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Abstract

We present for the first time scalable polarizable molecular dynamics (MD) simulations within a 

polarizable continuum solvent with molecular shape cavities and exact solution of the mutual 

polarization. The key ingredients are a very efficient algorithm for solving the equations 

associated with the polarizable continuum, in particular, the domain decomposition Conductor-

like Screening Model (ddCOSMO), a rigorous coupling of the continuum with the polarizable 

force field achieved through a robust variational formulation and an effective strategy to solve the 

coupled equations. The coupling of ddCOSMO with non variational force fields, including 
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AMOEBA, is also addressed. The MD simulations are feasible, for real life systems, on standard 

cluster nodes; a scalable parallel implementation allows for further speed up in the context of a 

newly developed module in Tinker, named Tinker-HP. NVE simulations are stable and long term 

energy conservation can be achieved. This paper is focused on the methodological developments, 

on the analysis of the algorithm and on the stability of the simulations; a proof-of-concept 

application is also presented to attest the possibilities of this newly developed technique.

1 Introduction

In the last few years polarizable molecular mechanics (MM) has been an intense field of 

development.1–8 In particular, polarizable molecular dynamics (MD) simulations open new 

routes to study difficult systems ranging from metalloproteins and heavy metal complexes to 

polar and ionic liquids that require more sophisticated potentials. Moreover, an increasing 

number of studies show that the lack of polarization can be a serious limitation for ionic 

systems but also for a correct estimation of weak interaction, with direct implications in 

protein folding and protein-ligand binding.8–12

The potential increase of accuracy which can be reached by introducing a polarizable force 

field (PFF) faces however the disadvantage of a more costly simulation;13 this is particularly 

true when a large set of solvent molecules have to be included in the system to account for 

bulk solvation effects. To overcome this problem, continuum solvation models14–17 (CSM) 

can be effectively used and in fact different combinations of standard nonpolarizable FF and 

CSMs are available in various MD softwares. The mixed strategy is advantageous with 

respect to a fully atomistic one as the continuum easily takes into account the long-range 

interactions that would require a huge number of solvent molecules, increasing significantly 

the computational cost of the simulation, and implicitly includes the statistical average of 

their configurations. However, until now the coupling between polarizable force fields and 

polarizable continuum models has been mostly used to obtain an alternative approach to the 

Periodic Boundary Conditions and a simplified spherical model has been used to represent 

the boundary between the atomistic and the continuum model. A notable example is the 

Generalized Solvent Boundary Potential (GSBP) approach developed by Roux and 

coworkers18 but also approaches based on apparent surface charge (ASC) methods have 

been presented.19–23 Alternatively, the coupling between PFFs and continuum models have 

been proposed for simplified versions of CSMs in which the atomistic part of the system can 

be polarized by the continuum part but not vice versa;24 the Generalized Born Model25 

(GBM) is the typical continuum approach used even if more recently a Generalized 

Kirkwood model26 and a linearized Poisson-Boltzmann model27 have been presented in 

combination with the AMOEBA polarizable force field.28,29

To get a more realistic description of the environment effects, it would be important to have 

a fully polarizable scheme in which the two subsystems mutually polarize in a self 

consistent way. This characteristic is one of the main reasons of the success of CSMs when 

coupled to quantum-mechanical descriptions.14,30 In fact, the QM electronic density is self-

consistently adapted to the solvent polarization in QM/CSM formulations and this allows to 

account for the important effects that the solvent can have on molecular properties and 
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processes of solvated systems. We can therefore expect that the same important effects can 

be seen in the classical simulation of processes when a polarizable description is used for the 

atomistic part of the system. Unfortunately, it is not straightforward to extend the CSMs 

which have been optimized for the coupling with a QM description, to classical and 

polarizable descriptions. In the QM cases, in fact, the cost of the overall calculation is 

largely dominated by the QM step and therefore the computational effectiveness of the 

polarizable CSMs is not a real issue. When the polarizable CSM has to be coupled to 

classical descriptions, instead, the picture can be completely reverted and the resolution of 

the self-consistent scheme which determines the response of the CSM to the atomistic but 

classical subsystem can become so severe a bottleneck to make the whole approach 

practically useless when applied to MD simulations.31,32 To have a really usable fully 

polarizable MM/CSM approach, the continuum approach has thus to be reformulated in a 

very efficient way.

In this paper, we present the first scalable formulation of a fully polarizable MM/CSM that 

can be used in MD simulations of systems of real (bio)chemical interest. This formulation is 

achieved by coupling PFFs with the continuum model we have recently proposed, the 

domain decomposition Conductor-like Screening Model33–36 (ddCOSMO). The latter is a 

continuum model which represents the polarization of the solvent in terms of a response 

limited to the surface of the molecular cavity embedding the atomistic subsystem (which can 

be either treated classically or quantum-mechanically). The ddCOSMO is characterized by 

linear scaling properties with respect to the size of the system and is well suited for parallel 

implementations. Its capabilities were recently demonstrated for QM methods enabling the 

optimization of large molecules in solvent with gain of up to 3 orders of magnitude in time 

with respect to other CSMs.35 We propose here a totally new implementation of the method 

in combination with different PFFs based on induce dipoles, including variational and non 

variational PFFs.

The paper is organized as follows. In section 2, theory and algorithms are presented with a 

special focus on the coupling issue in the framework of both variational and non-variational 

PFFs. In section 3, the numerical stability of the simulations is demonstrated and an 

application to the simulation of solvent effects on the IR spectrum of a small polypeptide 

system is reported. Some conclusions and perspectives end the paper in section 4.

2 Theory

In this section, we briefly recap the polarization equations for both point-dipole based37,38 

PFFs and the COSMO solvation model,39 accordingly to the ddCOSMO discretization; we 

focus on the coupling of such models and discuss the special case of non-variational force 

fields.28 The algorithm implemented to solve the final, coupled equations is also briefly 

presented.

In a dipole-based polarizable force field, the electrostatics of each atom i is described 

through a set of static multipoles and a polarizability αi, a 3-dimensional rank 2 symmetric 

tensor which describes the linear response of such an atom to a polarizing electric field E ⃗
i. 

The static multipoles are usually point charges, but more advanced force fields can include 
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higher order multipoles, such as dipoles and quadrupoles; nevertheless, the field created by 

the multipolar distribution induces, at each polarizable site i, a point dipole μ⃗
i such that the 

interaction between the inducing field E⃗
i and the induced dipoles is maximized, while the 

work to induce the dipoles and the interaction between the induced dipoles are minimized. 

In a recent paper,13 we have thoroughly analyzed the properties of the polarization equations 

and we have introduced a Jacobi-DIIS scheme that has been shown to be robust, enjoy fast 

convergence properties and be suitable for parallel implementations due to low 

communications between processes. All the details of the derivation can be found in 

reference 13. Here, it is sufficient to say that the induced dipoles are the minimizers of the 

following energy functional

(1)

where  is the α-th component of the inducing field E⃗
i and  the α-th component of the 

induced dipole μ⃗
i, both at the polarization site i; the Latin indexes run over the M 

polarization sites and the Greek ones over the Cartesian coordinates of the various 

quantities, for the latter indexes, Einstein summation is used.

(2)

is the dipole-dipole interaction matrix, δαβ is the Kronecker symbol, rij = |rj − ri| is the 

distance between site i and site j and uij = rij/(〈αi〉〈αj〉)1/6 is the effective distance as a 

function of the averaged polarizabilities of sites i and j, 〈αi〉 = 1/3 tr αi. Such a matrix 

includes Thole’s damping through the functions

(3)

(4)

Other functional forms are used in the literature for the damping functions; a detailed 

analysis can be found in references 40, 41. It is possible to introduce a more compact 

notation by introducing a 3M-dimensional symmetric matrix T, which we will refer to as the 

polarization matrix, and the 3M-dimensional fields and dipoles vectors according to

(5)

where the ij ∈ ℝ3×3 blocks are the ones defined in Eq. (2). The energy functional defined 

in eq. 1 becomes
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(6)

finally, the minimum condition leads to the following linear system:

(7)

Continuum solvation models require to solve or to approximate a partial differential 

equation which, for polarizable models, is either the Poisson equation or the Poisson-

Boltzmann equation. In particular, in the COSMO model the solvent is represented as an 

infinite, uniform conductor that occupies the whole space but a cavity that accommodates 

the solute. There are several definitions for such a cavity,14 the most common being the Van 

der Waals cavity, the solvent accessible surface (SAS) and solvent excluded surface (SES): 

in the present work, we use a scaled Van der Waals cavity, which we obtain as the union of 

interlocking spheres, one per atom, the radii of which are the Van der Waals radii of the 

atoms scaled with a constant factor of 1.1. In the ddCOSMO framework, an iterative 

procedure based on Schwarz’s domain decomposition method is used together with a 

discretization scheme based on spherical harmonics, which corresponds to solving a non-

symmetric linear system33

(8)

where L is the ddCOSMO matrix, X is the unknown used to represent the solvent 

polarization and g0 is the solute’s potential weighted with suitable switching factors. More 

details can be found in references 33, 34 and in appendix A. The ddCOSMO matrix is 

formed by M2 blocks, each block corresponding to a sphere (and hence to an atom) and 

being sized (N +1)2, where N is the maximum angular momentum used for the spherical 

harmonics expansion of the solution. Such a matrix is sparse, as only intersecting spheres 

are interacting, with any off-diagonal block corresponding to two spheres that do not 

intersect being zero. The ddCOSMO reaction energy, i.e., the electrostatic contribution to 

the solvation energy, is computed as

(9)

where f(ε) is an empirical scaling introduced to account for the dielectric nature of the 

solvent39 (typically,  where ε is the macroscopic dielectric constant of the 

solvent), Ψ is a vector containing the solute’s (static) multipolar distribution scaled with 

suitable factors and we denote

(10)
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The coupling of a dipole-based polarizable force field and ddCOSMO can be obtained 

through a variational formulation.13,20,31 Given the ddCOSMO equations, it is in fact 

possible to write an energy functional which is variational with respect to the dipoles and 

includes mutual polarization between the dipoles and the continuum. Such a functional is the 

sum of the dipoles functional, as in eq. 6, and the ddCOSMO energy:

(11)

where

(12)

according to the ddCOSMO equation. Notice that we have introduced, for ddCOSMO, the 

quantities

(13)

Such quantities are affine functions of μ and correspond to the potential generated by the 

solute, including the induced dipoles, and to the scaled multipoles and induced dipoles (see 

eq. 48 in Appendix A), respectively, and account for the interaction between the solute and 

the solvent. Notice that, as gμ and Ψμ are linear in μ, we can write:

(14)

The ddCOSMO term in eq. 11 introduces a combination of constant, linear and quadratic 

terms with respect to the induced dipoles, correctly implying the mutual polarization of the 

dipoles with the continuum, as the dipoles and ddCOSMO equations will be coupled. The 

coupled equations can be derived by imposing the stationarity of the new energy functional 

with respect to the induced dipoles:

(15)

where we have introduced the COSMO field Ec, which is obtained by differentiating the 

COSMO energy with respect to the induced dipoles:

(16)

Both terms of eq. 16 are obtained with a linear transformation of either the ddCOSMO 

solution X or the solution to the ddCOSMO adjoint equations L*S = Ψ; in particular:

(17)

The expressions of the A and B matrices, together with the derivation of equations 17 and 14 

can be found in appendix B. We are now ready to write the coupled equations for the dipoles 

and the continuum. By putting everything together, eq. 15 becomes
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(18)

where the direct and adjoint ddCOSMO equations, which we need to compute X and s, are

(19)

and

(20)

We can put everything together into a global linear system:

(21)

Once the linear system in eq. 21 has been solved, the total polarization energy, i.e., including 

both the dipoles polarization and the continuum polarization, is computed according to eq. 

11.

2.1 A special case: non variational force fields

In the previous derivation, we have assumed that the polarization energy is a variational 

functional of the induced dipoles. This assumption is not respected in the AMOEBA force 

field,28,29 where the polarization energy is computed as the electrostatic interaction between 

the induced dipoles, computed according to eq. 7 (and therefore as the solution to a 

variational problem), and an electric field which is different from the inducing one. The two 

fields differ for the local interaction scaling: while the inducing field (usually called “direct 

field”, Ed) at polarization site i is the field produced by all the multipoles on all the other 

sites, the contributions to the interacting field (usually called “polarization field”, Ep) from 

the closest neighbors (i.e., 1–2, 1–3 and 1–4) are scaled in order to take into account that the 

interaction energy between such atoms is usually accounted for by the bonding terms. To 

summarize, the AMOEBA polarization energy is defined as follows:

(22)

where the “direct” dipoles are solution to the polarization equations as in eq. 7:

In order to couple the AMOEBA force field with ddCOSMO, it is possible to manipulate the 

AMOEBA polarization energy in order to write it as a combination of variational terms. Let 

μp be the solution to
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According to our derivation, the “p” dipoles will be the minimizers of

It is easily shown that

(23)

where the two sets of dipoles are the variational minimizers of the associated energy 

functional: the AMOEBA polarization energy can therefore be expressed as the combination 

of three variational expressions. We proceed to couple ddCOSMO to the AMOEBA force 

field by replacing each term in eq. 23 with the corresponding “solvated” energy functional, 

eq. 11:

(24)

Here, both sets of dipoles are determined by minimizing the associated  functional, i.e., by 

solving the coupled linear system in eq. 21 for two different right-hand sides:

(25)

and

(26)

The AMOEBA/ddCOSMO energy expression can be simplified by substituting the explicit 

expression of the various functionals: through some trivial, but cumbersome algebra we get:

(27)

where we have introduced the short notations Ψd = Ψ0 + Ψμd and Ψp = Ψ0 + Ψμp.

2.2 Analytical derivatives of the polarization energy

Analytical derivatives can be easily assembled by differentiating eq. 11, remembering that, 

having solved the coupled polarization equations, such a functional is stationary with respect 

to the dipoles:13

(28)

where x denotes a generic coordinate of an atom.
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In the variational case, the last term in eq. 28 vanishes and the derivatives of the dipoles do 

not need to be assembled. By expanding eq. 28, we get:

(29)

The derivatives of the T matrix and of the electric field have been discussed extensively in 

ref. 13. The derivatives of the Ψ vector are nonzero only if the solute’s multipolar 

distribution contains static multipoles of angular momentum greater than zero, i.e., dipoles, 

quadrupoles and higher order terms: such multipoles are in fact vector or tensor quantities 

which need to be defined in a local frame and rotated in the lab frame: such a transformation 

depends on the position of the atoms and contributes to the total derivatives. This 

contributions have also been extensively discussed in ref. 13. The derivatives of the X 

expansion coefficients can be computed by differentiating the ddCOSMO equations:

(30)

By substituting into the last term of eq. 29:

(31)

Notice that the solution to the adjoint system is already available, as it is necessary to 

compute it in order to solve the coupled linear system. A complete derivation of the 

ddCOSMO analytical derivatives, including the expressions of gx and Lx can be found in ref. 

34.

Analytical derivatives for the non-variational case can be formulated using the same 

procedure elucidated in the previous section, i.e., by writing the energy as a combination of 

variational contributions, differentiating each variational contribution and putting everything 

together. Through some algebra, we get

(32)

2.3 Implementation details

The solution to the coupled polarization equations is a computationally demanding task, as 

the size of the linear system can easily become very large. Direct techniques, such as LU 

decomposition, can not be employed, as even for medium-sized systems the matrix in eq. 21 

can be too large to be stored in memory. Fortunately, the sparsity of the ddCOSMO matrix 

allows for a very efficient, linear-scaling iterative procedure to solve the direct and adjoint 

ddCOSMO equations: such an iterative procedure can be coupled with an iterative solver for 

the dipoles linear system. In particular, we use Jacobi Iterations (JI) coupled with the Direct 

Inversion in the Iterative Subspace (DIIS) extrapolation both for ddCOSMO34 and for the 

dipoles.13 The details of the implementation and a thorough analysis of the various possible 

algorithm to treat the polarization equations can be found elsewhere13,42 Three families of 

iterative strategies are possible, in principle, to solve the coupled equations. The first is the 
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so-called monolithic approach, i.e., to deal with the full linear system at once through an 

iterative procedure; the second is to iterate on the dipoles (macroiterations) and, at each 

macroiteration, fully solve the COSMO direct and adjoint equations (microiterations); the 

third is to iterate on the COSMO direct and adjoint equations (macroiterations) fully solving, 

at each macroiteration, the dipoles system (microiterations). Various refinements, such as 

doing an adaptive number of macroiteration depending on the convergence, or using a 

varying threshold for the microiteration depending on the convergence of the 

macroiterations, can be adopted to speedup the process. The three strategies have been 

implemented and explored: the second and third ones resulted to be the most competitive. 

Nevertheless, in the perspective of performing MD simulations, the ability of providing a 

very good guess for the dipoles led us to adopt the second strategy, which we will now 

detail.

Initial computation and guess—The first step of the computation is to assemble the 

right-hand side of eq. 21, that is, the electric field of the solute at the polarizable sites, its 

potential at the cavity and the Ψ0 vector, which is formed by scaling the solute multipolar 

distribution according to eq. 48. A guess is also formed for the dipoles: in a previous paper13 

we analyzed various possibilities and we found that using the predictor step of Kolafa’s 

integrator43 as a guess provided a very effective form of convergence acceleration. Kolafa’s 

guess requires one to know the solution at the six previous point: for the first six steps in a 

MD simulation, we use what we called in the previous paper the direct field guess, i.e., we 

initialize the dipoles to

Both the ddCOSMO X and S coefficients are initialized to zero. Given the guessed dipoles, 

the total potential Φ and the total Ψ vector are assembled.

Main loop—The main iteration loop starts with two calls to the ddCOSMO iterative solver 

- for the direct and adjoint systems, respectively. Such calls are completely independent and 

can be run in parallel. The ddCOSMO linear systems are solved iteratively by Jacobi/DIIS 

using a variable convergence threshold; in particular, we start with a threshold of 10−3 and, 

along the macroiterations, we set it to one tenth of the root-mean-square (RMS) increment 

on the dipoles. Also, at macroiteration i, we use X[i−1] and S[i−1] as guesses. Once the two 

ddCOSMO linear systems have been solved, the COSMO electric field is computed 

according to equation 17 and added to the E0 field. A Jacobi step is then performed on the 

dipoles and the RMS of the increment and its maximum are computed. Convergence is 

achieved when the RMS is smaller than a threshold provided by the user and the maximum 

smaller than ten times such a threshold. If convergence has not been reached, the DIIS 

extrapolation is carried out on the dipoles. Finally, the total potential and Ψ vector are 

updated for the following iteration. Notice that for the non-variational case, two sets of 

dipoles (and hence of ddCOSMO coefficients) are dealt with; nevertheless, the matrix is 

formed on the fly and multiplied with both sets of dipoles, with limited - but not negligible - 

computational overhead. This step is the most time-consuming, as several matrix-vector 

products are to be evaluated.
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Energy and Forces—Once the coupled equations have been solved, we proceed to 

compute the solvation and polarization energy according to equation 11 or 27 in the non-

variational case. The forces are then computed according to equation 28, or 32, in order to 

be used for the integration of the equations of motion in the MD simulation.

This strategy has been implemented in the Tinker Package and parallelized according to 

either the OpenMP or the MPI paradigms. The implementation of the ddCOSMO field has 

been checked by comparing the computed field with the one obtained by numerically 

differentiating the energy with respect to the dipoles; the same validation has been carried 

out with the forces, which have been compared with numerical derivatives of the energy 

with respect to the positions of the nuclei. In both cases, an agreement up to numerical 

precision was observed; also, the forces rigorously sum to zero independent of the 

discretization and of the convergence threshold used.

3 Results

3.1 Numerical tests

In this section, we will analyze the behavior of a MD simulation performed with a PFF 

coupled to ddCOSMO with respect to the convergence used for the linear equations and to 

the time step used in the MD. We will also comment on the timings and on the performances 

of our code on parallel architectures.

Computational details—All the computation have been performed with a locally 

modified module of the TINKER44 package, named Tinker-HP, dedicated to parallel 

implementations. The iterative solver used for the polarization equations and the ddCOSMO 

algorithm were implemented in such a module and parallelized according to either the 

OpenMP or the MPI paradigms. As a test case, we performed a 100ps NVE MD simulation 

on a small protein (PDB reference: 1FSV) using increasing convergence thresholds and 

timesteps. The PDB structure was minimized with analytical gradients and a 20ps NVT 

equilibration was run with the Berendsen Thermostat45 in order to provide a starting point 

for the NVE simulations. Both a variational force field, namely the AMBER ff99 force field 

with the parametrization of Wang et al.40,46 for the polarizable electrostatics, and a non 

variational one, namely the AMOEBA99bio28 force field, were employed. All the 

computations were performed on a dual Xeon E5-2650 cluster node (16 cores, 2GHz) 

equipped with 64GB of DDR3 memory.

For each simulation, we report: (i) the short time average fluctuation, which we compute as 

the average of the RMS, 100 steps fluctuation of the total energy; (ii) the long range energy 

drift, which we compute by fitting the total energy as a function of time with a linear 

function

and by computing the value of such a function at 100ps; (iii) the average computational time 

per time step, which we compute as the total computational time over the number of time 

steps. The results are summarized in Table 1 for the AMBER/Wang variational force field 
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and in table 2 for the AMOEBA force field. From the results reported in Tables 1 and 2 we 

can infer the good stability of the polarizable dynamics. Short time fluctuations are always 

smaller than 1 kcal/mol, even using the sleaziest convergence threshold and the longer time 

step, for both the variational and the non variational force field. This proves the good quality 

of the computed forces, which not only sum rigorously to zero (i.e., the total momentum is 

conserved), but are also little sensitive to the small error on the dipoles and ddCOSMO 

equations solution due to a non fully-converged iterative procedure. Furthermore, such a 

drift shows little or no dependence on the threshold and a test performed with very tight 

convergence does not show further improvements: the short term fluctuations are therefore 

mainly a consequence of the Velocity Verlet integrator. Notice how the STF illustrates that 

such an integration scheme is second order in the time step. Long term stability is more 

subtle to analyze, as it is the result of several interacting causes. The Velocity Verlet is a 

second-order simplectic integrator and its time reversibility grants, in exact precision, the 

long term stability of the simulation; however, round-off errors and a non-perfect 

convergence of the polarization degrees of freedom can spoil energy conservation producing 

a drift. Furthermore, the guess for the iterative solution can break the overall time-

reversibility of the simulation, either being itself non time-reversible (for instance, using the 

solution at the previous step produces a non-symmetric expression with respect to time 

inversion) or being time-reversible only for fully converged solutions and infinite precision. 

The latter is the case for our choice of a guess: as mentioned in section 2.3, we use the 

prediction step of Kolafa’s predictor-corrector, the reversibility of which, when used as a 

guess, is spoiled by convergence and round-off errors. Such effect is more marked for longer 

time steps and sleazier convergence thresholds, producing a drift which can be as large as 20 

kcal/mol per 100ps. This analysis is further complicated by the interaction of the various 

sources of long time effects, which can produce error cancellation: this explains, for 

instance, the non systematic behavior we observed, for instance, for the AMOEBA 

simulation, where, for a convergence threshold fixed to 10−4, the 1fs time-step simulation is 

more stable than the 0.5fs one.

Nevertheless, our results show that it is indeed possible to perform a stable MD simulation 

with a polarizable force field coupled to a polarizable continuum by choosing an appropriate 

combination of time step and convergence thresholds. We also remark that, thanks to the 

excellent short-time behavior, it is possible to correct the long time behavior by using a 

thermostat: even the 1fs step - 10−4 threshold can be used with a noticeable saving in 

computational time. We stress that Kolafa’s predictor as a guess, as shown in a recent 

publication,13 is a very effective guess, which greatly reduces the number of iterations 

needed to converge the polarization equations: the small instabilities introduced are a price 

worth to be paid for the computational saving produced.

We conclude this section by discussing briefly the MPI parallel implementation of our 

procedure. For the ddCOSMO solver, which needs to be called twice per iteration, a spacial 

decomposition load balancing strategy is used to ensure that each process is given a similar 

workload; moreover, non-blocking communication is used to mask the communication 

overhead. Once the two ddCOSMO linear system have been solved, the solutions are 

broadcasted to all the processes in order to compute the COSMO field and the next iteration 

dipoles are computed. This are in turn broadcasted in order to compute the potential and Ψ 

Lipparini et al. Page 12

J Chem Theory Comput. Author manuscript; available in PMC 2016 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



vector for the next ddCOSMO computation. The overall scaling properties of the algorithm 

for a system composed by roughly 10000 atoms are reported in figure 1. While the scaling 

deviates from the ideal one, the overall performances of the code are quite good and allow 

one to use our implementation on parallel computers. It appears that the ddCOSMO solver is 

the limiting part in terms of parallel scaling; furthermore, while a hybrid OpenMP/MPI 

implementation showed very promising results for the direct-space solution of the 

polarization equations, this was not the case for the ddCOSMO equations and, therefore, for 

the coupled PFF/ddCOSMO ones. A more efficient parallel implementation is under active 

investigation.

3.2 Solvatochromism of a α-helical polypeptide

In order to test the ability of ddCOSMO to introduce solvation effects in a MD simulation, 

we have studied the solvatochromism of a model peptide in its alpha-helix secondary 

structure. MD simulations have been performed by using a development version of Tinker 

program44 and the AMOEBA99bio force field.28 The system consists of a single α-helical 

polypeptide composed by twenty amino-acids. To consider the solvatochromism, two sets of 

5 trajectories have been considered both in vacuo and in water by means of the ddCCOSMO 

implicit scheme described in this paper. For both sets of trajectories, a first set of simulations 

of 20ps were performed in the canonical (NVT) ensemble at room temperature to ensure the 

thermalization step, using Berendsen thermostat;45 subsequent trajectories of 20ps in the 

microcanonical ensemble (NVE) for production have been computed. Equations of motion 

have been integrated with the velocity-Verlet scheme47 and a timestep of 0.1 fs. IR spectra 

are obtained from the Fourier transform of the dipole autocorrelation function:48

(33)

where μ is the molecular dipole and T is the simulation time. The assignment of vibrational 

bands in terms of atomic displacements can be achieved through vibrational density of 

states, calculated as the Fourier transform of the velocity correlation function:

(34)

where υj is the velocity of the j-th atom. We then projected the velocity autocorrelation 

function on internal coordinates or selected atoms (C and O atoms of amide in our cases) for 

a more comprehensive assignment of the peaks.48

Computed IR spectra (black lines) and vibrational densities of states projected on the C and 

O atoms of all amide groups (blue lines) for the α-helix model are shown on fig. 2 and 3 for 

the in vacuo and in water computations, respectively. Assignments of the active IR bands 

corresponding of the amide I region can be easily achieved through the vibrational density 

of states projected on C and O atoms of all amide groups (blue lines): the bands of the IR 

spectrum with maximal overlap with the main bands of the power spectrum are assigned to 

the motion of the C and O atoms of the amide groups.
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Indeed, the amide I mode frequency is found to be 1700 cm−1 in vacuo and between 1665–

1680 cm−1 in water, which is in fair agreement with the expected range of frequencies of α-

helix (1654 cm−1). Moreover, the solvation-induced amide I mode frequency shift was 

found to be in between −20 cm−1 and −35 cm−1, which is in excellent agreement with 

previous classical MD simulations using an explicit treatment of the solvation of a α-helix 

model.49 This result demonstrates the ability of the ddCOSMO scheme to correctly 

reproduce the solvatochromism of the amide I region for a α-helix model without the 

explicit treatment of solvent molecules.

4 Conclusions and Perspectives

We have presented for the first time a formulation and implementation of polarizable MD in 

a polarizable continuum solvent without restrictions on the cavity shape and without 

approximations on the coupling between the polarization degrees of freedom. A solid 

variational formulation has been proposed to introduce the coupling and derive the 

equations; a generalization to non-variational polarizable force fields has then been achieved 

by writing the non-variational energy as a linear combination of variational functionals. 

Thanks to a new formulation for the continuum, ddCOSMO, it is indeed possible to solve 

the mutual polarization equations for both the continuum and the dipoles very efficiently; 

furthermore, the algorithm is highly suited for parallelization and a scalable implementation 

is already available. The combination of algorithmics, code optimization and parallelization 

makes the method fully operational and not just a proof of concept: while being more 

expensive than standard ones, polarizable MD simulations in a polarizable continuum can be 

performed for medium-large systems even on a single computer node in reasonable times, 

i.e., roughly one second per time-step. Nevertheless, in order to apply this methodology to 

larger systems, the use of the MPI code on large computers becomes mandatory. 

Furthermore, the use of linear scaling techniques, such as the Fast Multipole Method, to 

overcome the quadratic bottlenecks connected to the evaluation of the MM/Continuum 

couplings and of the induced dipoles iterations, will also make possible computations on 

larger systems.

Momentum and energy conservation have been rigorously assessed. The analytical forces 

always sum to zero, implying the momentum conservation and a very good behavior of 

NVE simulations with respect to short-time fluctuations; long-time energy conservation can 

be obtained by combining the use of a tight convergence threshold for the polarization 

equations, an adequate time-step and a non-biased guess for the dipoles. Nevertheless, the 

long term stability remains acceptable even for sleazy converge thresholds, long time steps 

and a non fully time-reversible guess for the dipoles: the small and slow long-term drift can 

be easily controlled by a weakly coupled thermostat. The capabilities of this new 

methodology have been sketched with a test-case application, where we succeeded in 

reproducing the solvatochromic shift of the amide I mode of an α-helix oligopeptide. We 

would like to point out that we have obtained such a result without any re-parametrization of 

either the force field (and in particular, the electrostatic and van der Waals terms) or the 

continuum (in particular, the atomic radii used to define the cavity): more accurate results 

can be easily obtained by a better tailoring of the method.
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The ddCOSMO algorithm has been implemented for both standard and polarizable force 

fields in a new Tinker module implemented in our groups and devoted to massively parallel 

implementation; it will coexist with a parallel implementation of both the electrostatic and 

polarization energies and forces in the context of periodic boundary conditions simulations 

with the Particle Mest Ewald approach50,51

While this article already proposes a fully operational strategy, many developments can be 

considered. From a methodological point of view, further investigations on the molecular 

cavity are needed, as the Van der Waals cavity can be not completely satisfactory: artificial 

holes in the cavity, which expose the solute to the solvent in non-physical regions, could be 

avoided by using a more advanced definition of the cavity itself, such as the so-called 

solvent excluded surface. Also, non-equilibrium effects, due to retardation effects in the 

solvent response, are currently neglected: while the role of the continuum is here mainly to 

provide a suitable boundary for the simulation, such effects can be important and need to be 

included in a complete model. From a computational point of view, several developments 

are possible. Due to the characteristics of the algorithm, a GPU implementation is 

particularly interesting and should produce noticeable performance gains. A possibility 

worthy of investigation would be to propagate the induced dipoles in a Car-Parrinello 

fashion; however, this would require a careful choice of the fictitious mass of the dipoles 

and could produce numerical instabilities or artifacts. Some coarse-graining of the cavity, 

for instance, by not endowing the hydrogen atoms with their own sphere, but by including 

them in the sphere of the heavy atom they are attached to, could also produce large 

performance gains without compromising the accuracy if the motion of an hydrogen atom is 

not the aim of the study. Further code optimization and parametrization, with particular 

focus on the non-electrostatic terms for solvation, could then open the way to free energy 

computations, with interesting applications in the field of biochemistry and pharmacology.
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A The ddCOSMO discretization of the COSMO model

The Conductor-like Screening Model (COSMO) is a polarizable continuum solvation model 

which models the solvent as a structureless, uniform continuum conductor. The solute is 

accommodated into a molecule-shaped cavity Ω and the interaction with the environment is 

described as the electrostatic interaction of the density of charge of the solute with the 

polarization field created by the conductor. Throughout this paper, we will assume that the 

molecular cavity is a scaled Van der Waals cavity, built as the union of spheres centered at 

the atoms, with radius the Van der Waals radius of the atom scaled by a factor 1.1. This 

interaction energy is then scaled with an empirical factor f(ε) in order to account for the 

dielectric nature of the solvent. The polarization of the conductor is computed by 

numerically solving Poisson’s equation, usually recast as an integral equation on the cavity 

boundary Γ = ∂Ω. As a conductor has a constant, zero potential, the potential produced by 

the solute in vacuo Φ plus the potential due to the polarization W of the metal (the so-called 

reaction potential) must add up to zero at the boundary:

The reaction potential can be represented in terms of an apparent surface charge (ASC) σ 

induced at the boundary:

(35)

By putting together the two relations, one obtains the COSMO Integral equation:

(36)

The solvation energy is then computed as

(37)

where ρ is the solute’s density of charge,  is the scaling factor, ε is the solvent 

dielectric constant and the 1/2 factor takes into account the work needed to polarize the 

conductor. The COSMO equation is usually discretized using the Boundary Element 

Method (BEM), which transforms the integral equation into a dense linear system which can 

be solved iteratively; as the matrix-vector products implied in the iterative solution 

correspond to computing the potential produced by a given set of charges, the Fast Multipole 

Method (FMM) can be used to achieve linear scaling in computational cost; nevertheless, to 

solve the COSMO equation remains a demanding task in terms of computational resources.

Recently, we have presented a new discretization for COSMO based on Schwarz’s Domain 

Decomposition method: we will refer to the new discretization as ddCOSMO. The 

ddCOSMO algorithm is an iterative procedure that decomposes the COSMO problem in the 
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molecular cavity Ω into a collection of coupled problems in each of the spheres Ωj that 

compose the cavity. At iteration it, for each sphere Ωj, a COSMO-like integral equation is 

solved on its boundary Γj = ∂Ωj:

(38)

The expression of the right-hand side g depends on whether the point s belongs to the global 

cavity’s boundary (i.e., it is exposed to the solvent) or it is inside one or more other spheres 

(i.e., it is buried inside the cavity). If the point is exposed, the right-hand side is equal to 

minus the solute’s electrostatic potential Φ(s); if the point is buried, i.e., if the point s is 

inside some other sphere Ωk, the right-hand side g is computed from the reaction potential 

inside Ωk at the previous iteration, which is in turn computed from  according to eq.

35, where  is the solution to the integral equation on sphere k at iteration it − 1. If the 

point s belongs to more than one sphere, g is computed as the average of the reaction 

potentials in each sphere s belongs to. Let j(s) be the list of spheres that intersect Ωj at s 
and let | j(s)| be the number of such spheres. Let also χk be the characteristic function of 

Ωk, i.e., χk(r) = 1 if r ∈ Ωk and χk(r) = 0 otherwise. A point s ∈ Γj is external if and only if 

the characteristic functions of all the spheres Ωk, k ≠ j, are zero, i.e., if

(39)

where, for later convenience, we have introduced the normalized weights 

and we adopt the convention 0/0 = 0. Note that, in practice, the functions χk have to be 

smoothed out to obtain regular potential energy surfaces. This technical point is detailed in 

Ref. 34. We can now express the right-hand side of eq. 38 as

(40)

This leads, for each sphere j, to the following equation:

(41)

Notice how eq. 41 represents a Jacobi iteration for a linear system of integral equations, 

which defines the COSMO model:

(42)

The ddCOSMO system of integral equations is easily discretized in a real spherical 

harmonics basis through the following Ansatz:
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For each sphere, each operator in eq. 42 (i.e., either the “diagonal” j or the “off-diagonal” 

jk) is represented through a matrix Ljj (or Ljk) whose size is given by the number of 

spherical harmonics used for the discretization. The ddCOSMO global matrix L will hence 

be made of M × M blocks of size Nb × Nb, where Nb = (Lmax + 1)2 and Lmax is the maximum 

angular momentum in the spherical harmonics basis.

The choice of real spherical harmonics is particularly advantageous, as the  operator is 

diagonal in such a basis:

(43)

where we have used Dirac’s notation and |l, m〉 represents the spherical harmonic of 

quantum numbers l, m. The discretization of the jk operators is less straightforward, as it is 

not possible to compute the integrals analytically. However, an efficient numerical 

quadrature exists for the unit sphere: the numerical integration can therefore be easily 

computed through the Lebedev rule. Let  be a set of Lebedev points and 

weights: the final expression for the off-diagonal blocks of the ddCOSMO matrix is

(44)

A complete derivation of eq. 44 and all the details of the ddCOSMO method can be found in 

ref. 33 and 34; here it is sufficient to notice that the quantities  and  depend only 

on the Lebedev grid and on the geometry of the system. Moreover, the  coefficient - 

which correspond to ωjk(yn), defined in eq. 39 - vanishes if the spheres j and k do not 

intersect: as a consequence, all the blocks of the ddCOSMO matrix concerning non-

intersecting spheres are zero, and the matrix is block-sparse. The right-hand side of the 

ddCOSMO linear system is assembled from the molecular potential, the  coefficients 

and the spherical harmonics:

(45)

where  j is the list of spheres that intersect Ωj and  is the solute’s 

potential at yn on sphere Ωj. It is now possible to write the discretized ddCOSMO linear 

system. Let  be the l − m expansion coefficient of σj in the spherical harmonics basis 

(i.e., the unknown of the ddCOSMO linear system): the ddCOSMO equation reads:
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(46)

For the sake of brevity, and for convenience in the following manipulations, we introduce, 

for the ddCOSMO equation, the notation

The solvation energy can now be computed as in eq. 37, where, if the solute’s density is a 

collection of point multipoles, the integral can be easily computed. Let Ls be the maximum 

angular momentum of the solute’s multipolar distribution (i.e., 0 for point charges only, 2 

for distributions up to the quadrupole) and let  be the l − m (real, spherical) multipole 

on the j-th atom of the solute. The polarization energy will be:

(47)

where, for each 0 ≤ l ≤ N, −l ≤ m ≤ l we have introduced the vector Ψ such that

(48)

δl≤Ls is one if l ≤ Ls and zero otherwise and we use the notation

B Derivation of the coupled equations

In this appendix, we will derive the coupled polarization equations for a variational force 

field. We recall that the COSMO field Ec is obtained by differentiating the COSMO energy 

with respect to the induced dipoles:

(49)

The first term of eq. 49 is easily assembled:

(50)

Equation 50 introduces a linear transformation of the ddCOSMO X coefficients, which we 

denote with the matrix A. Notice that we assume that the dipoles are in their spherical 

representation; in the actual implementation, the dipoles are treated as Cartesian multipoles 

and the spherical-to-cartesian conversion is folded inside the matrix, so that we can write
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We notice from eq. 48 that such a transformation is the adjoint of the transformation that, 

given the (cartesian) induced dipoles, produces the Ψμ vector:

The second contribution to the COSMO field involves the derivatives of the X coefficients 

with respect to the induced dipoles:

where we have introduced the solution the the adjoint ddCOSMO linear system

(51)

The derivatives of gμ are obtained by differentiating the solute’s potential with respect to the 

dipoles and then assembling with the potential derivative a term such as the one in eq. 45. In 

particular, let  be the vector pointing from the position of the k-th atom to the gridpoint 

yn on the j-th sphere. The potential produced by the induced dipoles at the latter point is

where for convenience we are using the cartesian representation of the dipoles, which allows 

us to compute the second contribution to the ddCOSMO field as

(52)

As before, eq. 52 introduces a linear transformation which converts the solution to the 

ddCOSMO adjoint system into the second component of the COSMO field:

Again, the adjoint of B is the linear transformation that, given the (cartesian) induced 

dipoles, produces the gμ vector:

Lipparini et al. Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2016 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Scaling of the MPI code for the coupled induced dipoles/ddCOSMO problem, with respect 

to a single node (16 cores) computation.
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Figure 2. 
Computed IR spectra (black) and projected vibrational density of states (blue) on C and O 

atoms of all amide groups for a α-helix polypeptide model in vacuo
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Figure 3. 
Computed IR spectra (black) and projected vibrational density of states (blue) on C and O 

atoms of all amide groups for a α-helix polypeptide model in water
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