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Genes with similar transcriptional activation kinetics can display very
different temporal mRNA profiles because of differences in transcrip-
tion time, degradation rate, and RNA-processing kinetics. Recent
studies have shown that a splicing-associated RNA production delay
can be significant. To investigate this issue more generally, it is useful
to develop methods applicable to genome-wide datasets. We
introduce a joint model of transcriptional activation and mRNA
accumulation that can be used for inference of transcription
rate, RNA production delay, and degradation rate given data from
high-throughput sequencing time course experiments. We combine a
mechanistic differential equation model with a nonparametric statis-
tical modeling approach allowing us to capture a broad range of
activation kinetics, and we use Bayesian parameter estimation to
quantify the uncertainty in estimates of the kinetic parameters. We
apply the model to data from estrogen receptor α activation in the
MCF-7 breast cancer cell line.We use RNA polymerase II ChIP-Seq time
course data to characterize transcriptional activation and mRNA-Seq
time course data to quantify mature transcripts. We find that 11% of
genes with a good signal in the data display a delay of more than
20 min between completing transcription and mature mRNA produc-
tion. The genes displaying these long delays are significantly more
likely to be short. We also find a statistical association between high
delay and late intron retention in pre-mRNA data, indicating signifi-
cant splicing-associated production delays in many genes.
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Induction of transcription through extracellular signaling can
yield rapid changes in gene expression for many genes. Estab-

lishing the timing of events during this process is important for
understanding the rate-limiting mechanisms regulating the response
and vital for inferring causality of regulatory events. Several pro-
cesses influence the patterns of mRNA abundance observed in the
cell, including the kinetics of transcriptional initiation, elongation,
splicing, and mRNA degradation. It was recently demonstrated that
significant delays attributable to the kinetics of splicing can be an
important factor in a focused study of genes induced by tumor
necrosis factor (TNF-α) (1). Delayed transcription can play an
important functional role in the cell, for example, inducing oscil-
lations within negative feedback loops (2) or facilitating “just-
in-time” transcriptional programs with optimal efficiency (3). It is
therefore important to identify such delays and to better understand
how they are regulated. In this study, we combine RNA polymerase
(pol-II) ChIP-Seq data with RNA-Seq data to study transcription
kinetics of estrogen receptor (ER) signaling in breast cancer cells.
Using an unbiased genome-wide modeling approach, we find evi-
dence for large delays in mRNA production in 11% of the genes
with a quantifiable signal in our data. A statistical analysis of genes
exhibiting large delays indicates that splicing kinetics is a significant
factor and can be the rate-limiting step for gene induction.
A high-throughput sequencing approach is attractive because

it gives broad coverage and thus allows us to uncover the typical

properties of the system. However, high-throughput data are as-
sociated with significant sources of noise, and the temporal reso-
lution of our data is necessarily reduced compared with previous
studies using more focused PCR-based assays (1, 4). We have
therefore developed a statistically efficient model-based approach
for estimating the kinetic parameters of interest. We use Bayesian
estimation to provide a principled assessment of the uncertainty in
our inferred model parameters. Our model can be applied to all
genes with sufficiently strong signal in both the mRNA and pol-II
data with only mild restrictions on the shape of the transcriptional
activation profile (1,814 genes here).
A number of other works studying transcription and splicing

dynamics (e.g., refs. 1, 5, and 6) forgo detailed dynamical modeling,
which limits the authors’ ability to properly account for varying
mRNA half-lives. Our statistical model incorporates a linear or-
dinary differential equation of transcription dynamics, including
mRNA degradation. Similar linear differential equation models
have been proposed as models of mRNA dynamics previously (4, 7,
8) but assuming a specific parametric form for the transcriptional
activity. In contrast, we apply a nonparametric Gaussian process
(GP) framework that can accommodate a quite general shape
of transcriptional activity. As demonstrated previously (9–11),
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the linearity of the differential equation allows efficient exact
Bayesian inference of the transcriptional activity function. Before
presenting our results, we outline our modeling approach.

Model-Based Inference of Transcriptional Delays
Our modeling approach is summarized in Fig. 1. We model the
dynamics of transcription using a linear differential equation,

dmðtÞ
dt

= β pðt−ΔÞ− αmðtÞ, [1]

where mðtÞ is the mature mRNA abundance and pðtÞ is the tran-
scription rate at the 3′ end of the gene at time t, which is scaled
by a parameter β because we do not know the scale of our pðtÞ
estimates. The parameter Δ captures the delay between tran-
scription completion and mature mRNA production. We refer
to this as the RNA production delay, defined as the time required for
the polymerase to disengage from the pre-mRNA and be fully pro-
cessed into a mature transcript. The parameter α is the mRNA deg-
radation rate, which determines the mRNA half-life (t1=2 = ln 2=α).
We infer all model parameters (α, β, Δ, and the noise variance
and parameters of the GP covariance function discussed in Mate-
rials and Methods) using a Markov chain Monte Carlo (MCMC)
procedure. The posterior distribution of the model parameters
quantifies our uncertainty, and we use percentiles of the posterior
distribution when reporting credible regions around the mean or
median values.
We measure the transcriptional activity pðtÞ using pol-II ChIP-

Seq time course data collected close to the 3′ end of the gene
(reads lying in the last 20% of the transcribed region). Our main
assumption is that pol-II abundance at the 3′ end of the gene is
proportional to the production rate of mature mRNA after a
possible delay Δ attributable to disengaging from the polymerase
and processing. The mRNA abundance is measured using RNA-
Seq reads mapping to annotated transcripts, taking all annotated
transcripts into account and resolving mapping ambiguities using a
probabilistic method (12) (seeMethods for details). As we limit our
analysis to pol-II data collected from the 3′ end of the transcribed
region, we do not expect a significant contribution to Δ from
transcriptional delays when fitting the model. Such transcriptional
delays have recently been studied by modeling transcript elonga-
tion dynamics using pol-II ChIP-Seq time course data (13) and
nascent mRNA (GRO-Seq) data (14) in the same system. Here, we
instead focus on production delays that can occur after elongation
is essentially complete.

Existing approaches to fitting models of this type have as-
sumed a parametric form for the activation function pðtÞ (4, 7, 8).
We avoid restricting the function shape by using a nonparametric
Bayesian procedure for fitting pðtÞ. We model pðtÞ as a function
drawn from a GP that is a distribution over functions. The general
properties of functions drawn from a GP prior are determined by a
“covariance function,” which can be used to specify features such
as smoothness and stationarity. We choose a covariance function
that ensures pðtÞ is a smooth function of time because our data are
averaged across a cell population. Our choice of covariance func-
tion is nonstationary and has the property that the function has
some persistence and therefore tends to stay at the same level
between observations (see the SI Appendix for further details). The
advantage of using a nonparametric approach is that we only have
to estimate a small number of parameters defining the covariance
function (two in this case, defining the amplitude and time scale of
the function). If we were to represent pðtÞ as a parametrized
function, we would have to estimate a larger number of parameters
to describe the function with sufficient flexibility. The Bayesian
inference procedure we use to associate each estimated parameter
with a credible region would be more challenging with the inclusion
of these additional parameters.
We have previously shown how to perform inference over dif-

ferential equations driven by functions modeled using GPs (9–11).
The main methodological novelty in the current work is the in-
clusion of the delay term in Eq. 1 and the development of a
Bayesian inference scheme for this and other model parameters. In
brief, we cast the problem as Bayesian inference with a GP prior
distribution over pðtÞ that can be integrated out to obtain the data
likelihood under the model in Eq. 1 assuming Gaussian observa-
tion noise. This likelihood function and its gradient are used for
inference with a Hamiltonian MCMC algorithm (15) to obtain a
posterior distribution over all model parameters and the full pol-II
and mRNA functions pðtÞ and mðtÞ.
Results
We model the transcriptional response of MCF-7 breast cancer
cells after stimulation by estradiol (E2) to activate ER-α sig-
naling. Fig. 2 shows the inferred pol-II and mRNA profiles for all
genes with sufficient signal for modeling, along with some spe-
cific examples of fitted models and estimated delay parameters.
Before discussing these results further below, we describe the
application of our method to realistic simulated data to assess
the reliability of our approach for parameter estimation under a
range of conditions.

Fig. 1. Cartoon illustrating the underlying biology and data gathering at a single time point (Left) and time series modeling (Right). The data are from pol-II
ChIP-Seq, summarized over the last 20% of the gene body, and RNA-Seq computationally split to pre-mRNA and different mRNA transcript expression levels.
The modeling on the right shows the effect of changing mRNA half-life (t1=2) or RNA production delay (Δ) on the model response: both induce a delay on the
mRNA peak relative to the pol-II peak, but the profiles have otherwise distinct shapes.

13116 | www.pnas.org/cgi/doi/10.1073/pnas.1420404112 Honkela et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1420404112/-/DCSupplemental/pnas.1420404112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1420404112


Simulated Data.We applied our method to data simulated from the
model in Eq. 1 using a pðtÞ profile inferred using pol-II data from
the TIPARP gene (gene C in Fig. 2; see SI Appendix for further
details about the simulated data). We simulated data using dif-
ferent values of α and Δ to test whether we can accurately infer the
delay parameter Δ. Fig. 3 shows the credible regions of Δ for dif-
ferent ground truth levels (horizontal lines) and for different
mRNA degradation rates (half-lives given on the x-axis). The re-
sults show that Δ can be confidently inferred with the ground truth
always lying within the central part of the credible region. The
maximum error in posterior median estimates is less than 10 min,
and when positive, the true value is always above the 25th per-
centile of the posterior. We observed that as the mRNA half-life
increases, our confidence in the delay estimates is reduced. This is
because the mRNA integrates the transcriptional activity over time
proportional to the half-life leading to a more challenging
inference problem. We also note that inference of the degradation
parameter α is typically more difficult than inference of the delay
parameter Δ (SI Appendix, Fig. S1). However, a large uncertainty
in the inferred degradation rate does not appear to adversely affect
the inference of the delay parameters which are the main focus
here. More time points, or a different spacing of time points, would
be needed to accurately infer the degradation rates. Additional
results of delay estimation in a scenario where the simulated half-
life changes during the time course are presented in SI Appendix,
Fig. S2. These results demonstrate that the obtained delay esti-
mates are reliable even in this scenario.

ER Signaling.We applied our method to RNA-Seq and pol-II ChIP-
Seq measurements fromMCF-7 cells stimulated with E2 to activate
ER-α signaling (Methods). The measurements were taken from cells

extracted from the same population to ensure that time points are
directly comparable across technologies. Example fits of our model
are shown in Fig. 2. The examples in Fig. 2 show a number of
different types of behavior ranging from early-induced (A to C) to
late-induced (D to F) and from very short delay (A, D, and E) to
longer delays (B, C, and F). Example E in Fig. 2, ECE1, is illu-
minating because visual inspection of the profiles suggests a pos-
sible delay, but a more likely explanation according to our model is
a longer mRNA half-life, and the posterior probability of a long
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Fig. 2. (Left) Heat map of inferred pol-II and mRNA activity profiles after MCF-7 cells are stimulated with E2. Genes with sufficient signal for modeling are
sorted by the time of peak pol-II activity in the fitted model. (Right) Examples of fitted model for six genes (genes A to F). For each gene, we show the fit using
the pol-II ChIP-Seq data (collected from the final 20% of the transcribed region) representing the transcriptional activity pðtÞ (Eq. 1) and using the RNA-Seq
data to represent gene expression mðtÞ. Solid red and green lines show the mean model estimates for the pol-II and mRNA profiles, respectively, with as-
sociated credible regions. In each case, we show the posterior distribution for the inferred delay parameter Δ to the right of the temporal profiles. Note that
the final measurement times are very far apart (the x axis is compressed to aid visualization), leading to high uncertainty in the model fit at late times.
However, this does not significantly affect the inference of delays for early induced genes.
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Fig. 3. Boxplots of parameter posterior distributions illustrating parameter
estimation performance on synthetic data for the delay parameter Δ. The
bolded black lines indicate the ground truth used in data generation. The
box extends from 25th to 75th percentile of the posterior distribution,
whereas the whiskers extend from ninth to 91st percentile. The results show
that delay estimates are accurate and reliable, with the true value always in
the high posterior density region.
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delay is quite low. Indeed, it is well known that differences in
stability can lead to delayed mRNA expression (16), and therefore
delays in mRNA expression peak relative to pol-II peak time are
not sufficient to indicate a production delay. Changes in splicing
can be another potential confounder, but our transcript-based
analysis of RNA-Seq data can account for that. An example of
how more naive RNA-Seq analysis could fail here is presented in
SI Appendix, Fig. S3.
The parameter estimates of the models reveal a sizeable set of

genes with strong evidence of long delays between the end of
transcription and production of mature mRNA. We were able to
obtain good model fits for 1,864 genes. We excluded 50 genes
with posterior median delay >120 min, given that these genes are
unreliable because of sparse sampling late in the time course,
which is apparent from broad delay posterior distributions. Out
of the remaining 1,814 genes with reliable estimates, 204 (11%)
had a posterior median delay larger than 20 min between pol-II
activity and mRNA production, whereas 98 genes had the 25th
percentile of delay posterior larger than 20 min, indicating confi-
dent high delay estimates. A histogram of median delays is shown
in Fig. 4 (Left). The 120-min cutoff for long delays was selected by
visual observation of model fits, which were generally reasonable
for shorter delays. Note that late time points in our dataset are
highly separated because of the exponential time spacing used,
and thus the model displays high levels of uncertainty between
these points (Fig. 2). Therefore, genes displaying confident delay
estimates are typically early-induced such that time points are
sufficiently close for a confident inference of delay time. Our
Bayesian framework makes it straightforward to establish the
confidence of our parameter estimates.

Genomic Features Associated with Long-Delay Genes. Motivated by
previous studies (5, 6, 17), we investigated statistical association
between the observed RNA production delay and genomic fea-
tures related to splicing. We found that genes with a short pre-
mRNA (Fig. 5, Left) are more likely to have long delays. We also
found that genes where the ratio of the final intron’s length in
the longest annotated transcript over the total length of the
transcript is large (Fig. 5, Right) are also more likely to have long
delays, but this effect appears to be weaker. These two genomic
features, short pre-mRNA and relatively long final introns, are
positively correlated, making it more difficult to separate their
effects. To do so, SI Appendix, Fig. S6 shows versions of the right
panel of Fig. 5 but only including genes with pre-mRNAs longer
than 10 or 30 kb. The number of genes with long final introns in

these sets is smaller, and the resulting P values are thus less ex-
treme, but the general shape of the curves is the same. We did not
find a significant relationship with the absolute length of the final
intron. This may be because the two observed effects would tend to
cancel out in such cases. We also checked whether exon skipping is
associated with long delays as previously reported (6). The corre-
sponding results (SI Appendix, Fig. S7) show no significant differ-
ence in estimated delays in genes with and without annotated
exon skipping.

Analysis of the Intronic Read and pol-II Distribution. We investigated
whether there was evidence of differences in the pattern of splicing
completion for long-delay genes. To quantify this effect, we de-
veloped a pre-mRNA end accumulation index: the ratio of intronic
reads in the last 50% of the pre-mRNA to the intronic reads in the
first 50% at late (80–320 min) and early (10–40 min) times. Fig. 6
shows that genes with a long estimated delay display an increase in
late intron retention at the later times. There is a statistically sig-
nificant difference in the medians of index values for short and long
delay genes (P < 0.01; Wilcoxon’s rank-sum test P values for dif-
ferent short/long delay splits are shown in Fig. 6). The example on
the left of Fig. 6, DLX3, is a relatively short gene of about 5 kb, and
thus differences over time cannot be explained by the time required
for transcription to complete. The corresponding analysis for pol-II
ChIP-Seq reads as well as GRO-Seq reads is in SI Appendix, Fig.
S8. The analysis shows a clear delay-associated accumulation to the
last 5% nearest to the 3′ end, whereas for pol-II in the last 50%,
the accumulation is universal. These results suggest our short-delay
genes tend to be efficiently spliced, whereas long-delay genes are
more likely to exhibit delayed splicing toward the 3′ end. There is
also evidence of some accumulation of pol-II near the 3′ end, al-
though the effect appears relatively weak. We note that Grosso
et al. (18) identified genes with elevated pol-II at the 3′ end, which
were found to be predominantly short, consistent with our set of
delayed genes, and with nucleosome occupancy consistent with
pausing at the 3′ end.

Relative Importance of Production and Elongation Delays. To better
understand what are the rate-limiting steps in transcription dy-
namics, we assessed the relative importance of the observed RNA
production delays in comparison with transcriptional delays
attributable to elongation time. We estimated elongation times for
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Fig. 4. (Left) Histogram of delay posterior medians from 1,864 genes found
to fit the model well. Estimated delays larger than 120 min are considered
unreliable and are grouped together. These 50 genes were excluded from
further analysis, leaving 1,814 genes for the main analysis. (Right) Estimated
gene transcriptional delay for the longest transcript plotted against the es-
timated posterior median RNA production delay. The transcriptional delay is
estimated assuming each gene follows the median transcriptional velocity
measured in ref. 14. The solid line corresponds to equal delays.

Fig. 5. Tail probabilities for delays. (Left) Genes whose longest pre-mRNA
transcript is short (m is the length from transcription start to end). (Right)
Genes with relatively long final introns (f is the ratio of the length of the final
intron of the longest annotated transcript of the gene divided by the length of
that transcript pre-mRNA). The fraction of genes with long delays Δ is shown
by the red and blue lines (left vertical axis). In both subplots, the black curve
denotes the P values of Fisher’s exact test for equality of fractions depicted by
the red and blue curves conducted separately at each point (right vertical axis),
with the dashed line denoting P < 0.05 significance threshold. Similar plots for
other values of m and f, as well as different gene filter setups, are given in SI
Appendix, Figs. S4 and S5.
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each gene using assumed transcriptional velocity corresponding to
the 2.1 kb/min median estimate from ref. 14 combined with the
length of the longest annotated pre-mRNA transcript. Others (e.g.,
ref. 13) have reported higher velocities; so this approach should
provide reasonable upper bounds on actual elongation time for
most genes. A comparison of these delays with our posterior me-
dian delay estimates is shown in Fig. 4 (Right). The figure shows the
majority of genes with short production delays and moderate
elongation time in the upper left corner of the figure, but 14.3%
(260/1,814) of genes have a longer RNA production delay than
elongation time.

Discussion
Through model-based coupled analysis of pol-II and mRNA time
course data, we uncovered the processes shaping mRNA expression
changes in response to ER signaling. We find that a large number of
genes exhibit significant production delays. We also find that delays
are associated with short overall gene length, relatively long final
intron length and increasing late-intron retention over time. Our
results support a major role for splicing-associated delays in shaping
the timing of gene expression in this system. Our study comple-
ments the discovery of similarly large splicing-associated delays in a
more focused study of TNF-induced expression (1), indicating that
splicing delays are likely to be important determinants of expression
dynamics across a range of signaling pathways.
It is known that splicing can strongly influence the kinetics of

transcription. Khodor et al. (5) carried out a comparative study of
splicing efficiency in fly and mouse and found a positive correlation
between absolute gene length and splicing efficiency. This finding
suggests that efficient cotranscriptional splicing is facilitated by in-
creased gene length and is consistent with our observation that
delays are more common in shorter genes. In these genes, it appears
that the mature mRNA cannot be produced after transcription until
splicing is completed; it is splicing rather than transcription that is
the rate-limiting step for these genes. In the same study, it was also
observed that introns close to the 3′ end of a gene are less efficiently
spliced, which is consistent with our observation that the relative
length of the final intron may impact on splicing delays. A further
theoretical model supporting a link between long final introns and

splicing inefficiency was recently suggested (19), but it is unclear
whether the model can fully explain the observed relationships.
Our model assumes a constant mRNA degradation rate, which

may be unrealistic. Given the difficulty of estimating even a single
constant degradation rate for simulated data where the true rate is
constant, it seems infeasible to infer time-varying rates with the
current data. On the other hand, estimated delays were quite
reliably inferred even when we simulated data with a time-
varying degradation rate (SI Appendix, Fig. S2), and hence the
potentially incorrect degradation model should not affect the main
results significantly.
It is important to differentiate the delays found here with tran-

scriptional delays required for pol-II elongation to complete.
Elongation time can be a significant factor in determining the
timing of gene induction, and elongation dynamics has been
modeled using both pol-II ChIP-Seq (13) and nascent RNA
(GRO-Seq) (14) time course measurements in the system consid-
ered here. However, in this study we limited our attention to pol-II
data at the 3′ end of the gene (i.e., measuring polymerase density
changes in the region where elongation is almost completed).
Therefore, we will not see transcription delays in our data, and the
splicing-associated delays discussed above are not related to elon-
gation time. Indeed, the splicing-associated delays observed here
are more likely to affect shorter genes where transcription com-
pletes rapidly. These splicing-associated delays are much harder to
predict from genomic features than transcriptional delays, which
are mainly determined by gene length, although we have shown an
association with final intron length and gene length. In the future, it
would be informative to model data from other systems to establish
associations with system-specific variables (e.g., alternative splice-
site use) and thereby uncover context-specific mechanisms regu-
lating the delays that we have observed here.

Materials and Methods
Data Acquisition and Mapping. MCF-7 breast cancer cells were stimulated with
E2 after being placed in E2-freemedia for 3 d, similarly to themethod described
previously (13). We measured pol-II occupancy and mRNA concentration from
the same cell population collected at 10 time points on a logarithmic scale: 0, 5,
10, 20, 40, 80, 160, 320, 640, and 1,280 min after E2 stimulation. At each time
point, the pol-II occupancy was measured genome-wide by ChIP-Seq and mRNA
concentration using RNA-Seq. Raw reads from the ChIP-Seq data were mapped
onto the human genome reference sequence (NCBI_build37) using the
Genomatix Mining Station (software version 3.5.2; further details are in the SI
Appendix). On average, 84.0% of the ChIP-Seq reads were mapped uniquely to
the genome. The RNA-Seq reads were mapped using bowtie to a transcriptome
constructed from Ensembl version 68 annotation allowing at most three mis-
matches and ignoring reads with more than 100 alignments. The transcriptome
was formed by combining the cDNA and non-coding RNA transcriptomes with
pre-mRNA sequences containing the full genomic sequence from the beginning
of the first annotated exon to the end of the last annotated exon. On average,
84.7% of the RNA-Seq reads were mapped.

RNA-Seq Data Processing. mRNA concentration was estimated from RNA-Seq
read data using BitSeq (12). BitSeq is a probabilistic method to infer tran-
script expression from RNA-Seq data after mapping to an annotated tran-
scriptome. We estimated expression levels to all entries in the transcriptome,
including the pre-mRNA transcripts, and used the sum of the mRNA tran-
script expressions in fragments per kilobase of exon per million fragments
mapped (FPKM) units to estimate the mRNA expression level of a gene.
Different time points of the RNA-Seq time series were normalized using the
method in ref. 20.

pol-II ChIP-Seq Data Processing. The ChIP-Seq data were processed into time
series summarizing thepol-II occupancy at each time point for eachhumangene.
We considered the last 20% of the gene body nearest to the 3′ end. The gene
body was defined from the start of the first exon to the end of the last exon in
Ensembl version 68 annotation. The data were subject to background removal
using manually selected empty regions in Dataset S1 and normalization of time
points. The gene regions were refined for a small subset of genes using active
transcripts listed in Dataset S2. (Full details are in the SI Appendix.)

Fig. 6. (Left) We show the density of RNA-Seq reads uniquely mapping to the
introns in the DLX3 gene, summarized in 200-bp bins. The gene region is de-
fined from the first annotated transcription start until the end of last intronic
read. The ratio of the number of intronic reads after and before themidpoint of
the gene region is used to quantify the 3′ retention of introns. The pre-mRNA
end accumulation index is the difference between averages of this ratio com-
puted over late times (80–320 min) and early times (10–40 min). (Right) Differ-
ences in the mean pre-mRNA accumulation index (left vertical axis) in long delay
genes (blue) and short delay genes (red) as a function of the cutoff used to
distinguish the two groups (horizontal axis). Positive values indicate an increase
in 3′ intron reads over time. The black line shows the P values ofWilcoxon’s rank
sum test between the two groups at each cutoff (right vertical axis).
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Filtering of Active Genes. We removed genes with no clear time-dependent
activity by fitting time-dependent GP models to the activity curves and only
keeping genes with Bayes factor at least 3 in favor of the time-dependent
model compared with a null model with no time dependence. We also re-
moved genes that had no pol-II observations at two or more time points. This
process left 4,420 genes for which we fitted the models.

Modeling and Parameter Estimation.We model the relationship between pol-
II occupancy andmRNA concentration using the differential equation in Eq. 1,
which relates the pol-II time series pðtÞ and corresponding mRNA time series
mðtÞ for each gene. We model pðtÞ in a nonparametric fashion by applying a
GP prior over the shapes of the functions. We slightly modify the model in
Eq. 1 by adding a constant β0 to account for the limited depth of pol-II ChIP-
Seq measurements, yielding dmðtÞ=dt = β0 + βpðt −ΔÞ− αmðtÞ. This differen-
tial equation can be solved for mðtÞ as a function of pðtÞ in closed form. The
pol-II concentration function pðtÞ is represented as a sample from a GP prior,
which can be integrated out to compute the data likelihood. The model can
be seen as an extension of a previous model applied to transcription factor
target identification (11). Unlike ref. 11, we model pðtÞ as a GP defined as an
integral of a function having a GP prior with RBF covariance, which implies
that pðtÞ tends to remain constant between observed data instead of
reverting back to the mean. Additionally we introduce the delay between
pol-II concentration and mRNA production, as well as model the initial mRNA
concentration as an independent parameter. In the special case where Δ= 0
and m0 = β0=α, SI Appendix, Eq. 3 reduces to the previous model (equation 4 in
ref. 11). To fit the model to pol-II and mRNA time course data sampled at
discrete times, we assume we observe mðtÞ and pðtÞ corrupted by zero-mean
Gaussian noise independently sampled for each time point. We assume the pol-II
noise variance is a constant σ2p inferred as a parameter of the model. The
mRNA noise variances for each time point are sums of a shared constant σ2m and
a fixed variance inferred by BitSeq by combining the technical quantification
uncertainty from BitSeq expression estimation with an estimate of biological
variance from the BitSeq differential expression model (full details are in the
SI Appendix).

Given the differential equation parameters, GP inference yields a full
posterior distribution over the shape of the pol-II and mRNA functions pðtÞ
andmðtÞ. We infer the differential equation parameters from the data using
MCMC sampling, which allows us to assign a level of uncertainty to our
parameter estimates. To infer a full posterior over the differential equation
parameters β0, β, α, Δ, m0, and E½p0�= μp, the observation model parameters
σ2p and σ2m and a magnitude parameter Cp and width parameter l of the GP
prior, we set near-flat priors for the parameters over reasonable value
ranges, except for the delay Δ, whose prior is biased toward 0 (exact ranges
and full details are presented in the SI Appendix). We combine these priors
with the likelihood obtained from the GP model after marginalizing out pðtÞ
and mðtÞ, which can be performed analytically. We infer the posterior over
the parameters by Hamiltonian MCMC sampling. This full MCMC approach
uses gradients of the distributions for efficient sampling and rigorously
takes uncertainty over differential equation parameters into account. Thus,
the final posterior accounts for both the uncertainty about differential
equation parameters and uncertainty over the underlying functions for each

differential equation. We ran four parallel chains starting from different
random initial states for convergence checking using the potential scale
reduction factor ref. 21. We obtained 500 samples from each of the four
chains after discarding the first half of the samples as burn-in and thinning
by a factor of 10. Posterior distributions over the functions pðtÞ and mðtÞ are
obtained by sampling 500 realizations of pðtÞ and mðtÞ for each parameter
sample from the exact Gaussian conditional posterior given the parameters
in the sample. The resulting posteriors for pðtÞ and mðtÞ are non-Gaussian
and are summarized by posterior mean and posterior quantiles. Full details
of the MCMC procedure are in the SI Appendix.

Filtering of Results. Genes satisfying the following conditions were kept for
full analysis (full implementation details of each step are in the SI Appendix):
(i) pðtÞ has the maximal peak in the densely sampled region between 1 min
and 160 min; (ii) estimated posterior median delay is less than 120 min; and
(iii) pðtÞ does not change too much before t = 0 min to match the known
start in steady state.

Analysis of the Gene Annotation Features Associated with the Delays. Ensembl
version 68 annotations were used to derive features of all genes. For each
annotated transcript, we computed the total pre-mRNA length m as the
distance from the start of the first exon to the end of the last exon and the
lengths of all of the introns. Transcripts consisting only of a single exon (and
hence no introns) were excluded from further analysis. For each gene, we
identified the transcript with the longest pre-mRNA and used that as the
representative transcript for that gene. The final intron share f was defined
as the length of the final intron of the longest transcript divided by m.

Pre-mRNA End Accumulation Index. For this analysis, we only considered reads
aligning uniquely to pre-mRNA transcripts and not to any mRNA transcripts.
We counted the overlap of reads with 200-bp bins starting from the be-
ginning of the first exon of each gene ending with the last nonempty bin. We
compute the fraction re,i of all reads in the latter half of bins in each sample i
and define the index as the difference of the means of re,i over late time
points (80–320 min) and over early time points (10–40 min).

Availability. Raw data are available at GEO (accession no. GSE62789). A browser
of all model fits and delay estimates is available at www.cs.helsinki.fi/u/
ahonkela/pol2rna/. Code to reproduce all of the experiments is available at
https://github.com/ahonkela/pol2rna.
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