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Abstract

Type 1 diabetes (T1DM) is a chronic autoimmune disease with a long prodrome, which is 

characterized by dysfunction and ultimately destruction of pancreatic β-cells. Because of the 

limited access to pancreatic tissue and pancreatic lymph nodes during the normoglycemic phase of 

the disease, little is known about the dynamics involved in the chain of events leading to the 

clinical onset of the disease in humans. In particular, during T1DM progression there is limited 

information about temporal fluctuations of immunologic abnormalities and their effect on 

pancreatic β-cell function and mass. Therefore, our understanding of the pathoetiology of T1DM 

relies almost entirely on studies in animal models of this disease. In an effort to elucidate 

important mechanisms that may play a critical role in the progression to overt disease, we propose 

a mathematical model that takes into account the dynamics of functional and dysfunctional β-cells, 

regulatory T cells, and pathogenic T cells. The model assumes that all individuals carrying 

susceptible HLA haplotypes will develop variable degrees of T1DM-related immunologic 

abnormalities. The results provide information about the concentrations and ratios of pathogenic T 

cells and regulatory T cells, the timing in which β-cells become dysfunctional, and how certain 

kinetic parameters affect the progression to T1DM. Our model is able to describe changes in the 

ratio of pathogenic T cells and regulatory T cells after the appearance islet antibodies in the 

pancreas. Finally, we discuss the robustness of the model and its ability to assist experimentalists 

in designing studies to test complicated theories about the disease.

1 Introduction

Mathematical modeling has played a critical role in our understanding of various pathogenic 

aspects of human diseases, such as infectious diseases (1; 2; 3; 4), cancer (5; 6), cardiac 
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arrhythmias (7), and diabetes (8; 9). Thus far, modeling in diabetes research has mainly 

focused on the kinetics of glucose-induced insulin secretion and sensitivity (10; 11; 12), 

bursting properties of pancreatic β-cells (13; 14), and glucose-calcium oscillations in β-cells 

(15). Only recently has mechanistic modeling begun to explore specific pathways associated 

with the effects of T cells in the chain of events causing β-cell destruction that leads to 

T1DM (16). Work by Wang et al. studied the heterogeneity between young- and adult-onset 

type 1 diabetes (17), and Entelos developed a large scale model of a virtual NOD mouse 

(18) are some examples.

T1DM is a chronic autoimmune disease in which β-cells are gradually destroyed by 

pathogenic (autoreactive) T cells. This process is the end result of complex interactions 

among genetic, immunologic, and environmental factors (19). There is compelling evidence 

in (20) suggesting that T1DM results from an altered balance between pathogenic T cells 

mediating disease and regulatory T cells (Tregs) controlling auto-immunity (21). Type 1 

diabetes is a polygenic disease for which there are a small number of genes with large 

effects (i.e., HLA) and a large number of genes with small effects (22; 23). Risk of T1DM 

progression is mainly conferred by specific HLA DR/DQ alleles [e.g., DRB1*03-

DQB1*0201 (DR3) or DRB1*04-DQB1*0302 (DR4)] (24; 25; 26). Conversely, the 

DQB1*0602 allele is associated with dominant (80%–95%)protection from T1DM (26).

Although autoreactive CD4+ and CD8+ T cells are required for the initiation and progression 

of the disease (27; 28), the cellular dynamics leading to disease progression are not well 

understood. It has been postulated that in T1DM there is an imbalance of pathogenic 

(effector) T cells and regulatory T cells (Tregs) (21). Regulatory T cells (formerly 

suppressor T cells) are a specialized sub-population of T cells that suppress activation of the 

immune system thereby maintaining the homeostasis and tolerance to self molecules. Tregs 

represent less than 2% of the T cells in the peripheral blood. Using a number of 

experimental protocols, Treg cells can be expanded in vitro and in vivo and eventually could 

be harnessed therapeutically to treat T1DM or facilitate tolerance of transplanted pancreatic 

islets (29).

The fundamental pathophysiology shared by all patients with T1DM is the progressive loss 

in the ability of pancreatic β-cells to secrete insulin in response to glucose (30). This 

progressive decline in β-cell function may be secondary to a defect of regulatory T cells. A 

number of studies have demonstrated that any approach aiming to achieve immune hypo-

responsiveness or tolerance in established T1DM will have to address the β-cell mass and 

function remaining at the time of clinical diagnosis of T1DM to permit a recovery of a 

metabolically-functional mass over the long-term (31; 32).

Convincing findings from prospective studies in first degree relatives of T1DM probands 

have shown a long latent period between the first appearance of circulating autoantibodies 

directed against islet autoantigens and clinical onset (33; 34). In T1DM a long prodrome 

offers a wide window of opportunities for identifying individuals at risk and conducting 

intervention to delay or even prevent the clinical onset of the disease. Algorithms based on 

immunologic and metabolic measurements have been developed in an effort to improve 

prediction of type 1 diabetes. However, during the natural history of the disease the 
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mechanisms determining the imbalance between pathogenic T cells and regulatory T cells 

and are far from been resolved. Thus, in the following sections, we model their fluctuations 

occurring during the progression to disease onset. We pose questions about dynamic 

changes in the number and function of pathogenic (effector) and regulatory T cells in 

relation to pancreatic β-cell mass and function. These conjectures will lay the groundwork to 

identify gaps in the current knowledge of the pathoetiology of T1DM. Once these 

knowledge gaps during disease progression are identified, their dynamics can be further 

explored by formulating and evaluating hypotheses which may lead to the design of new 

experimental approaches with the potential to dramatically enhance our understanding of the 

disease process and interventions that prevent progression of T1DM.

2 Model development

Our intention is to study the relationship between immune cells and regulatory T cells by 

specifically looking at the ratio of pathogenic T cells and regulatory T cells, to determine the 

level of β-cell decrease after the appearance of islet antibodies in the pancreas, and to make 

prediction as to the key parameters that are controlling this behavior prior to the clinical 

onset of T1DM. We do so by developing a model that accounts for glucose, insulin, 

functioning β-cells, dysfunctional β-cells, normal regulatory T cells, defective regulatory T 

cells, IL-2, and pathogenic T cells. The key components of this model are its ability to track 

the concentration and functionality of both the β-cells and the regulatory T cells.

2.1 Glucose and Insulin

Insulin and glucagon are hormones that control the glycemic levels and are secreted in the 

pancreas by functioning β-cells and α-cells, respectively. Hence, it is important to track 

insulin (I) and glucose (G) in the model due to the direct correlation between their measured 

concentrations in the plasma and the assumed concentration of functioning β-cells in the 

pancreas.

Previous models have successfully shown a sigmoidal relationship for glucose concentration 

and activity in the pancreas (35). Topp et al. (8) modeled insulin production as a function of 

β-cells and glucose but only considered one type of β-cell. We modify their model by 

considering the existence of two types of β-cells: a functioning class (βf ) that produces 

insulin at normal levels and a dysfunctional class (βnf ) that produces no insulin. We also 

allow for small numbers of dysfunctional β-cells to regain some level of functionality and 

therefor return to the insulin producing class. Hence, in our model, the insulin secretion rate 

will depend on glucose concentration and only the functioning β-cells,

(1)

(2)
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In (1), R0 is the net rate of production at zero glucose, Eg0 is the total glucose effectiveness 

at zero insulin, and Si is the insulin sensitivity. Glucose effectiveness is defined as the ability 

of glucose to stimulate its own uptake and inhibit its own production; insulin’s effect on 

glucose uptake and production is defined as Insulin sensitivity (36). Bergman et al. (37) 

provided experimental evidence for this relationship using the glucose clamp technique. The 

parameter σ represents the rate of insulin secretion due to βf cells, α represents glucose 

concentration where the levels reach half saturation, and δI is the rate of removal of insulin.

2.2 β-cells

We consider two compartments for β-cells. For the functioning β-cells we use the same 

source term given in (8). Topp et al. assume that new β-cells can be formed by the 

replication of pre-existing β-cells or by neogenesis, the differentiation of new β-cells from a 

precursor or progenitor cell (38). Presently, it is very difficult to quantify rates of neogenesis 

or of trans-differentiation, the switch from pancreatic ductal cells to β-cells. However, there 

is a body of research that suggests, albeit indirectly, that these mechanisms make negligible 

contributions to β-cell mass dynamics except during development and in response to 

extreme physiological or chemically induced trauma (39; 40; 41; 42). For these reasons, 

neogenesis and trans-differentiation are not incorporated into the present model.

The first term in (3) describes the replication, r1, and apoptotic death, d0, rates of existing β-

cells. In vitro studies show that the percentage of β-cells undergoing replication varies as a 

nonlinear function of glucose level in the medium (8; 43). Replication rates for β-cells 

increase with increasing glucose levels; however, at extreme hyperglycemia (> 400mg/ml), 

β-cell replication may be reduced at a constant rate, r2 (39). Apoptotic death has been shown 

to vary nonlinearly with glucose (44; 45). Specifically, increasing the glucose level from 

very low levels to approximately 110 mg/ml in the medium surrounding cultured β-cells 

reduced their death rate; however, above 110 mg/ml glucose, the rate of β-cell death either 

remained low or increased.

In addition to death by apoptosis, cells can be lost from the functioning β-cell pool by losing 

the ability to produce insulin (46). This feature was not considered in (8) but is a key feature 

of our model. Functioning β-cells may lose the ability to produce insulin as a result of CD4+ 

T cell infiltration and their subsequent production of harmful cytokines and cytotoxins, such 

as IL-1 and TNF-α leading to iNOS (47). This process is accounted for in the second term in 

(3) by assuming pathogenic T cells Tb are directly affecting the β-cells and causing a switch 

from functional to non-functional. The maximal rate at which this happens is α1 and k1 

represents the half-saturation constant. With this we have,

(3)

An important feature of (3) is the loss of functioning β-cells does not occur at a constant 

rate; instead, their loss of function and death rate will depend on the presence of pathogenic 

T cells. The observation that actual death/loss of β-cells may occur in phases is considered 

through the saturation term in (3) which transitions functioning β-cells to the dysfunctional 
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β-cell class as seen in (4). Once β-cells are no longer capable of producing insulin, they 

either undergo apoptosis or necrosis at an elevated, but glucose independent rate, d1, or are 

directly destroyed by cytotoxic T-cells which we account for by the scaling term, γT. This 

term simply increases the rate of removal of cells from this class. In the results that follow, 

we will show the model’s ability to provide clues to the significance of this result. For 

instance, we will consider the possibility that the β-cells that become dysfunctional may 

actually, at some future time, be able to reverse this effect and hence begin to produce some 

levels of insulin. We incorporate this result with a simple linear term εBnf;

(4)

Together, (3) and (4) model the rate of change in the total β-cell mass. In this way, the 

fraction of functioning β-cells is not constant, rather it is dynamically varying.

2.3 Immune Cells

T cells possess the ability to directly destroy β-cells in a cytotoxic manner and by directly 

influencing β-cell destruction through the release of cytotoxic molecules such as cytokines 

and perforin. In type 1 diabetes, there is evidence that when the immune system is 

unbalanced, favoring islet inflammation and pathogenicity, the system is prone to islet 

autoimmunity development. This situation can also occur if there is a defect in regulation.

We can test this hypothesis by allowing our model to account for two classes of regulatory T 

cells: normal regulatory T cells, R, and a second class that represents regulatory T cells that 

have lost some form of functionality, Rb. This defect leads to an “unregulated” immune 

response, due to a class of pathogenic T cells, that affects the characteristics of insulin-

producing β-cells by reducing their numbers or changing their functionality. Hence, we 

consider two main components of the immune response: regulatory T cells and the cells 

which are being regulated. The regulated cells are considered to be pathogenic T cells, Tb, 

which have migrated to the pancreas from the thymus and are unresponsive to the regulatory 

T cells (see Fig. 1).

Taking the information above, we are able to generate the next set of equations used to 

describe the immune response that play a key role in the progression to T1DM. We 

recognize regulatory T cells (R) and a compartment of pathogenic T cells (Tb) which are 

considered to be dangerous effector T-cells and become increasingly resistant to control 

from regulatory T cells. Evidence shows that infiltration of these dangerous pathogenic T 

cells is gradual initially and directly relates to the two-phase loss of β-cell mass (48);

(5)

(6)
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Of note that in (6) the proliferation rate of regulatory T cells depends on the amount of I2 

available in the pancreas, which is assumed to vary according to . The rate of 

production of the pathogenic T cells, however, correlates with the presence of certain types 

of islet autoantibodies, S(t), that are produced by B cells. Kp represents the carrying capacity 

in the pancreas of both immune cells and β-cells, di is the death rate of immune cells, δ is the 

rate at which regulatory T cells can kill pathogenic T cells, and the ki’s are the half-

saturation constants that control the rate of increase of cells in the pancreas.

A unique aspect of our model is the function S(t) which will allow for the inclusion of the 

autoantibodies ICA, GAD65, IAA and IA2, which are well known to appear many years 

before the clinical onset of T1DM (49). The immune cells produce these autoantibodies 

against self-antigens in response to the damage of the β-cells. We assume that due to some 

unknown event, the pathogenic T cells begin to attack the β-cells, which leads to the release 

of islet autoantibodies and an increased level of proliferation of pathogenic T cells. We will 

consider this function to be time-dependent in accordance with a function that allows us to 

introduce them in the system at specific times over the course of a patient developing 

T1DM. Hence we consider

(7)

We can also use a hyperbolic tangent function which allows for a more continuous dynamic 

but both functions show similar results.

Finally, we consider the inclusion of a class of non-functioning regulatory T cells (Rnf ). 

Evidence suggests that there is a gradual switch between functioning and non-functioning 

regulatory T cells (50). By modeling this class of regulatory T cells we are able to suggest 

possible pathways for disease progression that have yet to be considered. The rate of 

transition from functioning to non-functional regulatory T cells is given by F1(R, Rb, Tb) = 

αR,

(8)

3 Results

The results presented here provide evidence of the model’s ability to study the dynamics of 

T1DM. For each figure, we assume specific values for the disease parameters and the results 

are based on these assumptions. In all cases, we can find and will show variations in these 

results by simply changing one or two of the key parameters.

We first model immunologic fluctuations which may occur during the progression to clinical 

T1DM. These assumptions may explain the stepwise decline in β-cell mass and function that 

occurs after the appearance of multiple autoantibodies which are strong predictors of disease 

development (see Fig. 2). The model assumes all individuals carrying a disease-prone HLA 

genotype (i.e. DRB1*03-DQB1*0201 (DR3) or DRB1*04-DQB1*0302 (DR4)] will 
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develop a degree of islet autoimmunity. The pathogenic phenotype can be viewed as a 

spectrum with destructive autoimmunity, loss of β-cell mass, multiple autoantibodies and 

clinical disease observed at one end, and non-destructive autoimmunity, preservation of β-

cell mass, and generally absence of islet autoantibodies, at the opposite end of the spectrum. 

In the initial phase of the disease, the number of pathogenic T cells is controlled by an 

increase in number of functional regulatory T cells. As the disease process becomes more 

prominent, autoreactive effector (pathogenic) T cells that mediate disease exceed the 

number of regulatory T cells, which no longer suppress pathogenic autoimmune responses 

and in turn lose their ability to actively control unwanted immunity even after the onset of 

pathological manifestations.

3.1 Relationship between islet autoantibodies, ratio of pathogenic T cells to regulatory T 
cells, and β-cell mass

The discovery of islet cell antibodies (ICA) was the prelude to the understanding that type 1 

diabetes mellitus (T1DM) is a chronic autoimmune disease (51). We previously (49) 

summarized the current evidence for multiple islet autoantibodies as predictive markers for 

T1DM progression. We incorporated these islet autoantibodies into our model for T1DM to 

study the dynamics and progression of the disease for individuals considered to be low risk, 

i.e., present less than three islet autoantibodies, or high risk, i.e., greater than two islet 

autoantibody markers.

Our results (see Fig. 3 through Fig. 5) show the model’s prediction, over a 30 year period of 

time, for the concentration of functioning β-cells and for the ratio of pathogenic T cells to 

regulatory T cells. In each simulation we allow for the appearance of one islet antibody 

every five years from the start of our simulation, i.e., in (7) τ1 = 5 years, τ2 = 10 years, and 

τ3 = 15 years. It must be emphasized that this is just one test case and that we can consider 

an infinite number of others. For instance, the appearance of certain islet antibodies can 

occur in as early as 5 months in young kids or over 20 years in the elderly. Each of these 

scenarios can be tested with our model, by varying τi in (7), but we only present the case 

here where they occur every 5 years. Our initial results, which we vary αi and K in (7), 

suggest that the β-cells receive most of their damage during the first attack by the pathogenic 

T cells, i.e., which coincides with the appearance of the first islet autoantibody. We found 

roughly a 12% (see Fig. 3) to 28% (see Fig. 5) decrease in the level of functioning β-cells. 

However, after the appearance of the second antibody we find a smaller reduction in the β-

cells. This result is contrary to some current beliefs and by varying the parameter values, we 

can describe events where the β-cell decrease is more gradual over time, instead of a more 

rapid reduction, proving the robustness of our model (see Fig. 8.)

What happens next depends on the assumption that either a third islet autoantibody will 

appear or not. If we assume no more islet autoantibodies appear then the individual is 

predicted to stay in a pre-diabetic state, i.e., the level of functioning β-cells is decreased but 

settles to level that is lower then what is seen in a normal individual (Fig. 3 panel A blue 

line). These results can be dramatically different if we change the values of αi in (7) and in 

fact, we can show the biggest decrease in functioning β-cells can occur after the appearance 

of the second islet autoantibody and not the first (results not shown). When we compared 
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these results with the ratio of pathogenic T cells to regulatory T cells (Fig. 3 panel B blue 

line) we find damped oscillations that occur for a few months after initiation of the 

pathogenic T cells attack of the β-cells. This leads us to believe that the pathogenic T cells 

are trying to overtake the system but the regulatory T cells are able to maintain control. 

Another theory is that an environmental factor, such as a virus, can trigger pathogenic T 

cells, which can destroy insulin secreting cells. We discuss this more in the future work 

section.

If we allow for a third attack by pathogenic T cells (shown by the appearance of a third islet 

autoantibody at 15 years), we find this control is only temporarily as seen in Fig. 3 (panel B 

red line) when after a third marker becomes present (high risk) the oscillations become 

larger and in fact for the first time, the ratio Tb/R becomes greater than one. This result 

shows comparable dynamics with the experimental evidence presented in Fig. 2 (panel C).

We ran a second test that studies the impact of assuming that the pathway for dysfunctional 

β-cells to return to a functioning state no longer exists, i.e., ε = 0 in (3) and (4). Hence we 

assume that once a β-cell becomes dysfunctional that they remain dysfunctional. When we 

run these simulations we find similar results to the above case when we consider a low risk 

individual (less then 3 islet autoantibodies) Fig. 3 (panel C and D, blue lines). However 

when we consider a high risk individual we find an interesting result: the time it takes for the 

β-cells to rapidly decline to zero is only one year instead of three years, however, the 

pathogenic T cells do not fluctuate as much as the case when ε > 0 (see Fig. 3 panel C and D 

red lines) and in fact show that the disease appears to be more severe but while we would 

expect the ratio of Tb/R to be greater than in the previous example, we find a non-intuitive 

result that shows the ratio to be 32% less then the previous case.

As mentioned above, by varying the rates αi, τi, and K we can see quite different dynamics. 

For instance, in Fig. 3 we found that after the appearance of the third islet autoantibody, the 

individual will experience a significant reduction of functioning β-cells within a few years. 

However, this may not be the case in all individuals and if we allow for slight changes in αi 

and K we find that the individual can actually maintain some level of functioning β-cells for 

between 12 years (Fig. 4) to 30 years (Fig. 5) after the third autoantibody is present. During 

this time, the ratio of pathogenic T cells to regulatory T cells shows some rapid, large 

amplitude oscillations, with pathogenic T cells exceeding regulatory T cells in number, 

showing a highly dynamic process between these two immune cells. In fact, we find that 

even though the β-cells maintain some level of function, the ratio of  is much larger then 

the case when the patient experiences a nearly complete annihilation of functioning β-cells.

4 Describing the number and function of regulatory T cells and β-cells

Our model allows for the transition of β-cells from functioning to dysfunctional as seen in 

(3) with the saturation term . In the previous results we allowed for a1 = 8 per day. 

This term is the source of the dysfunctional β-cells as seen in (4) and can change the model’s 

description. As seen in Fig. 6 our model can account for various declines in functioning β-

cells by varying the rate at which they switch over, a1. In the following graph we provide 

three simulations that allow for one (Fig. 6 top panel), two (Fig. 6 middle panel) or three 

Nelson et al. Page 8

Math Biosci Eng. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



islet antibodies (Fig. 6 bottom panel). In each figure we start a1 = 8 per day and then double 

it and then triple it. As the value for a1 increases, the level of β-cells begins to decrease and 

we found that when there are three islet antibodies that if a1 > 18 per day then the level of 

functioning β-cells drops to zero. Comparing Fig. 3 and Fig. 6 we found similar results 

showing the decline of β-cells occurs either through an increase of the rate of switch from 

functioning to dysfunctional or if we keep this rate fixed, through a change in the level of 

dysfunctional β-cells returning to the functional class. This provides direct evidence for the 

importance of the rate at which this occurs.

5 Islet antibodies and describing onset of T1DM

Finally, we consider applying the model to a generated random set of data points showing 

the gradual decline of functional β-cells over a 30 year period of time. We were able to keep 

the model parameters fixed from before and focus on the timing in which the islet antibodies 

appear in the pancreas. They appear at 5, 10, 15 and 20 years post start of the simulation, 

and we are able to describe, using a Monte Carlo algorithm, the level of response needed by 

the pathogenic T cells in order to fit the data. For this simulation we set 

, where the H 

represents the heaviside (step) function and time is in days. From our data set we were able 

to show an increase in the response of pathogenic T cells after each islet antibody entered. 

As seen in Fig. 7 we used α1 = 10, α2 = 50, α3 = 100, and α4 = 150. With the application of 

real data, we feel we can make significant contributions to the understanding of T1DM.

6 Discussion

One of the common characteristics of chronic autoimmune disorders, such as lupus, 

rheumatoid arthritis and T1DM, is their relapsing-remitting nature, which implies a cyclic 

process of their autoimmune responses. The intensity and duration of cyclic variations of 

pathogenic immune responses and pro-inflammatory cytokines can cause flare ups of 

rheumatoid arthritis or T1DM. The fundamental pathophysiology shared by all patients with 

type 1 diabetes is the progressive loss in the ability of the β-cells in the pancreas to secrete 

insulin in response to glucose and the progressive decline in β-cell mass. As autoimmunity 

in type 1 diabetes progresses from initial activation to a chronic state, there is an increase in 

number of islet autoantigens targeted by T cells and autoantibodies which precede the onset 

of clinical disease. Multiple antibodies reacting with these autoantigens (i.e., insulin, 

glutamic acid decarboxylase (GAD65) and the islet antigen IA-2), are detected in the 

majority of newly diagnosed T1DM patients and their presence is highly predictive of 

disease progression in otherwise healthy first-degree relatives of T1DM probands. Islet 

autoantibodies serve as surrogate markers for specific autoimmune responses targeting 

pancreatic β-cells (33; 34; 49). Although in our armamentarium we have reliable 

autoantibody markers predicting with accuracy T1DM progression (33; 34), the negative 

results from the Diabetes Prevention Trial-Type 1 Diabetes Study Group (52) and the 

European Nicotinamide Diabetes Intervention Trial (ENDIT) Group (53) have for now 

clouded our vision that effective prevention is around the corner. One reason that could 

explain these negative results is that the mechanisms of the disease process prior to diabetes 

onset are largely unknown.
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In the past two decades tremendous progress has been made in the understanding of the 

genetics, pathophysiology and prediction of the disease. However, there are critical gaps that 

have yet to be filled. Prompted by an interest in trying to fill some of these gaps, we 

modeled a few crucial aspects of the disease process. The model that we present is an 

attempt to address complicated questions about the decline of functioning β-cells, about the 

ratio of pathogenic T cells to regulatory T cells, and describe the onset of the disease. As 

seen in Fig. 3 we found in low risk individuals (less then three islet autoantibodies) that the 

person can have a 10 – 20% decline in the number of functioning β-cells but still stay in a 

pre-diabetic state. In fact, we can find declines up to 25% in these pre-diabetic individuals 

(results not shown). During the pre-diabetic state we also can predict the ratio of pathogenic 

T cells to regulatory T cells. We found a significant result when allowing dysfunctional β-

cells to return to the functioning class. When we assumed ε > 0 in (3) we found  and 

when the third islet autoantibody appears that the person will have a catastrophic decrease 

within 3 years of functioning β-cells without intervention. If we do not allow for the return 

to the functioning class (seen in (3) with ε = 0) we see the catastrophic decrease within one 

year, however, , which implies the regulatory T cells still out number the pathogenic T 

cells. A result that is somewhat non-intuitive when compared with Fig. 2 and shows the 

model’s ability to describe dynamics that are not mainstream and may lead to important 

conjectures that must be tested experimentally.

Another unique feature of our model is the term  which allows for a dynamic change 

in functionality of β-cells over time and hence does not assume the change to be constant. 

We tested the model’s ability to fit a generated random set of data points showing the 

gradual decline of functional β-cells over a 30 year period of time. The model allows us to 

focus on certain kinetics associated with the disease and in Fig. 7 we showed how we can 

use this model to simulate the decay of β-cells in relation to the islet autoantibodies in the 

pancreas. These results show the potential of our model to make significant contributions to 

the understanding of T1DM when applied to real clinical data sets.

Albeit evidence indicates that T1DM is the end result of an altered balance between 

pathogenic T cells and regulatory Tregs, the mechanisms determining this imbalance have 

not yet been determined. One hypothesis is that the rate of T1DM progression depends on 

the degree of epitope spreading, the efficiency of regulatory responses and, possibly, the rate 

of regeneration of β-cells in response to immune-mediated beta cell injury (54). Treg cells 

prevent activation of autoreactive T cells in the lymph nodes by limiting their access to 

dendritic cells and thus their expansion and achievement of effector functions. These 

activities are largely mediated by thymus-derived natural Tregs. When immune homeostasis 

is perturbed and inflammation erupts in the tissues, both natural Tregs and cytokine-induced 

adaptive Tregs traffic to the site of inflammation and inhibit the functions of fully 

differentiated pathogenic effector T cells in the target tissue. If regulatory responses are 

defective, as postulated in our model, we can find effector T cell responses that outnumber 

regulatory responses leading to impairment, destruction of β-cell mass and disease onset. 

However, we can also find disease onset in patients whose regulatory T cells still outnumber 

the pathogenic T cells, suggesting a more complex implicit dynamic.
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Despite significant advances, a simple, scalable, non-toxic, and highly-effective therapeutic 

strategy that can indefinitely lead to a recovery of β-cell function or mass remains elusive. 

At least in theory β-cell mass and function could be rescued by blocking the ability to 

generate pathogenic T cell responses to islet auto antigen(s) thought to signal the beginning 

stages of the disease, and by either developing Treg-based cellular therapeutics or delete 

pathogenic T cells in an attempt to suppress autoimmune responses. In vivo potential 

mechanisms of action with the ultimate goal of safety and efficacy trials in pre-clinical and 

new-onset Type 1 diabetic patients may be valuable to help design future prevention trials 

for Type 1 diabetes. T1DM is a chronic autoimmune disease characterized by dysfunction 

and ultimately destruction of β-cells in the islets of Langerhans. T1DM presents a complex 

interaction between genetic, immunological, and environmental factors, most of which have 

yet to be identified. Hence, we proposed in this paper the first model of its kind to study this 

complex interaction. For instance, while it is known that when the level of β-cell function is 

no longer sufficient to maintain metabolic homeostasis, the individual is then dependent on 

endogenous insulin to sustain life, it is not known why or how these β-cells lose function. 

Also, the fundamental pathophysiology shared by all patients with T1DM is the progressive 

loss in the ability of the β-cells of the pancreas to secrete insulin in response to glucose. This 

progressive decline in beta cell function may be secondary to a defect of regulatory T cells.

With this information at hand we have provided the groundwork for the next stage of models 

to study T1DM. With real connections between experiment and theory, we expect 

significant advances in our understanding of this disease.

7 Future Studies

We have developed a dynamical systems model that describes β-cells, immune cells, 

cytokines, glucose and insulin. Our current work describes the relationship between 

functional β-cells and islet autoantibodies. Our results suggest that the timing in which the β-

cells switch over from functional to dysfunctional plays a critical role in the model’s 

predictive ability. As seen in (3) we assume the switch is modeled by . While 

we allow for a dynamic change seen in the levels of Tb and Bf, however, it is assumed to 

occur at a constant rate a1. We plan to study a switch that is time dependent such that a1 = 

a(t).

A second area of interest is focusing more on the regulatory T cells. We assumed that 

regulatory T cells can switch over to a dysfunctional class and that these cells become 

unable to control the pathogenic T cells. However, what causes this switch is unknown. We 

want to expand the model to test specific hypotheses about the causes for the change in 

regulatory T cells: Is it an imbalance in the regulatory T cells? Is it caused by the migration 

of pathogenic T cells in the pancreas? or is it a combination of both?

Third, we plan to begin a mathematical study to evaluate the association between infectious 

diseases and T1DM (55). Evidence suggests that the recent increase in the incidence of 

T1DM that cannot be explained by hereditary events leads one to look for environmental 

causes, such as childhood infectious diseases (56). Our mathematical model will allow us to 

study this in detail.

Nelson et al. Page 11

Math Biosci Eng. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, Pietropaolo’s group has recently found that an antibody response against an epitope 

localized within the extracellular domain of the neuroendocrine autoantigen IA-2 can predict 

a rapid progression of T1DM in adolescents as well as young adults (unpublished results). 

We are working to apply our model to study the pathogenesis of T1DM in young adults. Our 

model can describe this early and rapid progression as seen in Fig. 8 and with proper 

connections to experimental data should be able to help in the understanding of this 

dynamic.
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Fig. 1. 
Diagram presenting the basic features of our model. The left side shows a normal individual 

and the right side shows a T1DM patient. For a normal individual there exists a healthy 

balance between the regulatory T cells, immune cells and functioning β-cells. The 

functioning β-cells produce insulin which then controls the levels of glucose. IL-2 is 

produced by the immune cells. The path to T1DM is shown on the right were we introduce 

two compartments, Rb and Tb, that show the model’s ability to track the changes in 

functionality and concentration of functioning β-cells, Bf, and regulatory T cells, R. We also 

show the islet autoantibodies which we hypothesis correlates in time with an increase in 

pathogenic T cells, Tb, that are attacking the functioning β-cells. Notice the resulting 

changes in the level of glucose and insulin.
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Fig. 2. 
During T1DM progression there is an imbalance between the degree of epitope spreading, 

the cytotoxic potential of autoreactive T cells, the efficiency of regulatory responses and, 

possibly, the rate of regeneration of β-cells in response to immune-mediated β-cell 

destruction. These immunologic responses are cyclic and if autoreactive T cells (Teffs) 

exceed in number and/or function Tregs or there are functional defects in Tregs (top panel), 

which would no longer counteract the cytotoxic potential of Teffs, this leads to β-cell 

dysfunction and ultimately destruction. This destructive process may take years, as for 

childhood type 1 diabetes or decades (middle panel), or for instance in Latent Autoimmune 

Diabetes of the Adulthood (LADA). Islet autoantibodies manufactured by the immune 

system are directed against one of more of hosts self-proteins and they serve as reliable 

surrogate predictive markers of disease. The bottom panel shows cyclic variations of Teffs 

and Tregs in individuals with low risk or no risk of T1DM progression, such as those with 

single islet autoantibody responses. In this case there is a compensatory regulatory response 

counteracting effectively the cytotoxic potential of autoreactive T cell responses.
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Fig. 3. 
Important figure showing the model’s capabilities of simulating T1DM results. The 

mathematical model presented in this paper accounts for the functionality and concentration 

of regulatory T cells. The top two panels show the decline of functioning β-cells (left) and 

the ratio of pathogenic T cells to regulatory T cells (right) when we allow for the 

dysfunctional β-cells to regain some of their functionality (ε > 0). What we find is for low 

risk individuals (≤ 2 islet autoantibodies) that the β-cells decline between 10 – 15% over a 

20 year period and the person remains in a pre-diabetic state. However if the person moves 

to high risk, i.e., > 2 islet autoantibodies, the β-cells begin to significantly decline and with-

in three years drop to zero. The right panel shows the ratio of Tb vs R and how the regulatory 

T cells are trying to control the pathogenic T cells (through the quickly damped oscillations) 

but become too stressed after the third antibody appears (as seen by the sustained 

oscillations). The bottom set of panels show the same dynamics but when we do not allow 

for the return of dysfunctional β-cells (ε = 0). The significant difference we find is that after 

the appearance of the third antibody the β-cells decline with-in one year instead of three 

years but they do so while the regulatory T cells seem to be still controlling the pathogenic T 

cells (as seen by the ratio of Tb to R being less then one and hence the concentration of R is 

greater than Tb).
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Fig. 4. 
In this figure we provide an example that allows for the appearance of three islet 

autoantibodies but different from Fig. 3 we see that the patient responded with only a 10% 

decrease in functioning β-cells after the first islet autoantibody appeared, however, after the 

third autoantibody, the level of functioning β-cells maintains a level that is only reduced by 

20% and maintains this level for over 12 years. This dynamic is very different then the one 

presented in the previous figure. All the model parameters were kept the same except for the 

ones that control the S(t). In fact, the change in dynamics seen in this figure are due to a 

doubling of αi and a two order of magnitude change in K, showing the robustness of our 

model and the critical need for data to validate our results.
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Fig. 5. 
Figure similar to Fig. 4, except we change the values of αi and K by 20%, showing that the 

functioning β-cells can be predicted by the model to maintain a reduced level for over 20 

years after we see the third islet autoantibody. Again, showing the model’s robustness to 

describe a wide variety of dynamics.
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Fig. 6. 
Model describing β-cell resilience where the functional form for their transformation to 

dysfunctional β-cells is given by  and hence is considered to be dependent solely on 

the T cells that have become resistant to regulator T cell responses. The panels allow for one 

(top) islet autoantibody, two (middle), and three (bottom). In each case we set a1 = 8 per day 

and then double it and then triple its value. In all cases, the level of functioning β-cells 

decreases as a1 increases and in fact, there exists a dramatic drop when we allow for three 

islet autoantibodies and let a1 > 18 as seen in the bottom panel.
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Fig. 7. 
Now we consider the predictive ability of the model and show how it can be of use for 

understanding T1DM. The previous figures have focused on the model’s description of 

changes in β-cell numbers over time. In this figure, we generated a random set of data points 

that simulates the gradual decline of functional β-cells over a 30 year period of time. 

Keeping the model parameters fixed from before, we focused on the timing of the 

appearance of the islet autoantibodies in the pancreas. We assumed they appeared at 5, 10, 

15 and 20 years, post start of the simulation, and then described the level of response the 

pathogenic T cells needed to fit the data. The equation we used was 

, where the H 

represents the heaviside (step) function. From our data set we were able to show an increase 

in the response of pathogenic T cells after the number of islet autoantibodies increase. As 

seen in Fig. 7 we used α1 = 10, α2 = 50, α3 = 100, and α4 = 150.

Nelson et al. Page 21

Math Biosci Eng. Author manuscript; available in PMC 2015 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
With modifications in our function, S(t), we can describe early events in the onset of T1DM 

in young adults. Top figure shows the gradual decline in functioning β-cells. The initial 

decline could be due to the subjects genetic disposition to the disease. Once T cell and 

autoantibody responses occur, we continue to see a decline in the number of functioning β-

cells. In conjunction with this, we see the ratio of pathogenic to regulatory T cells (bottom 

figure) starting to oscillate about 1. With the proper adaption to experimental data, our 

model can help understand the complex dynamics associated with this disease.
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