarbon receptor nuclear translocator 2 ARNT2

Hypoxia-inducible factor 1, a subunit HIF1A

Cancer-related genes

Excision repair cross-complementation group 1 ERCC1

IL 6 IL6

Proto-oncogene c-Jun JUN

Leukemia inhibitory factor LIF

Oncostatin M OSM

V-rel avian reticuloendotheliosis viral oncogene homolog REL

Tumor necrosis factor receptor superfamily, member 21 TNFRSF21

Immunity-related genes

Calcium/calmodulin-dependent protein kinase IIg CAMK2G

Chemokine (C-X-C motif) ligand 14 CXCL14

IL 2 IL2

Nuclear factor of activated T cells, cytoplasmic,

calcineurin-dependent 3

NFATC3

NFAT activating protein with immunoreceptor

tyrosine-based activation motif 1

NFAM1

Housekeeping gene

Cyclophilin A PPIA

1 Several genes could be assigned to more than one classification, but for ease of

reference are placed within only one group.

TABLE 2 Measurement by qRT-PCR of mRNA gene expres-
sion in human whole blood 3 h after garlic consumption relative to
the control meal1

Gene Fold of control P

P # 0.05

AHR 2.6 0.017

ARNT 1.8 0.020

HIF1A 1.6 0.027

JUN 1.7 0.045

NFAM12 3.0 ,0.001

OSM 3 1.8 0.001

REL 1.7 0.016

P . 0.05

ARNT2 1.0 0.97

CAMK2G 1.2 0.35

CXCL14 1.3 0.74

ERCC1 1.3 0.11

IL2 1.1 0.61

IL6 1.3 0.14

LIF 1.4 0.08

NFATC3 1.4 0.11

TNFRSF21 1.6 0.09

1 Fold of control = 22ΔC#t, where ΔC#t = (Ctgarlic, hour 3 – Ctgarlic, hour 0) – (Ctcontrol, hour 3 –

Ctcontrol, hour 0). AHR, aryl hydrocarbon receptor; ARNT, aryl hydrocarbon receptor nuclear

translocator; ARNT2, aryl hydrocarbon receptor nuclear translocator 2; CAMK2G, calcium/

calmodulin-dependent protein kinase IIg; Ct, threshold cycle; CXCL14, chemokine (C-X-C

motif) ligand 14; ERCC1, excision repair cross-complementation group 1; HIF1A, hypoxia-

inducible factor 1a; JUN, proto-oncogene c-Jun; LIF, leukemia inhibitory factor; NFAM1,

NFAT activating protein with immunoreceptor tyrosine-based activation motif 1; NFATC3,

nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 3; OSM,

oncostatin M; REL, V-rel avian reticuloendotheliosis viral oncogene homolog; TNFRSF21,

tumor necrosis factor receptor superfamily, member 21.
2 Significant sex 3 treatment interaction, P = 0.010. Fold-change for women = 5.6

(P , 0.001) and for men = 1.5 (P = 0.32).
3 Significant sex 3 treatment interaction, P = 0.007. Fold-change for women = 2.5

(P , 0.001) and for men = 1.2 (P = 0.29).

2450 Charron et al.



NFAM1, and V-rel avian reticuloendotheliosis viral oncogene

homolog (REL) were fit with the variance components structure.

Study period, sequence, and sex were treated as fixed effects, whereas
study participant was treated as a random effect. Model effects are

reported as least squares means (LSmeans; P < 0.05). LSmeans for

NFAM1 and OSM were inverse transformed to their original scale.
The statistical model for the in vitro gene expression data was a

treatment3 hour 2-way factorial mixed-effects model, with repeated

measures observed on each treatment replication at 0, 3, 6, and 24 h.

Fisher�s protected least significant difference tests were applied to
compare LSmeans at each hour in the in vitro experiment. Data are

reported as LSmeans and SEMs.

Results

Composition of the garlic products
The concentrations of the organosulfur compounds in RCG
and GE are given in Supplemental Table 2. The concentrations
of the compounds in RCG may be calculated on a dry weight

basis by multiplying the values by 2.42 (mg/g dry wt). The
RCG contained >3 times the concentration of g-glutamyl-
S-alkylcysteines (14.5 mg/g) compared with thiosulfinates
(4.5 mg/g), in contrast to the GE in which the concentrations
of g-glutamyl-S-alkylcysteines (3.7 mg/g) and thiosulfinates
(3.5 mg/g) were similar. In both products, the concentrations
of allyl sulfides were much lower than those of the other
organosulfur compounds.

Human clinical trial
Gene expression in whole blood. Sixteen genes were selected
for mRNA gene expression measurement. Of these genes, AHR,
aryl hydrocarbon receptor nuclear translocator (ARNT),HIF1A,
JUN, NFAM1, OSM, and REL were significantly upregulated
3 h after the RCG intervention (Table 2).NFAM1 had the largest
fold-increase (3.0) and HIF1A had the smallest increase (1.6).
For bothNFAM1 andOSM, there was a significant treatment3
sex interaction (P < 0.05) in which the gene expression in men
did not change, whereas that in women increased significantly.

FIGURE 1 Expression of AHR (A),

ARNT (B), HIF1A (C), JUN (D), OSM (E),

NFAM1 (F), and REL (G) in Mono Mac 6

cells in response to garlic extract (0.5 mL/

mL). Values are least squares means 6
SEs; n = 3. *Different from control at that

time, P , 0.01 (Fisher�s protected least

significant different test). The Ct data

were normalized to RPL32 and are

subtracted from 45 (total number of

PCR cycles), so that increasing levels of

mRNA are represented by increasing

values on the y-axis. AHR, aryl hydrocar-

bon receptor; ARNT, aryl hydrocarbon

receptor nuclear translocator; Ct, thresh-

old cycle; HIF1A, hypoxia-inducible factor

1a; JUN, proto-oncogene c-Jun; RPL32,

ribosomal protein L32.
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In women, theNFAM1 fold-change was 5.6 (P < 0.001) and the
OSM fold-change was 2.5 (P < 0.001)

In vitro experiments with Mono Mac 6 cells
Gene expression in response to GE. Five of the 7 genes that
were significantly upregulated in the human clinical trial also
were upregulated in Mono Mac 6 cells treated with GE: AHR,
HIF1A, JUN, OSM, and REL (Figure 1). The expression of
these genes was higher in GE-treated cells than in control cells at
3 and 6 h, and with the exception of JUN, expression did not
differ between GE-treated and control cells at 24 h. The largest
fold-increases occurred for JUN, with a fold-increase of 12.1
at 3 h and 11.9 at 6 h, followed by OSM with fold increases of
8.8 at 3 h and 5.7 at 6 h. The smallest fold-change that was
significant was for HIF1A, which increased 1.7-fold at 3 h.

Concentration of OSM protein in response to GE. The
concentration of OSM was significantly higher in GE-treated
cells than in control cells at 3, 6, and 24 h (Figure 2). The most
rapid accumulation of OSM occurred from 3 to 6 h, when OSM
concentration increased by 157% from 19.0 6 1.4 to 48.6 6
1.4 pg/mL. The beginning of this high rate of OSM protein syn-
thesis coincided with the peak concentration of the OSM tran-
script, which occurred at 3 h. The concentration of OSM at 24 h
in the GE-treated medium was 74.8 6 1.4 pg/mL, which was
3.8-fold that of the control cell medium.

Discussion

We chose to use RCG because it is less processed than cooked
garlic and other garlic formulations and thus represents garlic
in one of its most basic forms. The organosulfur composition
of the RCG was similar to that reported in previous studies
(34). Concentrations of the organosulfur compounds tended
to be lower in GE than in RCG. This difference may be a result
of the fact that the garlic from which the GE was produced
was purchased several months after harvest and that storage
causes degradation of g-glutamyl-S-alkylcysteines by means
of g-glutamyltranspeptidase (36). Also of note is that the GE
used in the present study is chemically distinct from the sim-
ilarly named aged GE, in which thiosulfinates are present at
very low concentrations (11).

Genes affected by garlic. A single meal with RCG induced the
expression of 7 genes involved in immunity and cancer-related
processes 3 h after consumption. Remarkably, 5 of these genes
were also upregulated in GE-treated Mono Mac 6 cells. AHR is
a ligand-activated member of the basic helix-loop-helix/Per-
ARNT-single-minded (SIM) superfamily of transcription factors
(37). When activated by ligand binding, AHR protein moves
from the cytoplasm to the nucleus where it dimerizes with
ARNTand binds to xenobiotic response elements (XREs) within
the promoters of target genes (38). AHR has been classically
associated with its activation by halogenated aromatic hydro-
carbons and nonhalogenated polycyclic aromatic hydrocarbons
and the subsequent induction of xenobiotic metabolizing
enzymes such as cytochrome P450, family 1, subfamily A, poly-
peptide 1 (CYP1A1), cytochrome P450, family 1, subfamily A,
polypeptide 2 (CYP1A2), uridine diphosphate glucuronosyl-
transferase 1 family, polypeptide A1 (UGT1A1), uridine diphos-
phate glucuronosyltransferase 1 family, polypeptide A6 (UGT1A6),
and glutathione S-transferase a 1 (GSTA1) (39–41). In addition,
AHR suppressed intestinal carcinogenesis in adenomatosis pol-
yposis coli (Apc)multiple intestinal neoplasia/+ mice by its participa-
tion in a ligand-dependent E3 ubiquitin ligase that degrades
b-catenin, a protein whose overexpression is associated with
cancers of the colon, skin, liver, ovaries, and prostate (42, 43). AHR
was activated by natural ligands derived from dietary tryptophan
and glucosinolates, a class of secondary plant metabolites associ-
ated with protection from colon cancer (44). These results, together
with our finding that the consumption of RCG and GE induced
AHR expression, suggest a mechanism by which garlic may inhibit
intestinal cancer in humans.AHR also has a role in the development
and function of effector and regulatory T cells, a subpopulation
of the blood cells collected in our human clinical trial, supporting
a role for RCG in the modulation of immune function (45).

Similar to AHR, HIF1A is a dimeric partner with ARNT,
forming the transcription factor hypoxia-inducible factor 1
(HIF-1). Genes activated by HIF-1 increase glucose transport,
glycolysis, angiogenesis, and erythropoietin (46). In hypoxic
environments such as in solid tumors, the increase in HIF-1
leads to increased oxygen transport and mediates adaptive re-
sponses to oxygen deprivation, which may support tumor
development (47). In ischemic disorders, upregulation of HIF-1
can counteract the pathologic effects of hypoxic conditions and
promote reparative neovascularization (48). Therefore, the RCG-
induced expression of HIF1A may have different implications
depending on the health status of the individual, with benefits for
those with ischemic conditions and risks for those with existing
tumors.

JUN codes for c-JUN, a protein that partners with the proto-
oncogene FBJ murine osteosarcoma viral oncogene homolog
(c-FOS) to form activator protein 1 (AP-1), an early response
transcription factor. Although c-JUN is required for normal
development, many studies suggest that c-JUN is associated with
cancer development (49, 50). In contrast, other studies indicate
that c-JUN interferes with tumorigenesis. In c-JUN–deficient
breakpoint cluster region-Abelson+ (BCR-ABL+) tumor cell
lines, mRNA and protein of the tumor suppressor and cell cycle
inhibitor p16inhibitor of cyclin-dependent kinase 4a (INK4a) are down-
regulated, suggesting that c-JUN inhibits the tumorigenic silenc-
ing of p16INK4a (51). In tylophorine-treated carcinoma cells,
altered binding of c-JUN to the regulatory regions of the cyclin
A2 promoter resulted in decreased expression of cyclin A2 and
increased G1 phase arrest (52). These results represent mecha-
nisms by which the induction of JUN after RCG consumption
may inhibit tumorigenesis.

FIGURE 2 Concentration of oncostatin M protein produced by

Mono Mac 6 cells treated with garlic extract (0.5 mL/mL). Values are

least squares means 6 SEs; n = 3. *Different from control at that

time, P , 0.01.
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NFAM1 is expressed in B cells, T cells, and monocytes and is
involved in B cell signaling and development (53). Given that
NFAM1 was upregulated in whole blood from the human study
but not in MonoMac 6 cells, which are monocytic, garlic intake
may primarily influence B and/or T cells. NFAM1 activates the
NFATsignaling pathway, leading to activation of tumor necrosis
factor (TNF) and IL13 promoters in the human mast cell line
1 (HMC-1) (54). The upregulation of NFAM1 points to an
immunomodulating effect of RCG intake, an effect that has
been hypothesized, but not proven, to reduce cancer risk (55).

REL codes for V-Rel avian reticuloendotheliosis viral onco-
gene homolog (c-REL), which exists as homodimers or hetero-
dimers in the NF-kB family of transcription factors. These
transcription factors have many roles in both normal and
pathologic processes and activate genes related to apoptosis,
development, and immune and inflammatory responses (56).
Overexpression of c-REL has been linked with mammary
tumorigenesis in Michigan Cancer Foundation-7 (MCF7) cells
and in primary human breast cancer tissue samples; in addition,
the proliferation of B cell lymphoma cell lines was stimulated
by c-REL (57–59). In contrast, 3 of 6 REL2/2 mice developed
lymphoproliferative lesions after 12 mo of infection with
Helicobacter pylori, suggesting that c-REL–mediated signaling
may reduce the risk of lymphomagenesis in gastric mucosa–
associated lymphoid tissue (60). REL has many functions, and
the effect of its upregulation by RCG may be equally diverse
and depend on an individual�s health status.

OSM encodes a pleiotropic cytokine belonging to the IL-6
family of cytokines, which is characterized by a common signal
transducing receptor component, glycoprotein 130. OSM pro-
tein is produced by activated T cells, monocytes, dendritic cells,
and neutrophils (61–64). The induction of OSM after RCG
consumption seems not to be a general inflammatory response
because IL6 and LIF (also an IL-6 family gene) did not change.
Note that OSM has been shown to inhibit proliferation of
Human Tumor Bank 10 (HTB10) neuroblastoma cells, A549
lung carcinoma cells, and A375 and Sloan Kettering Melanoma
28 (SK-MEL-28) melanoma cells and in 4 of 5 chondrosarcoma
cell lines, because this indicates that OSM may have a role in
reducing cancer risk (65, 66). It may also be significant that
OSM upregulated AHR and HIF1A in hepatoma G2 (HepG2)
cells and JUN in human fibroblasts and M1 leukemic cells,
because these results suggest that the increased expression of
AHR, HIF1A, and JUN measured in our human clinical trial
and in vitro study may have occurred in response to increased
expression of OSM (67–69).

Although gene expression is an important determinant of
protein abundance, gene expression is not perfectly correlated
to amounts of protein present. The abundance of mRNA is
correlated to cellular protein concentration, but only approxi-
mately half of the variation in cellular protein concentration can
be attributed to mRNA levels (70–72). The other half is the
result of post-transcriptional modification and protein degrada-
tion (71, 72). Therefore, although our results highlight poten-
tial pathways that may be influenced by garlic, they should not
be considered definitive proof of alterations in metabolism.

Conclusions. Seven genes related to immunity and/or cancer
were upregulated in whole blood 3 h after RCG consumption,
and 5 of these genes were also upregulated in the monocytic cell
line Mono Mac 6 when treated with garlic extract. The
upregulated genes have a variety of functions, including roles
in xenobiotic metabolism, inflammation, B cell and T cell
development, apoptosis, and tumorigenesis. The measurement

of gene expression allows insight into early events initiated by
RCG intake. It has been used infrequently in preclinical studies,
and to our knowledge, this is the first clinical human trial to
assess gene expression in response to the consumption of garlic.
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